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Abstract

We consider a locally interacting Fermi gas in its natural non-equilibriuntgtstte and prove the Quantum
Central Limit Theorem (QCLT) for a large class of observables. Aispease of our results concerns finitely
many free Fermi gas reservoirs coupled by local interactions. THer@@e flux observables, together with the
Green-Kubo formulas and the Onsager reciprocity relations previestiplished [JOP4], complete the proof of
the Fluctuation-Dissipation Theorem and the development of linear resgbeory for this class of models.
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1 Introduction

This paper and its companion [AJPP3] are first in a series of papalisgevith fluctuation theory of non-equilibrium steady
states in quantum statistical mechanics. They are part of a wider pragitéated in [Ru2, Ru3, JP1, JP2, JP4] which deals
with the development of a mathematical theory of non-equilibrium statistieahamics in the framework of algebraic quantum
statistical mechanics [BR1, BR2, Pi]. For additional information aboutgtogram we refer the reader to the reviews [Ru4,
JP3, AJPP1].

In this paper we study the same model as in [JOP4]: A free Fermi gaguasi-free state perturbed by a sufficiently regular
local interaction. It is well-known that under the influence of such a peation this system approaches, as time +oo, a
steady state commonly called the natural non-equilibrium steady state JNE8@S$, AM, BM2, FMU, JOP4]. Our main result

is that under very general conditions the Quantum Central Limit Thed@@LT) holds for this NESS. Combined with the
results of [JOP4], the QCLT completes the proof of the near-equilibriluttEation-Dissipation Theorem and the development
of linear response theory for this class of models.

The rest of this introduction is organized as follows. In Subsection t.ddtational purposes we review a few basic concepts
of algebraic quantum statistical mechanics. In this subsection the readénd the definition of QCLT for quantum dynamical
systems and a brief review of related literature. Our main result is statagbsestion 1.2. In Subsection 1.3 we discuss our
results in the context of linear response theory.

Acknowledgment. A part of this work has been done during Y.P.'s stay at McGill Uniitgrand the C.R.M. as ISM Postdoc-
toral Fellow, during his visit to McGill University funded by NSERC and hisitto Erwin Schrédinger Institut. The research
of V.J. was partly supported by NSERC. We wish to thank Manfred Sdienfior useful discussions.

1.1 Central limit theorem for quantum dynamical systems

Let O be aC*-algebra with identityl and letr?, ¢t € R, be a strongly continuous group efautomorphisms o®. The pair
(O, 1) is called aC*-dynamical system. A positive normalized element of the d¥als called a state of. In what follows
w is a givenr-invariant state or®. The triple(O, T, w) is called a quantum dynamical system.

The system{O, 7,w) is called ergodic if

t
Jim % w(B*r*(A)B) ds = w(B* B)w(A),
St ),
and mixing if
ll‘im w (B*7(A)B) = w(B*B)w(A),
t|—o0
forall A, B € O.

We denote by(H., 7w, ) the GNS-representation of th@*-algebra® associated to the state The statev is called
modular ifQ),, is a separating vector for the enveloping von Neumann algeb(@)”. The states of thermal equilibrium are
described by thér, 3)-KMS condition where3 > 0 is the inverse temperature. Afly, 3)-KMS state onO is r-invariant and
modular.

Let f be a bounded Borel function dh and A € Os.¢. With a slight abuse of notation in the sequel we will often denote
f(mo(A)) by f(A) and writew(f(A)) = (Qu, f(m.(A))€). With this convention], , (A) denotes the spectral projection
on the intervala, b] of 7, (A). We shall use the same convention for the prodyficts. (41)) - - - fn (7w (A4r)), etc.

An involutive skews-automorphisnm® of O is called time-reversal ® o 7" = 7%

invariant ifn o ©(A) = n(A™) holds for allA € O.

For any subsefl C O we denote by4d..;r = {A € A| A = A*} the set of self-adjoint elements &f. We say that a subset
A c ©is L*-asymptotically abelian for if for all A, B € A,

0 ©. A staten on O is called time-reversal

/_°° 4, 7 (B)]|| dt < oc.
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Throughout the paper we shall use the shorthand
- 1 t
A= — *(A) —w(A)) ds.
= [ - as

Let € be ax-vector subspace @. We say that® is CLT-admissibléf forall A, B € €,
/Oo lw(T(A)B) — w(A)w(B)| dt < co.
ForA, B € € we set
LA B) = [ () - ) B - w(B)) at= [ (o (r(A)B) - w(a)e(B) at

(A, B) = %/_oo w ([r(A), B]) di = %(L(A,B) — L(B,A)).

The functional(A, B) — L(A, B) is obviously bilinear. Other properties of this functional are summarized in

Proposition 1.1 Suppose that is CLT-admissible and le#l, B € €. Then:

(i) L(A*,A)>0.
(i) L(A,B) = L(B*, A*). In particular, if A and B are self-adjoint, ther(A4, B) = Im L(A, B).
(iiy |L(A*, B)|* < L(A*, A)L(B*, B).
(iv) (A, B) — (A, B) is a symplectic form on the real vector spatgis.
(v) Ifwisamixing(r, 3)-KMS state, thew = 0.
(vi) Suppose that = 0, that¢ is dense ir® and L'-asymptotically abelian for, and thatw is either a factor state o3-fold
mixing: For all A;, Az, As € O,

lim w (Ttl (A1)Tt2 (AQ)Tt?’ (A3)) = w(Al)w(Ag)w(Ag).

min;; |[t; —t;j|—o0
i 1t =ty

Thenw is a(r, 8)-KMS state for somg € RU {+o0}.

Proof. Note that

0<w(@ia) = [ (1= B w (et s - o) as

t
This identity and the dominated convergence theorem yield
L(A", 4) = lim w (A:At) >0,

and (i) follows. Parts (ii) and (iv) are obvious. (i) and (ii) imply the Cay@chwartz inequality (iii). Part (v) follows from
Proposition 5.4.12 in [BR2]. Part (vi) is the celebrated stability resultraft®li, Kishimoto and Robinson [BKR, BR2[J

Definition 1.2 Let¢ be CLT-admissible. We shall say that the Simple Quantum Central Limit@ihg®QCLT) holds fo€

w.rt. (O, 7,w) ifforall A € €xes,
A 1
. iAe) _ =
thggow (e ) = exp ( 2L(A,A)) .

We shall say that the Quantum Central Limit Theorem (QCLT) hold¢ fbfor all n and all Ay, - - - , A, in €sat,

lim w (eiA“ ---eig”t) = exp (; Z L(Ai, Aj) —1i Z §(Aj,Ak-)> . (1.2)

t—oo
1<j,k<n 1<j<k<n
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The SQCLT is obviously a special case of the QCLT. Under sufficigudic assumptions, however, the QCLT can be deduced
from the SQCLT.

Theorem 1.3 Suppose that is CLT-admissible and.*-asymptotically abelian for. Suppose also that the systéf, 7, w)
is ergodic and that the state is modular. If the SQCLT holds fa@ w.r.t. (O, 7, w) then the QCLT also holds fat.

We shall prove Theorem 1.3 in Section 2 following the ideas of [GV].

The SQCLT has the same probabilistic interpretation as the classical danitaheorem. The probability of measuring a
value ofA in [a, b] when the system is in the states given by

Prob,{A € [a,b]} = w(14,5(4)).
If SQCLT holds forA, then

¢
tlim Prob,, {%/ 7 (A)ds € w(A) + [ a b
—00 0

- rmram L

Except in trivial cases, the QCLT does not have a classical probabifisipretation. In this case the relevant concept is the
CCR algebra over the symplectic spd€g.is, ), often called the fluctuation algebra [GVV1]. The mathematical structure o
the fluctuation algebra is discussed in many places in the literature, s¢&¥\dl]-[GVV6] and [MSTV, BR2, Pe, OP, De2]
for general results about CCR algebras. For notational and refeqgurposes we recall a few basic facts. Wetbe the
C*-algebra generated by the elemefiB (A) | A € Csci¢ } Such that for all4, B in Cecie

W(=A) = WA,  WAW(B) =e “WB 2w (44 B),
equipped with the minimal regular norm. The map
wi(W(A)) = e HAD2,

—a2/20(A,A)? de. (1.2)

uniquely extends to a quasi-free stateldhand (1.1) can be written as

lim w (e“‘u - ~eiA"t) = wi(W(A1) - W(An)). (1.3)

t—oo

The pair(W,wr) describes the fluctuations efw.r.t. the quantum dynamical syste{@®, 7,w). Let (Hr,wr,r) be the
GNS representation afV associated ta;,. We shall also denote by, the induced state on the enveloping von Neumann
algebrar;, (W)". Since for allA € €s.ir the map

R 3>z — wr(W(zA)),
extends to an entire analytic function @nthere exist self-adjoint operatogs, (A) onHr such that
7L (W(A)) = e,
Moreover, the operatoksz, (A), A € Cqir have a common dense set of analytic vectdrs Hr, and on this set
o (A), o1(B)] = is(A, B)L.

The operators 1, (A) are the Bose fields associated by QCLT(¢, 7,w). For anyn and Ay, -+ , A, € Csat, Qr is in the
domain ofpr (A1) - -+ ¢ (An) and, as usual, we denote

wr(pr(A1) - orn(An)) = (L, pL(A1) - oL (An)QL). (1.4

In particularwr, (¢ (A1)er(A2)) = L(A1, A2). For any integer, we denoteP,, the set of all permutations of {1, ..., 2n}
such that

m(25 — 1) < w(25), and =w(25—1)<m(25+1), (1.5)
for everyj € {1,...,n}. The cardinality ofP, is (2n)!/(2"n!). Then
n/2
Ar(2i— Ar25))), ifniseven;
wr(pr (A1) - on(An)) = Z H W (L (Ar(zj-1))¢2(Ar i) " (1.6)

TEPy 2 J=1

0, if n is odd.

With these preliminaries, we can formulate:
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Theorem 1.4 Suppose that QCLT holds ferw.r.t. (O, r,w), let A1, --- , A, € Csair, and letf, - - -, f be bounded Borel
functions orR. If L(A;, A;) = 0, we assume in addition thg is continuous at zero. Then

Jim w(fi(Ar) - fu(Ane)) = wi(Fi(er(Ar)) - fa(or(4n)))- @7

If n = 1, then Theorem 1.4 is an immediate consequence of the classical lrénye€Continuity Theorem. The proof in the
casen > 1is given in Subsection 2.2. For a probabilistic interpretation of Theordninlthe context of repeated quantum-
mechanical measurements we refer the reader to Section 2 in [Dal].

The QCLT does not imply that
lim (A -+ Ant) = wr(pr(Ar) - orn(4n)), (1.8)

t—o0
and in principle the convergence of moments has to be establishedtsgpdneour model, the proof of (1.8) is an intermediate
step in the proof of the QCLT.

To define Bose annihilation and creation operators associated withfield$), we need to assume that the symplectic fgrm
is non-degenerate (this implies th&t,s is either even- or infinite-dimensional). In this case there exists a completigeJ
on &.¢ satisfyings(J A, JB) = ¢(A, B), and one can define the operatagg A)/a} (A) on A by

1 *

ar(A) = NG (pr(A) +ipr(JA)),  ar(A) =

These operators are closable and satisfy

(pr(A) —ipr(JA)). 1.9)

Sl

[ar(A),a7(B)] =i(s(A, B) —ic(A, JB)),
onA.

We expect that in typical physical examples the symplectic fomill be degenerate in which case the Bose annihilation and
creation operators (1.9) cannot be defined globally. Let us assangmplicity, thatL is non-degenerate (in the general case
one has to further factor out the kernellof. Consider first the extreme case= 0 (this will hold, for example, ifv is a mixing

(r, 3)-KMS state). Let..;; be the group of all characters of the discrete Abelian gidwp. The dual groug..;; endowed
with the topology of pointwise convergence is a compact topological gaadghe algebra is isomorphic to the”*-algebra

of all continuous functions ofi..i¢. The statev;, is identified with the Gaussian measure®u; uniquely determined by

/X(A) dpr(y) = e FA2,

More generally, let
¢ = {A|¢(A,B) =0forall B € €.},

and suppose that there exi&f’); such thate..r = ¢'}), & ¢ andL = LV & L® where L") denotes the restriction
of L to Q:iiff. This is certainly the case & is finite dimensional, i.e., if we consider QCLT with respect to finitely many

observables. The restriction ofo Gisz is non-degenerate, andiif /), w(J) j = 1,2 denote the respective CCR algebras and
quasi-free states, then

w=wbgw® wr = w(Ll) ® w(?').
In particular, annihilation and creation operators can be associated tethergs ofiV(?),

Besides QCLT one may consider the related and more general exigt@tdem for the quantum hydrodynamic limit (QHL).
Fore > 0 andt > 0, let

t/e?
Ac(t) = e/ (T°(A) — w(A)) ds.
0
We say that has QHL w.r.t.(O, r,w) ifforall Ay,--- A, € Csair, and allt; > 0,--- ¢, > 0,

ljfﬁlw (eiAle(tl) ] ”eiAm(tn)) = wr (W (X[0,0) ® A1) - - W(X[0,0,] © An)). (1.10)
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wherex is the characteristic function of the intend&abnd, in the definition of the Weyl algebra, the bilinear fofnmust be
replaced by

LQHL(X[O,s] R A, XJo,] ® B) = min(s7 t) L(A7 B)
The special case where ajl's are equal corresponds to QCLT. The QHL is interpreted as the weralergence of the quan-
tum stochastic procesa. (¢) to a quantum Brownian motion. With the obvious reformulation, Theorenhalds for QHL.
Convergence of moments

16%1 W(Ar(t1) - Ane(tn)) = wr(or(X[0,61] ® A1) - 0L (X[0,t,]) ® An), (1.11)

is of independent interest. Even more generally, one may associatdassg ©f real valued integrable functions @the
observables

Af) = 6*1/ F(€%) (T'(A) — w(A)) dt,
0
with f € §, A € € and study the limit | 0 of
w (eiA1e(f1) . eiAné(fn)) . (1.12)

Note that QHL corresponds to the choige= {x0,) |t > 0}. For reasons of space and notational simplicity we will focus
in the paper on the QCLT for locally interacting fermionic systems. With ontatimnal changes our proofs can be extended
to establish QHL and (1.11). Itis likely that the proofs can be extendedrtoch larger class of functiors but we shall not
pursue this question here (see [Del] for a related discussion).

We finish this section with a few remarks about earlier quantum central lipet tgsults.

First notice that since the law of a single observable is well-defined, teeipligsn of the limiting law of a family{fit |t > 0}

of observables as the parameter» oo, is covered by the classical Levy- Cramer theorem. Several reduhigecest exist,
which are only of quantum nature insofar as the computatidinef . ., w(e!*“¢) is made more complicated by the quantum
setting.

Truly quantum central limit theorems attempt to describe the joint limiting biehaast — oo, of a family of observables
{(Ais, ..., An) |t > 0}. The earliest results of this type were quantum probabilistic versionsssiicid theorems concerning
sums of independent, identically distributed random variables. Physicéisesting applications of these results include the
study of spatial fluctuations of local observables of quantum spin sgsteatranslation-invariant product state. The generality
of the framework and the formulation of the limit vary. We mention in partic{&/W] which apply to general *-algebras
but where only the convergence of moments is proved; [Kup] whictksvior general C*-algebras and where convergence
in distribution (to a classical Gaussian family) is proved, but only with relspea tracial state . We also mention [CH]
which, although not a central limit theorem, is a first attempt to charaeté#hniz convergence in distribution of a family of
non-commuting operators in terms of a (pseudo)-characteristic fumctio

The series of papers [GVV1]-{GVV6],[GV] is more directly orientetvrds quantum statistical mechanics. Following ideas
of [HL2, HL3],[W], a fluctuation algebra is associated to the spatial flatituns of local observables for a quantum spin system
in a translation-invariant state. That state does not have to be a praatiecbst it must have very strong ergodic properties. It
is therefore very difficult to apply these results beyond the productstate Nevertheless, these works laid a solid conceptual
ground and our construction owes much to them. The papers [Mad2] e similar in spirit but require less stringent ergodic
conditions. Their results apply, for example, to spatial fluctuations of eservables inX'Y'-chains at thermal equilibrium.

A distinct feature of our work is that we study QCLT with respect to the groudescribing the microscopic dynamics of the
system. There is a number of technical and conceptual aspects dfWtith are specific to the dynamical group. For example,
the ergodic properties of the system (laws of large numbers), whidtbahe established prior to the study of fluctuations, are
typically much harder to prove for the dynamical group than for the lattaoestation group. As for the conceptual differences,
we mention that itw is a (r, 5)-KMS state, then by Proposition 1.1 (w,= 0 and the CCR algebra of fluctuatioh® is
commutative (Part (vi) provides a partial converse to this statemeni.iFm sharp contrast with QCLT w.r.t. the translation
group, where even in the simple example of product states of spin sygiterfluctuation algebra is non-commutative.

The CLT for classical dynamical systems is discussed in [Li]. For eewewf results on dynamical CLT for interacting particle
systems in classical statistical mechanics we refer the reader to [Sf{ahd he CLT for classical spin systems is discussed
in Section V.7 of [E].

After this paper was completed, we have learned of the work [Del] wkitdchnically and conceptually related to ours. We
shall comment on Dereiski's result at the end of Subsection 3.3.
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1.2 QCLT for locally interacting fermions

A free Fermi gas is described by th& -dynamical systen(O, 7o) where:

(i) © = CAR(h) is the CAR algebra over the single particle Hilbert space
(i) 7¢ is the group of Bogoliubov-automorphisms generated by the single particle Hamiltohign

7 (a®(f)) = a™ (" f),

wherea* (f)/a(f) are the Fermi creation/annihilation operators associatgdad) anda™ stands for eithes or a*. We
denote by, the generator of.

Let © be therp-invariant C*-subalgebra oD generated bya*(f)a(g) | f,g € b} and1. Physical observables are gauge
invariant and hence belong 0.

Let v be a vector subspace pfand letO (v) be the collection of the elements of the form

K ng

A=Y Tl e (frialgry), (1.13)

k=1j=1

whereK andny’s are finite andfx;, gr; € v. We denotéra = maxy ny andF(A) = { fr;, gx; } (to indicate the dependence
of K on A we will also denote it byK 4). O(v) is ax-subalgebra oD, and ifv is dense irfj, thenO(v) is norm dense iD.

Our main assumption is :

(A) There exists a dense vector subspace h such that the functions
R3¢ (f,e""g),

are inL'(R,dt) forall f,g € 0.

This assumption implies thdt, has purely absolutely continuous spectrum. Specific physical modéth whtisfy this as-
sumption are discussed at the end of this subsection.

Let V € D(0)se1r be a self-adjoint perturbation. We shall always assumerthat> 2. The special casgy = 1 leads to
quasi-free perturbed dynamics and is discussed in detail in the compzegier [AJPP3], see also [AJPP1, AJPP2, JKP] and
Remark after Theorem 1.6 below.

Let A € R be a coupling constant and let be theC*-dynamics generated b = do + iA\[V, -]. By rescaling), without
loss of generality we may assume that

=1 1.14
e £l (1.14)

We shall consider the locally interacting fermionic system describe@hy-»). Note thatr, preserve®) and that the pair
(D, 1) is also aC*-dynamical system. Let

1 (2my — 2)*"v 2

= — 1.1
Av 2ny Kv by (2ﬁv — 1)2”V717 ( 5)
where -
by = / sup  |(f,€e""0g)|dt. (1.16)
—oo fLg€F(V)

The following result was proven in [JOP4] (see also [BM1, AM, BM2, B

Theorem 1.5 Suppose that (A) holds. Then:
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1. Forall A € O(d) and any monomiaB = o (f1) - - - a” (fm) With {f1,..., fm} C 0, One has

|AS\21A)V/RH[T/\(A)7B]H dt < co.

2. For|\| < Av the Mgller morphisms
'y}\L Es—tlim 7o ok,
— 00

exist and arex-automorphisms oD.

In what follows we shall assume that (A) holds. 7ébe a self-adjoint operator dnsatisfyingd < 7' < T and[T’, e*"°] =0
for all ¢, and letwy be the gauge invariant quasi-free state@rassociated td". We will sometimes calll" the density
operator  The statev is To-invariant and is the initial (reference) state of our fermionic systeme qimntum dynamical
system(O, 7o, wo) is mixing. We denote by, the set of allu-normal states o). Theorem 1.5 yields that any stafec A
evolves to the limiting statey = wo o ~;", i.e., forA € O and|A| < Av,

Jim n(r4(4)) = wi (4),
see, e.g., [Ro, AJPP1]. The staig is the NESS (non-equilibrium steady state)(6F, 7,) associated to the initial state.
Clearly, wy is mx-invariant andyy is an isomorphism of the quantum dynamical systéfsro,wo) and (O, 7x,wy ). In
particular, the systerfO, 7, w} ) is mixing.

In what follows we shall always assume tiiédr T' = Ker (I — T) = {0}. This assumption ensures that the stateandw;
are modular.

Letc C 0 be a vector subspace such that the functions
RS>t~ (f,e""Ty),

are inL' (R, dt) for all f,g € c. In general, it may happen that= {0}, and so the existence of a non-trividl a dynamical
regularity property of the paifT, ho). If T = F(ho), whereF € L'(R,dz) is such that its Fourier transform

B(t) = % /_ ¥ e P () da,

is also inL' (R, dt), then one can take= .

Let i -
Ay =278V (1.17)

and

The main result of this paper is:

Theorem 1.6 Suppose that (A) holds, thit € Csei, and that|A| < Av. Then€ is CLT-admissible and the QCLT holds for
Cwrt. (0,7, wy).

Remark. If ny = 1, then Theorem 1.5 holds for afly< Ay < (2Kv/fv) ™!, see [JOP4]. With this change, Theorem 1.6
holds with Ay = Av. The casew, = 1 is however very special. V' = >, a™(fr)a(gr), thent, is quasi-free dynamics
generated byix = ho + AY_, (9, ) fr and Theorem 1.5 can be derived from the scattering theory of thé/paifo), see
[Ro, AJPP1]. This alternative approach is technically simpler, yields hettestants, and can be also used to prove a Large
Deviation Principle and to discuss additional topics like Landauer-Buttikendta which cannot be handled by the method of
[JOP4] and this paper. For this reason, we shall discuss this spesgaseparately in the companion paper [AJPP3].

As we have already remarked, our proof of Theorem 1.6 also yiellsdhvergence of moments (see Theorem 3.2), and is
easily extended to the proof of existence of QHL for locally interacting ienim systems (recall (1.10), (1.11)).
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We finish this subsection with some concrete models to which Theorem fli@sapThe models on graphs are the same as in

[JOP4]. LetG be the set of vertices of a connected graph of bounded defyiethe discrete Laplacian acting é%(G), and

0. the Kronecker delta function ate G. We shall call a grapy admissibleif there existsy > 1 such that for alke, y € G,
|(82,€7298,)[ = O(t]| ), (1.18)

ast — oo. Examples of admissible graphs &fe= Z ford > 3, G = Z, x Z%~" whereZ, = {0,1,---} andd > 1,
tubular graphs of the typ&,. x T, wherel' ¢ Z?~! is finite, a rooted Bethe lattice, etc. Assumption (A) holds and Theorem
1.6 holds withc = 0 if:

(i) G isan admissible graph;

(i) b =¢%(G) (or more generally?(G) ® C*) andhy = —Ag;

(iii) o is the subspace of finitely supported elements;of

(iv) T = F(ho) whereF € L*(R,dt) and0 < F(z) < 1for z € sp(ho).
The continuous examples are similar. Z2tc R be a domain and leA be the Dirichlet Laplacian of?(D, dz). We shall
say that a domaif® is admissible if there existg > 1 such that

|(f,e™ 4P g) = O(Jt| ™

for all boundedf andg with compact support. Examples of admissible domaingare R? for d > 3, D = R, x R4~ for
d > 1, tubular domains of the typ, x I', wherel' ¢ R?"! is a bounded domain, etc. Assumption (A) holds and Theorem
1.6 holds withc = v if:

(i) D is an admissible domain;

(i) b= L?*(D,dz) (or more generaly.?(D, dz) ® C¥) andho = —Ap;

(iii) o isthe subspace of bounded compactly supported elemehts of

(iv) T = F(ho) whereF' € L*(R,dt) and0 < F(z) < 1for z € sp(ho).

1.3 QCLT and linear response

In addition to the assumptions of the previous subsection, we assunig tafl” have the composite structure

M M M 1
b:jE:Blhj, ho:jE:Blhj, T:JG:?W, (1.19)

whereh;'s are bounded from below self-adjoint operators on the Hilbert aadesh ;, 3; > 0, andu; € R. We denote by;

the orthogonal projections ontg. The subalgebra®; = CAR(h;) describe Fermi gas reservoiRs; which are initially in
equilibrium at inverse temperatur@s and chemical potentiajs;. The perturbatio\V' describes the interaction between the
reservoirs and allows for the flow of heat and charges within the system.

The non-equilibrium statistical mechanics of this class of models has ledied recently in [JOP4] (see also [FMU] for
related models and results). We briefly recall the results we need.

Suppose thab,; F(V) C Dom (h;) for all j. The entropy production observable @, ) associated to the reference state
wo is

U/\__Zﬁj — 1;75)5

where®; = i\[dT'(h;p;), V] andJ; = iA[dT(p;), V]. Epr|C|tIy,

Ky ng -1 ng
b, = /\ZZ a* (fri)a gm)) {a" (ih;p; frr)a(gr) + a* (fr)a(ih;pige)} ( H a* (fri)a(gr:) ) )
k=11=1 \i=1 =141

ZAZ (Ha* Jri)a gkz)> {a"(ip; fr1)a(gr) + a” (frr)a(ipjgrr) (H a” (fri)a(gu: >
k=

11=1 \i=1 i=l4+1
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The observabl@; /7, describes the heat/charge flux out of the reserRginote thatb;, 7, € O). The conservation laws
M M
dowi @) =0, D w{(F) =0,
j=1 j=1
hold. By the general result of [JP1, Ru2, JP4], the entropy produofithe NESSu;" is non-negative,
M
Ep(w]) = wi (0a) = = Y Bi(wi (®5) — pywi () > 0.
j=1

If all B;'s andu;'s are equal, i.epy = -+ = By = fandus = -+ = um = p, thenwy | O is a (70, 3)-KMS state
and so the reference state is a thermal equilibrium state of the unpersybien. Therau;r I O is a(m, §)-KMS state,

wi (®;) = wi(J;) = 0forall 5, and in particulaEp(wi) = 0, see [JOP2]. On physical grounds, vanishing of the fluxes
and the entropy production in thermal equilibrium is certainly an expectadtrdt is also expected that if eithg’s or u;'s

are not all equal, theBp(w;") > 0. For specific interactions” one can compute; (o) to the first non-trivial order in\ and
hence establish the strict positivity of entropy production by a pertubatilculation (see [FMU, JP6] and [JP3] for a related
results). The strict positivity of the entropy production for a generitypkation\V' has been established in [JP5].

To establish QCLT for the flux observables in addition to the Assumption @heed:
(B) For allj, hjp;o C 0.

This assumption and the specific form of density operator ensure teamay takec = 0 and that ifV € e, then
{®;,J;} C €seir. Hence, foA| < Ay the QCLT holds for the flux observables.

We finish with a discussion of linear response theory (for referentésdditional information about linear response theory
in algebraic formalism of quantum statistical mechanics we refer the réa@@IPP1] and [JOP1]-[JOP4]). We will need the
following two assumptions:

(C) The operatoré; are bounded.
(D) There exists a complex conjugatiemn hh which commutes with alk; and satisfiegf = f for all f € F(V).

Assumption (C) is of technical nature and can be relaxed. Assumptipan@res that the systef@, 7, wo) is time-reversal
invariant. Time-reversal invariance is of central importance in linespoese theory.

Let Beq > 0 andpueq € R be given gquilibrium values of the inverse temperature and chemicaitdteWe denote@ =
(Br,- By B = (1, 5 ptns)s Beq = (Bear 5 Peq)s fleq = (feqs - » Heq), and we shall indicate explicitly the
dependence af;" on 3 and i by W;ng' Similarly, we shall indicate explicitly the dependenceldfA, B) on A, 3, i by

o i + Nt N
L)\’ﬂ’ﬂ. Smcew’\vﬁeqaﬁeq(q)J) o w&ﬁeqvﬁeq (\Z) =0

Prasna B = [ L5, (4053)

for A,Be {®;,J;|1<j<M}.

Assuming the existence of derivatives, the kinetic transport coeftscame defined by

ki + kj _ +

Ld}h = _8ﬁ.7w)\”§7ﬂ((bk)}Bzﬁoqvﬁ:ﬁcq’ »C)\{m = ﬁeqaujw)\ﬁ,ﬁ(@k)|E:qu,ﬁ:ﬁcq7 (1.20)
ki _ + ki = N .

‘C‘Ach = _8ﬁjwk,§,ﬁ(jk)’E:Eeq»ﬁ:ﬁeq’ £>‘CC = eqauij1§aﬁ(Jk){ﬁ:ﬁeq’ﬁ:ﬂeqy

where the indicel /c stand for heat/charge. We then have
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Theorem 1.7 Suppose that Assumptions (A)-(D) hold. Then, forjamy Ay, the functions
Boi) = wl 5 (®5),  (Bi) = wl 5 (T,

are analytic in a neighborhood @f., ji.q). Moreover,
(1) The Green-Kubo formulas hold:

kj 1 kj 1
Lyin = §LA,§eq,ﬁeq(q’k’ ®5); Ly = §Lx,ﬁeq,ﬁeq(q)‘“’ T5); (1.21)
Iy 1 i1 '
‘cA]ch = ELA,Eeq,ﬁeq(ka(pj)? E,\]cc = 9 A,ﬁeq,ﬁeq(jkv J;)-
(2) The Onsager reciprocity relations hold:
L3in = Lihns Lyie = Licer Lihe = Lien- (1.22)

(3) For |A| < Av the QCLT holds for the linear span ¢f;, 7; |1 < j < M} w.rt. (O, TA,wAﬁeqﬁeq). The associated
fluctuation algebra/V is commutative.

Remark 1. Parts (1) and (2) of Theorem 1.7 are proven in [JOP4]. Part (3)spemial case of Theorem 1.6. Parts (1)
and (3) relate linear response to thermodynamical forces to fluctuatidhermal equilibrium and constitute the Fluctuation-
Dissipation Theorem for our model. The physical aspects of lineabnsgptheory and Fluctuation-Dissipation Theorem are
discussed in classical references [DGM, KTH].

Remark 2. The arguments in [JOP4] do not establish that the functions

(ATX(B)), (1.23)

t—wl.
/\aﬁeqvﬂeq

are absolutely integrable fot, B € {®;,7;|1 < j < M} andin Part (2)kageq’ﬁ (A, B) is defined by

eq

The absolute integrability of the correlation functions (1.23) is a delicatamijeal problem resolved in Part (3) for| < Ay
Remark 3. Remarks 4 and 6 after Theorem 1.5 in [JOP4] apply without changelsgorém 1.7. Remark 7 is also applicable
and allows to extend the Fluctuation-Dissipation Theorem to a large classaflsdcenteredbbservables.

Remark 4. Although the time-reversal Assumption (D) plays no role in Part (3) afdfem 1.7, it is a crucial ingredient
in proofs of Parts (1) and (2) (see [JOP4, AJPP3] for a discussidhg Fluctuation-Dissipation Theorem fails for locally
interacting open fermionic systems which are not time-reversal intarian

A class of concrete models for which (A)-(B)-(D) hold is easily constied following the examples discussed at the end of
Subsection 1.2. Lef, . .., G be admissible graphs. Then (A)-(D) holdhif = ¢%(G;) (or £*(G;) ® C*), hj = —Ag,, and
0 is the subspace of finitely supported elements.d& physically important class of allowed interactiond/is= VhoP 4 y/int
where
VI =% i(x,y) (0" (8:)a(8,) + a”(8,)a(8r))
z,y

andt : G x G — Ris afinitely supported functior = U;G;), and

yint — Z v(z,y)a" (6z)a"(8y)a(dy)a(d:),

z,y

wherev : G x G — R is finitely supportedV2°P describes tunneling junctions between the reservoirlétitiis a local pair
interaction.
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2 General aspects of CLT

2.1 Proof of Theorem 1.3

Our argument follows the ideas of [GV]. We set
D(A,B) = HAelB _ (i(A+B) o~ 34.B]
The first ingredient of the proof is:

Proposition 2.1 If {A, B} C Osar is L'-asymptotically abelian forr then the asymptotic 2nd-order Baker-Campbell-
Hausdorff formula o
t1i>nolo HD(At7 Bt)“ = 07

holds.

Note that Proposition 2.1 is not a simple consequence of the BCH fornegiauibe its hypothesis does not ensure that the
double commutatofA,, [A:, B¢]] vanishes as — co. To prove Proposition 2.1 we need the following estimate.

Lemma 2.2 If A, B, a,b are bounded self-adjoint operators then

ID(A+a,B+b)|| < | D(A, B)l| +4 (lal® + BI*) + [I[[A, B], [a, 8]l + 2+ llal + [Bl) >~ X, 9l
Xe{A,B}
y€{a,b}

Proof. We decompos® (A + a, B+ b) = 22:1 D; according to the following table and get an upper bound of the norm of
each term using the elementary estimates

iz iy

e | <yl [ e < Ll ll, e — e < eyl
j D, upper bound o D; ||
1 (ei(A+a> - emeiA) ! (BFt) %H [A, ]|l
2 | &% (ei(B+b) - eibeiB) %H[B»b}”
3 | i (eiAeib . eibeiA) o B II[A, b]]|
4 | e (eiAeiB — ei(A+B)e_%[A’B]) ID(A, B)||
5 (eiaeib . ei(a+b)efé[a,b]) ei(A+B)ef%[A,B] | D(a,b)||
6 | e@t? (e_%[a’b]ei<A+B) - ei(A+B)e_%[a’b]) o 3P %H [A+ B, [a,b]]||
7 | ellatDi(A+B) (efé[“’b]ef%[A’B] — efé[A’B]fé[a’b]) %H[[Av B, [a, 0]
Il e L B ) I (1 [ 7=
0 | (leHDHAFE) _gi(ArBrain)) o latan SCIEA all + 1A, 81 + 1B, il + 13,8
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From the BCH estimate we further get
IDs|| < [1D(a,b)l| < ll[a, [a, b]][| + lI[b, [a, b]]I| < 4(llal® + [1BII°),
and the Jacobi identity yields
D6l < [lall (LA, b} + (1B, 1ll) + 1Bl (A, alll + [I[B; all])-

The result follows O

Proof of Proposition 2.1.Fort > 0 andj € N setp(t) = log(1 + t) and;(t) = [jp(t), (j + 1)p(¢)[. ForX € Oscis define

Xt(j) Et71/2/ 7°(X) ds, Xt(<k) = Z Xt(j).
1;(£)N[0,4] 0552k

If N(t) denotes the integer such thsi(¢)p(t) <t < (N(t) + 1)p(t) then repeated use of Lemma 2.2 yields

N(t) N(t)
1D Bl <43 (1A21° + IBO1P) + > (24 1420+ 1B21) > 11X,y 9
j=0 j=0 X,Ye{A,B}
N (2.24)
+ 3 ASY, B 1A, B
=0
We now estimate the right hand side of this inequality. We first note that
X < (1X11#2p(t) < |1 X]), (2.25)
and hence
N(t) _ _
> (AP +IBOIP) < (A1 + IBIP) V(1) + 1)¢*p()* < 2 (|4 + | BI®) £ /*p(t)?* -0,
j=0

ast — oo. Next consider

N(t)j—1 N(t) . .

) 1 gp(®)  p+1)p(0) B
YoM Y < > / / IX, 7 ()] dvdu.
j=0 k=0 j=0"0 Jp(t)

The change of variables= v — jp(t),n = v — u, leads to

N(t) j—1 N (t) :

) 1 p(t) r&+ip(t) , N()+1 [P® poo )
S vy [T e aanme < XOEL T T ) ane
=0 k=0 j=0"’0 3 0 3

Since(N(t) + 1)/t < 2/p(t) we obtain, forX,Y € {A, B},

N(t)j—1

~ *) () i 2 (T i _
s >SSy < g 2 [T e onan as = (2.26)

=0 k=0

Combining this with (2.25) we get

N(t) N(t)j—1
ST HIAPI+IBOT) Y XY <eHlaliB) > S SIS, vl —o,
j=0 X,Ye{A,B} X,Ye{A,B} j=0 k=0

ast — oo. To estimate the last term on the right hand side of (2.24) we write

N(t) N(t)j—1j-1

Do MAT, BEL (AP, BT < D0 D DALY, BOLIAY, BN = Zi + 22 + Zs,

=0 =0 k=0 I=0



Central limit theorem for locally interacting Fermi gas 14

where
N(t) j—1
k k j j
Zr =33 1A, BV 1AY, B,
j=0 k=0
and
N(t)j—1k—1 )j—11—1
ZZZH A(k) B(l) A£J)>B(])]H s = ZZH [A(k) B(l)] A(J) B(J)””
=0 k=0 1=0 =0 1=0 k=0

Combined with (2.25) and (2.26), the identity
([Ak, Bi], [Aj, Bjl] = [[[Ax, A1, Bel, B;] + [[[Aj, Bk, Ak, Bj] + [[[Bx, B;l, Axl, A;] + [[[Bj, Ak, Bl, Ajl,

yields

N(t) j—1

Zo <A(IAIP+1BIP) > D3 IXPL Y o,

X,Y€{A,B} j=0 k=0
ast — oo. The estimate

N(t) N(t>

ZH[A“) B < 2 Z / / . (B)]|| dudv

N<f> p(t) rp(t)—v
/ / I[A, 7*(B)]|| dudv

0
Mp(t)/_ I[A, 7(B)]||du < 2/R|\[A,T“(B)H|duv

t 0)

I /\

IA

together with (2.26) yield

N(t) N(t) k-1
j j k l
Zy <23 AP, BN S4B - o,
j=0 k=0 1=0

ast — oo. The same argument appliesZg and completes the proaf.

Let (H., 7w, Q) be the GNS-representation of the algebrassociated to the state The second ingredient of the proof of
Theorem 1.3 is:

Proposition 2.3 Suppose thatO, T, w) is an ergodic quantum dynamical system and thas a modular state. If A, B} is
an L!-asymptotically abelian pair for, then

s— lim ., (1A, B]) = /_o:ow([TS(A),B])ds

t—oo
Proof. We shall first prove that

t— oo

lim o, ([At,ét}) Q= (/_o;w([TS(A),BDds) Q. (2.27)
Writing
[At,Bt / / 7rw T ([T 51(A),BD) dsidsa,

the change of variable = s1, v = s — s1 yields that

T ([At,ét]) - i fi(v)dv, (2.28)
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where

1 min(t,t—v)
t(v) = — o (74([7"(4), B])) du.
f =g [ (), B) du
Clearly,

1@ < lir(4), BI € L' (R do), (229

and so, by the dominated convergence theorem, it suffices to show that
tlim fi(v)Qw = w ([T"(A), B]) Qu, (2.30)

for all v € R to prove (2.27). LeLZ,, be the standard Liouvillean associated.towe recall that’,, is the unique self-adjoint
operator orH,, such that ' '
To(TH(A)) = Fem, (A)e e £,Q, =0.

Then
o (T ([T (4), B])w = "o ([r"(A), B)Q,
implies
1 min(t,t—v) -
) = / el (IF(A), B]) Qu du.
max(—wv,0)
Since(O, T, w) is ergodic, zero is a simple eigenvaluef, and von Neumann’s mean ergodic theorem yields
min(t,t—v) 1 t
s— lim — e"Fe du =s— lim — [ ™% du = Q,(Q]),

t—oo t t— oo 0

max(—v,0)
for all v € R. This implies (2.30) and (2.27) follows.
To finish the proof note that for an¥ € =.,(O)’ one has

mo (1o B]) X0 = X ([40, Bi]) O,
and so for all¥ € 7,,(0)'Q,

lim 7., ([/L,Bt]) U= (/j;w([rs(A),BDds) . (2.31)

t—oo

Sincew is modularr.,, (0)’$2,, is dense irH,, and it follows from the estimate
sup (A B < [ 17" (4), Bl ds < .
t>0 R

that (2.31) extends to all € H,,. O

We are now ready to complete:

Proof of Theorem 1.3.Let{A1, -+ ,An} € Ceeis. FOrj =1,...,n — 1, we set

1.~ - -
Ujt = exp <—§[Ajt7 AGene + -+ Anﬂ) ;

andU; = Uy, - - - U, —1):. Clearly, theU;,’s are unitary and repeated use of Proposition 2.1 yields that

thm eiAlt .. .eiAm, o ei(A1t+“‘+An,t)Ut“ =0,
and hence, i i i i
tlim ‘w (eiA“ ---eiA"t> —w (ei<AU+'"+A"t)Ut)' =0. (2.32)
— 00

Proposition 2.3 implies that

k=j+1

s— lim m, (Uje) = exp (i > <(Aj,f4k)) :
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and so

s— lim 7, (U) = exp (—i Z g(Aj,Ak)) . (2.33)

t—oo
1<j<k<n

Since SQCLT holds, Relations (2.32) and (2.33) yield

. iA 1Ant : (Ar+-+Ant
lim w (e‘ ... et ') = lim w (el< 1t f)Uz)

t—oo t—oo

1<j<k<n

1<j<k<n

— exp (;L (iAk,iA])) exp (i 3 <(Aj,Ak)) ,

and the theorem followsJ

2.2 Proof of Theorem 1.4

Let f1,..., f» be asin the theorem and s&t = sup, <, ,.cr |f5(2)|. Then, foreachy = 1,...,n, there exists a sequence
(g;x)en Oof compactly supported continuous functions such that
sup |gje(z)] <M and lim g;(x) = f;(x), (2.34)
keN,zeR k—oo

forall z € R. Forn > 0 set

_ e,y Y
(@) = [ e a5ely)

G;kn denotes the Fourier transform @fi,. Note thatj;x,, € L'(R) and

sup  |gjen(2)] <M and  lim gjry(z) = gjr(2), (2.35)
keN,n>0,z€R n—0
forall z € R.
Lemma 2.4
Jim Jim e lim Time Em w(gieyn (A1) - gnkng (Ane)) = 0 (fulen (A1) - falpr(An))).
1—00 N1 — kp —00 N —0t—o0
Proof. Write
- - R R e A e, Ay, dé1-e-déy
N Y ) N N (e
R™ (2m)
The QCLT implies that
lim w (e—‘&*‘“ -~e—iﬁn*‘"‘) = wr(W(—€1A1) - W (=€ An)),
and the dominated convergence theorem yields
- déy -+ - dén

Jim w (g1, (A1s) - Gk, (Ant)) = /

an Gikym (1) - “Gnknnn (gn)WL(W(_glAl) e W(=6nAn))

@)

= WL(g1kym (PL(A1)) *+ Gnkynn (PL(AR))).
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By the functional calculus for self-adjoint operators (2.34) and3Riply

lim Tim - lm o lime oz (gikn (PL(AL) - - gnknna (PL(An))) = wr(fi(epr(Ar)) -

k1—o00n1—0 kp— 00 Nn—

and the statement follows]

Lemma 2.5 For any givengy, ..., &1 € R,

F5(As) = gn(Aso)| e

o ie A ig; 1A,
lim lim lim w [ e %6141 .. g7 &i-14G-1)
k—ocon—0t—o0

Proof. Let u, be the spectral measure far (A;;) and the unit vector, (e'¢i-14G-1¢ . .. ei€1410)Q  Then

2 i i1 A
eSi—14G -1y ...elﬁlAlt) :/‘fj(x)_
R

lim eiawd’ut(m) - lim w (e*iglAlt . efi5j71A(j,1)teiaAjtei€j71A(j,1)t L ei£1A1t)
— t—oo

= exp (—QQL(AJ,AJ) — 210&§ (A]7 Z gkAk)) = Aeiaxdu(x)7

“ <eii§1A“ cee TG0 £ (Ajy) — girn(Aje)

The QCLT yields that for any € R,

> Jr

1<k<j—1

wherey is a Gaussian measure with variarogd;, 4;) and expectation-2¢ (Aj, St gkAk) (note that ifL.(A;, A;) = 0

theny is thed-measure ab). This fact and the Lévy-Cramér Continuity Theorem yield that
tim [ 175e) = i @)P(@) = [ 1@ = gy ) P,
© JRr
and the statement follows from (2.34), (2.35) and the dominated cgewee theorentd

We are now ready to complete:

Proof of Theorem 1.4.Write

W(fi(Are) - fuAnt)) = w(grkin (Are) - Gk, (Ane)) = YT,

where

Tj=w (glklm (Ave) + gG—1yky_amy—1 (AG—1ye) | Fi(Ase) — g, (Ajt)] Fis1(Aginye) - “fn(Ant))

N . d coodEs
= /}Rjilglkml(ﬁl)"'g(jfmj,mj,l(€j—1)Dj(€1,---yfj—l)&@Tjilr

with

Dj(&1,...,8-1) =w (e_ifl‘&“ e AG - [fj(f‘ijt) — Gikjn; (Ajt)] Fie1(Agine) - "fn(Ant)) :

The Cauchy-Schwartz inequality yields that

5 ~ - 2
IDj(&1,-- - &-1) S M |w Fi(Ajt) = ginyn; (Aje)| e

<e—i§1A1,, . e*igjflA(j—l)t

€ 1AG -1y .ei§1A1t> =0.

i€ 1A 1y . ei£1A1t>

().

1/2

17

)
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and so Lemma 2.5 and the dominated convergence theorem gives

limsup limsup - - - lim sup lim sup lim sup |T;| = 0,
k1—o0  1n1—0 kj—oo m;—0 t—o0

for all j. Hence,
lim sup lim sup - - - lim sup lim sup lim sup |w( f1 (Alt) R (Am)) — w(g1kyn, (Au) C Gnknnn (Ant))‘ =0,

k1—o0  m1—0 kp—oo np—0 t—o0

and the statement follows from Lemma 2(4.

2.3 Norm localization
Fore > 0 we denoteD. = {z € C||z| < €}.
Proposition 2.6 Let A € Osei¢ be such that

/ lw(ATH(A)) — w(A)?|dt < .
Suppose that there exists> 0 such that i
lim w(elAr) = o EADa?/2 (2.36)

t— oo

for « € D.. Then (2.36) holds for altt € R.

Proof. This follows from well-known results in classical probability. See sectiom3Bil]. O

3 Locally interacting fermions

In this section we describe the strategy of the proof of our main resulpréhel.6, and establish a number of preliminary
results needed for the proof. In particular, we shall reduce the mfodheorem 1.6 to the proof of Theorem 3.5 (stated in
Subsection 3.3 and proven in Section 4). Theorem 3.5, which is the n@ini¢al result of our paper, concerns only the
unperturbed systerfO, 7o, wo ).

3.1 Strategy

Suppose that the assumptions of Theorem 1.6 hold and let

Ky nyp

A=>"T] a"(f))algr;),

k=1j=1

be an element of. Clearly,

wi ((At)”) =2 /[O N wi <U (Tif (A) @(A))) dty -+ - dty.

The first ingredient of the proof of Theorem 1.6 is:
Theorem 3.1 There exists a finite consta@t,, 4 such that for alln,

sup tin/2/ wy H (T;j (4) - WRL(A)>
IA|<Ay,t>0 [0,¢]™ j=1

dty - --dt, < Canl. (3.37)
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Remark 1. Our proof also gives an explicit estimate on the constant:, see Formula (3.51) below.
Remark 2. In the special case = 2, Theorem 3.1 yields that for all> 0 and|\| < Ay,

/ (1 - ﬂ) i ((75(A) — i (A))(A — i (A)))] ds < 202

t
—t
Ast — oo the monotone convergence theorem yields
[l (@30) i (A - (A1) [ ds < 265

In particular, we derive thaZ is CLT-admissible.

The second ingredient of the proof of Theorem 1.6 is:
Theorem 3.2 For |\| < Ay andalln > 1,

n! 2 . .
. ——— L(A, A)"/ if n is even
lim w;\l» ((At)n) _ 2”/2(71/2)'

t—o00
0 if nis odd

Remark. With only notational changes the proof of Theorem 3.2 yields that fodall - - | A,, € €,

tim e (Aueee Ane) =wr (pL(A1) - p1(An)),

t—oo

where the r.h.s. is defined by (1.6).

Given Theorems 3.1 and 3.2, we can complete:
Proof of Theorem 1.6.Let A € €. i¢. Fora € C one has

wi (eio‘g‘) = Z (iz!)nwj ((At)n> . (3.38)

n>0

Lete = 1/(2Cv, ) and suppose th&k| < Ay. Theorems 3.1 and 3.2 yield that

i A
sup ‘w;\' (e”’ ‘)‘ < 00,
|| <€, t>0

and that forla| < e,
lim wy (emAt) — g L(AA)o?/2 (3.39)

t—oo
Proposition 2.6 yields that (3.39) holds for alle R, and so SQCLT holds fat w.r.t. (O, 75, w). Our standing assumption
Ker (T) = Ker (I — T') = {0} ensures that the statg is modular, and since;” = wo o 7{, the states} is also modular.
By Theorem 1.5, ifA| < Av, then¢ is L'-asymptotically Abelian fot-, and it follows from Theorem 1.3 that the QCLT also
holdsd

Notice that in the initial step of the proof we did not use the assumption4haself-adjoint, and so the following weak form
of QCLT holds forany A € ¢:

Corollary 3.3 Forany A € ¢ there exists > 0 such that forf\| < Ay and|a| < e,
lim wy

t—o0

In the rest of this section we shall describe the strategy of the proofedéms 3.1 and 3.2.

(eiaét) _ e—L(A,A)a2/2.
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3.2 The commutator estimate
We shall need the following result

Theorem 3.4 Suppose that Assumption (A) holds. Ie€ O ()s.1r be a perturbation such thaty > 2 and

=1.
2, 141

LetA = a®(f1)---a™(fm) be a monomial such tha&(A) = {f1,--- , fm} C 0, and let

C{ (st vvsn) = [ (V). [ 751 (V), AL+ .
Then for alln > 0 there exist a finite index s@,, (A), monomiaIsFX‘(; € O, and scalar functionﬁiﬁz such that
Cl(s1, . osn) = D GY(s1,.. 50 F ) (51,- . 8n). (3.40)

q€Qn(A)

Moreover,

1. The order of the monomiﬂf{z does not exceezh(ny — 1) + m.
2. If mis even then the order dﬂf; is also even.

3. The factors oFXLq) are from

{a#(emhog) ‘ geF(V),se€ {31,...,sn}} U {a#(g) ‘ g€ ]—"(A)},

The number of factors from the first set does not exegedy — 1) while the number of factors from the second set
does not exceedh — 1. In particular, | F{")|| < max(1, max ez [ £]™ 7).

4. LetAy be given by (1.15). Then

Wva=> vl Y / ’Gf:z](sl,...,sn) dsy - -ds, < co. (3.41)
SH

n=1 9€Qn(A) _ocs, .<s51<0

The proof of Theorem 3.4 is identical to the proof of Theorem 1.1 irP@P Parts 1-3 are simple and are stated for reference
purposes. The Part 4 is a relatively straightforward consequente dindamental Botvich-Guta-Maassen integral estimate
[BGM] which also gives an explicit estimate d#y, 4. A pedagogical exposition of the Botvich-Guta-Maassen estimate can
be found in [JP6].

If Aisasin Theorem 3.4 then
'yi(A) = lim TO_t o T)t\(A),

t—oo

can be expanded in a power series\iwhich converges fofA\| < Ay . Indeed, it follows from the Araki-Dyson expansion that

rteri(A) = A+ (A" / [ (V) [ I8 (V), Al -+ T dsy - - dsie.

—t<sp <1 <0

Hence, forlA| < Av,

A=A+ " GY) (51, 50)FT) (51,0 50) s dsa, (3.42)
n=1

9€Qn(A) _ s, <--<51<0

where the series on the right-hand side is norm convergent by Parts8Baimheorem 3.4. This expansion will be used in the
proof of Theorems 3.1 and 3.2.
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3.3 Quasi-free correlations

Let O, 7o andwo be as in Subsection 1.2. We denote by

1

V2

the Fermi field operator associatedftee . The Fermi field operators satisfy the commutation relation
e(f)eg) + e(9)e(f) = Re(f, 9)1,

and the CAR algebré is generated by (f) | f € h}. Clearly,

a(f) = % (o(f) +iglf),  a'(f) = % (o(f) —ig(if)). (3.43)

We recall thatvg, the gauge invariant quasi-free state associated to the density ofr&amiquely specified by

wola®(fn)---a"(f1)a(gr) ---a(gm)) = dn,mdet{(g:;, Tf;)}-

Alternatively, wo can be described by its action on the Fermi field operators. A.ebe the set of all permutations of
{1,...,2n} described in Subsection 1.1 (recall (1.5)). Denote@y) the signature ofr € P,. wo is the unique state o
such that

o(f) = —% (alf) +a™(f)),

wo(p(f1)o(f2)) = 3 (1, f2) = im(f1, T o),

and
n/2
> em) [Jwr (e(fr@i—n)s e(fr2))) if niseven
wolp(fi) - o(fn)) = =€Pnsz =1
0 if n is odd.
For any bounded subsgtC h we set
M; = sup | 1],
fef

and

2 * t
C; = max (1, sup / " Jon ()i el0)) dt) ,

f.9€f
and we denote byM (f) the set of monomials with factors frofp(f)|f € f}. We further say thatl € M(¥) is of degree at
mostk if, for somefi, ..., fx € f, one can writed = o(f1) - - - ©(fx)-

Theorem 3.5 Suppose thaf; < co. Then for anyA, ..., A, € M(f) of degrees at mogt, .. ., k,, the following holds:

sup /2 /
t>0 [0,¢]™

Jlim t_"/Q/ wo (H (161 (Ay) —wo(Ai))> dty ---dt, = 0.
—00 [0,6]™

1.
i ki
dty - dt, < (277M;) 7 Ol

wo <H (70" (Ai) —WO(Ai))>

i=1

2. Ifnisodd,

=1
3. Ifniseven,

n/2

tlim t_"/2/ wo (H (Téi(Ai) — wo(Ai))> dtq - - dt, = Z H Lo(Ax(2j-1), Ax(2j)),

i=1 TEP, 9 j=1

where -
Lo(Ais 43) = [ an (340 = n(40)(4; = wn(4,) . (3.44)
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Remark. As in Remark 2 after Theorem 3.1, Part 1 of the previous theoremmith2 implies that

/oo |wo ((76(As) — wo(A))(A; — wo(Ay)))] dt < oo,

—o0

and soLo(A;, A;) is well defined.

Theorem 3.5 is in essence the main technical result of our paperotisipmiven in Section 4.

We have formulated Theorem 3.5 in terms of field operators since thatsditw a combinatorially natural approach to its proof.
Using the identities (3.43) one effortlessly gets the following reformulatibithvis more convenient for our application.

Denote by M(f) the set of monomials with factors frofu™ (f)|f € f}. A € M(f) is of degree at most if, for some
fi,..., fr €, one canwrited = o™ (f1) - - - o™ (fx). Let

2 o0 t
Dy = max (%52& 7T Tal |l letarmiteton) dt) ’

Corollary 3.6 Suppose thaDs < co. Then for anyA, ..., A, € M(§) of degrees at mosgt, . . ., k,, the following holds:

1.
dty -+ dt, < (2°M;) =" Dl

wo (H (57 (Aq) — wo(Ai))>

i=1

supt_”/Q/
>0 [0,

2. Ifnis odd,

3. Ifniseven,

n n/2
Jlim tf"/Q/ wo (H (7o' (As) — wo(z‘h))) dty-dtn = 0[] Lo(Arczj1), Anca),
- (CROk i1 7EP, g J=1

whereLo(A;, Ax) is defined by (3.44).

Note that ifc is as in Subsection 1.2 arfds a finite subset of, thenC; < co andDj < oo.

After this paper was completed we have learned of a beautiful papdi [Etgch is perhaps deepest among early works on
quantum central limit theorems (Derasgki's work was motivated by [Hal, Ha2, Rul, HL1, HL2, HL3, DaZJ) relation to
our work, in [Del] Theorem 3.5 was proven in the special dase: - - - = k, = 2 of quadratic interactions. This suffices for
the proof of SQCLT for quasi-free dynamics and for observabldsiwdre polynomials in Fermi fields. The proofs of Parts (2)
and (3) of Theorem 3.5 are not that much different in the genesaica> 2. The key difference is in Part (1) which in the
quadratic case follows easily from Stirling’s formula. To prove Parf¢tanyk; > 2 is much more difficult and the bulk of
the proof of Theorem 3.5 in Section 4 is devoted to this estimate. The pfQEDLT for locally interacting fermionic systems
critically depends on this result.

3.4 Proofs of Theorems 3.1 and 3.2
In this subsection we shall show that Theorems 3.4 and 3.5 imply Tims@3el and 3.2, thereby reducing the proof of Theorem
1.6 to the proof of Theorem 3.5.

If nis a state, we shall denote

nr(A1,...,An) =1 <H (A; — n(Ai))> . (3.45)

i=1
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Let
Ka
A:ZAk, A = Ha (fri)a(grs),
k=1

be an element of. Without loss of generality we may assume thatx ;¢ »(4) || f|| = 1. With

f:{eiShof’ fe]-"(V)U]—'(A),seR},

D = max 1 g 4 17T ) dr)

1 / (
s max e
foeruFA) [ flllgll J-o
we clearly havell; = 1 andDs < Dy, 4.

Proof of Theorem 3.1.For || < Ay,

Wit (FRHA), L (A) = Y wor (160 07X (Aky)s - 10" 09 (Ak,)) (3.46)
and the expansion (3.42) yields that

75 07 (Ak) = wo 07t (AK) = S Y G9),(9) (78 (FS) () —wo (FE),(9)) ds,  (34D)

§>0 q€Q;(Ag) “AI

whereA; denotes the simpleks = (s1,...,5;) € R7| —oc0 < s; < --- < s1 < 0}. We have adopted the convention that
Qo(Ay) is a singleton, thaﬂmlz ,=1land thatF<°) = Aj. Moreover, integration over the empty simplay is interpreted
as the identity map. Applying Fubini’'s theorem we get

/2 / woT (Tél 0y (Aky )y e vy o™ 0y (Ak,)) dty---dtn = Z (iA)7L o tin
(0.2 J1s--0n >0 71€Qj; (Aky)s-an€Qj, (Ag,,)

/dsl~ /dsn (HGXL)qL )ct(] 0,5 Akys o Ary), (3.48)

J1

where we have set

Ci(j @, 85 Ay -5 Agy,) = t_n/Q/

wor ( (Fj,];>q1 (51)) ol i (FX:)% (s"))) dty - - dtn
[0,¢]™

We derive from Corollary 3.6 and Theorem 3.4 that
G0, @, 85 Ay s - .., Ap, )| < 287V =D Eizaan (2%/* Df) "ol (3.49)
holds for¢t > 0. Using this bound we further get from (3.48)

sup ¢t~ "/2 / ‘wOT (Tél oW (Aky)y ..., Ta" o 'y;L(Akn)) ’ dty---dtn
>0 [0.617

<TJ (272D > R2v=bap > /‘Gg;qu ds, nl. (3.50)
=1

J1>0 1€Q;, (Ar)A,

For|A| < Av we have (recall Definitions (1.17) and (3.41)),

S 5 [l ] dn <1 W,

J1>0 @€Q;, (Ar)A,
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By Theorem 3.4, the right hand side of this inequality is finite. Combining thistd with (3.46) and (3.50) we finally obtain

sup t_"/Q/ |wj\'T (T;I(A),...,T;"'(A))’ dty - -dt, < (28"AD Z + Wy, a, ) n!,
(0,67

Al <Ay ,t>0

which concludes the proaf.

The above proof gives that in Theorem 3.1 one may take

Ka
Cv.a =2""4Dy 4 Z (14+Wv,a,). (3.51)

j=1

For an explicit estimate ol/y, 4, we refer the reader to [JOP4].

Proof of Theorem 3.2.Note that

Ka

wl ((At)")= > t*"”/{ o (8% 07 (Aky), o, 78" 0 4 (Aky)) dty -+ dt. (3.52)
0,8

ky,.okp=1

In the proof of Theorem 3.1 we have established that the power s8ri&) Converges uniformly fgp\| < v and¢ > 0.
Suppose first that is odd. Corollary 3.6 yields that

tlim C(4,q,8; Akyy .o, Ak, ) = 0. (3.53)

By (3.49) and Part 3 of Theorem 3.4 we can apply the dominated ogavee theorem to theintegration in (3.48) to conclude
that each term of this power series vanishes -as co, and so

lim wy ((At) ) =0,

t—oo
for [A| < Av.
If n is even, Corollary 3.6 yields

n/2

. . (.777 i—1)) (Jr(29))
tlggo Cels 4,83 Ak - Arn) = Z H Lo ( ((22 11)) 2 (2i—1) (S”@i*l))’ FAk ((22,))&1”(2@') (Sﬂ@i)))
nEP, 5 i=1 e e
ik = ) Um(2))
Jm(2i—1) _ Ui ) o
E; /uzw/2 il_[lWOT (To ( kr(2ion)” qﬂ(ziil)(sﬂﬂzfl))) P H Ak (g On(20) (Sﬂ(2z))> dty -+ dtn .

The estimate (3.49) (applied in the case- 2) yields that
./ _ 2 — L
/R‘WOT (Té (Fgqu( )) F) (s /))‘ dt < (28nA+1/2Df) 98—+

from which we obtain
‘tlim Ce(4,q,8; Akyy ooy Ak, )| <
— 00

(QSWA +1/2Df) " 28(mv—1) 3 ji
Arguing as in the previous case we get, fidf < Av, the expansion

lim t_n/Q/ woT (Tél o ’Y:\‘F(Akl)v vee ,T(;n OV ( kn)) dty - dtn/Q
[0 t]n,

t—o0o
— Z (i/\)J1+m+yn Z /ds1~~~ / dsn, <HGEZIlc)aql( )) (3.54)
J1seesdn>0 QIEle(Akl)v“‘7‘1n€an(Akn)Ajl Al =1
n/2

t; (-]7((2L 1) ) (U (24)) )
Z /R/2 Hon (T ( K21 1)7%-(27‘,—1)(87‘—(2171))) ’FAk,r(gi)’q-rr(%)(S"(Ql)) dt, dtn/z.

TEPyp /2 i=1
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By Fubini’s theorem, this can be rewritten as

Z / (i)\)j1+...+jn Z /dsl---/dsn
R™/2 A]‘n

TEP /2 Jlseees jnZO QIGle(Akl)y“‘anEan(Ak'”)Ajl

n n/2
(41) <]7r(27 1)) (I (2))
(ll_ll GAkL,ql ) HWOT (TO ( k(20— 1)’4"(2i’1)(5ﬂ(2i_1))) 7FA’%(%)’qw(m’) (8n(2i)) | | dtx---dtyya.

By Expansion (3.42), the expression inside the square brackets is

n/2

HUJOT (7_0' O’Y)\ (Ak,r(gl 1)) :7)\ Ak,\—(zl) ) HWAT ( ( 7\'(21',71)) 7Akw(211)) )

so that, by (3.52),

n/2

z 5 TL( [t (7" () A ) )

kn=1TEP, /5 i=1

Jim (A7)

n/2

:ﬁ;wl—[l (/w (4), 4) dt)
- 2n/21(1;/2) L(4, A%,

4 Proof of Theorem 3.5

For notational simplicity throughout this section we shall drop the subsgapd writeh for hg, 7 for 7o, w for wo. We shall
also use the shorthand (3.45).

4.1 Graphs, pairings and Pfaffians

An graph is a pair of setg = (V, E) whereE is a set of2-elements subsets &f. The elements ol are called points or
vertices ofg, those ofE are its edges. Abusing notation, we shall writec g for vertices ofg ande € g for its edges. If
v € e € g we say that the edgeis incident to the vertex. If the edgee is incident to the vertices andv we writee = uv
and say that the edgeconnectsu to v. The degree of a vertex € g is the number of distinct edgese g incident tov. A
graph isk-regular if all its vertices share the same degted vertexv € g of degred) is said to be isolated. A path gnis a
sequencéuo, e1,v1, €2, . .., en, vy ) Wherev; € V, e; € E ande; = v;—1v;. We say that such a path connects the vertiges
andw,,. If vo = v, the path is closed and is called a loop. The grajfconnected if, given any paif, v* € V there is a path
on g which connects andv’. A connected graph without loops is a tree.

A graphg’ = (V'  E’) is a subgraph of the graph= (V,E) if V' C V andE’ C E. A subgraphy’ of g is said to be
spanningg if V' = V. A connected graph has a spanning traee., a subgraph which is spanning and is a tree.

Letg = (V, E) be a graph. To a subsBt C V we associate a subgraphy = (W, Eji) of g by settingE |y = {e = uv €
E|u,v € W}. Given two graphg: = (V4, E1) andgs = (Va, E2) such thatl; andV; are disjoint we denote by V g2 the
joint graph(Vi U Vo, E1 U E3).

Letg = (V, E) be agraph antll = {V1, ..., V,} a partition of V. The set

E/II = {V;V; |there arex € V;,v € Vj such thatuw € E}.
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Figure 1: Diagrammatic representation of a paining

defines a grapb/I1 = (II, E/II). We say thay/I1 is theIl-skeleton ofy.

A graphg = (V, E) is said to bgV1, V2)-bipartite if there is a partitio’” = V1 U V, such that all edges € E connect a
vertex ofV; to a vertex ofi,.

A pairing on a seV/ is a graphp = (V, E) such that every vertex € V belongs to exactly one edgec E. Equivalently,
p = (V, E) is a pairing ifE is a partition ofV or if it is 1-regular. We denote b (1) the set of all pairings oft’. Clearly,
only setsV of even parityV'| = 2n admit pairings and in this case one has

_(@2n)! T
|P(V)| = gl = (2n — 1)L
If the setV = {w1,...,v2,} is completely ordered;; < v2 < - -+ < vap, Writing

E = {71'(’01)71'(’[)2), 7T(U3)7T(1)4), ey 71'('[)2»,171)7'((’[)2”)} ,

sets a one-to-one correspondence between paipirggV, E') and permutations € Sy such thatr(ve;—1) < 7(v2;) and
m(v2i—1) < m(veis1) fori = 1,...,n (compare with (1.5)). In the sequel we will identify the two pictures anaotie by

p the permutation o}/ associated to the pairing In particular, the signature(p) of a pairingp is given by the signature

of the corresponding permutation. A diagrammatic representation dfiagpa € P(V') is obtained by drawing the vertices
v1, ..., V2, @S2n CONSecutive points on a line. Each edge p is drawn as an arc connecting the corresponding points above
this line (see Figure 1). It is well known that the signature @ then given by:(p) = (—1)* wherek is the total number of
intersection points of these arcs.

If V.= Vi1 U Vs is a partition ofV into two equipotent subsets we denote®¢l1, V2) C P (V) the corresponding set of
(Va, Va)-bipartite pairings and note that

"P(Vl, ‘/2)‘ = n!.
If Vi ={v1,...,vn}andVe = {vn41,...,v2n} are completely ordered by < -+ < v, < -+ < v2p, thenp(vai—1) = v;
ando(vn4i) = p(ves) for 1 < ¢ < n defines a one-to-one correspondence between bipartite pagriag® (V1, V2) and
permutationsr € Sy,. A simple calculation shows thatp) = (—1)""~D/2¢(q).

In the special cast = {1,...,2n}, Vi ={1,...,n}andV> = {n+1,...,2n} we shall seP(V) = P, andP(V1, V2) =
Phn.

The Pfaffian of &2n x 2n skew-symmetric matrix/ is defined by
PE(M) = Y e(p) [ Mp2i-1ipcai-
PEPn =1
If Bisan x n matrix and
-BT 0

el 5 7]
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then only bipartite pairings € P,, contribute to the Pfaffian af/ which reduces to

> e [ Brei-vwey

PE(M) =
pEPn i=1
= > (=1)"""20) [ Biotsy (4.55)
ocESy i=1

= (—D)""Y2 get(B).

4.2 Truncating quasi-free expectations

Let V' C b be finite and totally ordered. To any sub8EtC V' we assign the monomial
W)= [] e(w),
ueW
where the product is ordered from left to right in increasing order eiridexu.

Letw be a gauge invariant quasi-free state®@hR(h). We define §V| x |V| skew-symmetric matrix by setting

Quo = wlp(u)p(v)),

foru,v € V andu < v. We also denote b@" the sub-matrix of2 whose row and column indices belongié. Then we
have

[ PEQY) if [W]is even,
w(®(W)) = { 0 otherwise. (4.56)
If |IW|is even, assigning to any pairipge P (W) the weight
Qp) = H Quo,
UuvEpP
u<v
we can rewrite Equ. (4.56) as
w@W)) = Y @0 (4.57)
pEP(W)

The following simple lemma is our fundamental tool when dealing with suplamsions.

Lemma4.l LetW; = {us,...,u,} andWs = {v1,...,vs} be disjoint even subsets bfsuch thatu; < uz < -+ < u,
andv; < ve < --- < vs. Denote by:(W1, W>) the signature of the permutation Bf; U W, which “orders” the sequence

W1 W3 i.e.,which maps the sequenee, us, - - - u», v1,v2, - - - ,vs iNto the ordered sequence of element§lafu Ws. Then,
for anyp, € P(W1) andp, € P(W-) one has
Qp1 Vp2) = Qp1)Qp2), e(p1Vp2) = (Wi, Wa)e(p1)e(p2). (4.58)

Proof. The statement abo@(p: V p2) is obvious. To prove the statement about signatures we draw the follaiaggam
(see Figure 2). Draw two parallel lines and on the top one the two diagramesponding to the pairings andp., one next

to the other. On the bottom line draw the diagram representing the pairing- but with the edges drawn below the baseline.
Now draw segments connecting each point of the top line with its represamtahe bottom line. These segments represent
the permutation referred to in the Lemma. Thus, if theregartersection points of these segments théiv,, Ws) = (—1)7.
Denote byj the number of intersection points in our diagram lying above the top line agcthg number of those intersections
points lying below the bottom line. Then, we has@: )e(p2) = (—1)° ande(p: V p2) = (—1)7". Now observe that our
diagram is a disjoint union of closed loops. Thus, it has an even nuribr@ecsection points.e.,

(71)j+q+j/ =1,
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e(p1) = -1 (p2) = +1

E(Jl, JQ) =—1

e(prVp2) =+1

Figure 2: Proof of Lemma 4.1

from which the result follows]

Iterating Equ. (4.58) we obtain, for disjoint even subdéts ..., W, C V and arbitrary pairingg; € P(W;), the formulas

Q <\/ p¢> =[Iew), - (\/ pi> = e(Wi,..., Wi) [Te(p),

i=1 =1 =1

wheree(W1,..., W) denotes the signature of the permutation which “orders” the sequénce. ., W,. Moreover, the
recurrence relation

eWi,...,.Wg)=e(W1 U---UWg_1, Wr)e(Wr,..., Wi_1),
holds.

If X,Y are subsets df we write X < Y whenevemmax(X) < min(Y’).

Remark. If W1 < W < --- < Wy itimmediately follows from the fact that thié’; are even that(Wr(1y,..., Wry) =1
for any permutationr € Sk.

Lemma 4.2 LetIl = (V4,..., V,) be an ordered partition of” by even subseis.,
Vi<Va<---<V, |Vieven

and setd; = ®(V;). Then one has
wr(Ar,., An) = Y e(p)Qp), (4.59)

peP(II)
whereP(II) denotes the set of pairingsc P (V') which have dlI-skeletorp/II without isolated vertex.
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Figure 3: The exit graphx(p) (solid lines) forp € P(II)

Proof. Expanding the left hand side of Equ. (4.59) we get
DM w(@Uienx Vi) [T w@mi)),
KcCI ieK
wherel = {1,...,n}. Using Lemma 4.1 and the remarks following it, we can rewrite this exjmess
DD () (), (4.60)
KcCI £€T )

where we sum over the sets

Ex = P(Uiennx Vi) x <H P(Vi)> )

€K

and, for{ = (g, (pi)iex) € Zx We have sep(§) = ¢V (Viexpi). Let us define
Is(p) = {i € I|V; is an isolated vertex qf/II}.

Clearly, if K C I and¢ € ZEx thenp(§) € P(V) andK C Is(p(€)). Reciprocally, suppose thate P(V) andK C Is(p).
Then the restricted graphs = pjw With W = Uicr\xc Vi andp; = pyy, for i € K satisfy¢ = (g, (p:)icx) € Ex and
p(€) = p. We conclude that

{(K;p(©) | K CI,§ € Ex} ={(K,p)[p € P(V), K CIs(p)},

and since the map — p(&) is clearly injective we can rewrite the sum (4.60) as

ST e D (-n'Fl

peP(V) K Cls(p)

The result follows from the fact that the second sum in the last expregaigshes unless(ig) is emptyd

4.3 Resummation

The setup in this subsection is the same as in the previous one. We corfsider @rdered partitiodl = (V4,...,V,) of V
by even subsets as in Lemma 4.2 and fix our attention on the expan$6h ¢#the truncated correlation.

Consider a fixed term in this expansiae., a pairingp € P(II). Since its skeletom/II has no isolated point, for each
1€ 1=1{1,...,n} the set of edges gf which connect a vertex if; to a vertex outsid&; is not empty. We call exit edge of
p from V; the element of this set which contains the smallest verté%.iThe set of all exit edges g@fdefines a subgraph of
which we denote byx(p) (see Figure 3). We also denote By(II) = {ex(p) |p € P(II)} the set of all exit graphs. We can
rewrite expansion (4.59) as

wT(A1,...,An) = Z Z S(p)Q(p).

g€Bx(II) peex—1({g})
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A given exit graphy can be seen as a pairing 6f(g) = {u € V |uv € g for somev € V'}. SettingV’(¢g) = V' \ X(g) and
applying Lemma 4.1 we get

wr(Ai,...,An) = > Qg)S(g), (4.61)
gE€Ex(IT)
where
So)= D e®pyv)- (4.62)

p€ex~1({g})
Our next result is a partial resummation formula fi).

Define the exit point fronV; by z;(g) = min(X(g) N V;). We say that
6= (X,L,M, M R),
is ag-admissible partition of/ if X, L, M, M’ and R are disjoint subsets df such that
X=X(g9), V=XULUMUM UR,
and which, for all € I, satisfy the following conditions

(1) max((LUM)NV;) < zi(9g);
(2) min(RUM')NV;) > zi(g);
3) |LNV;|iseven;

@) IMnVi| =M NV

If X,Y are two subsets df denote by2*¥ the sub-matrix of2 with row (resp. column) indices iX (resp.Y).

Lemma 4.3 For g € Ex(II) one has

S(g) = > e(O)w(@R) [ (w(cp(L N V;)) det(QM Ve M'0Vs )) , (4.63)

0=(X,L,M,M',R)€O(g) iel
where©(g) denotes the set gfadmissible partitions of” and

20) = e(X,LNVi,...,LOVa,(MUM')NVi,...,(MUM)NV,, R)e(gx) [ [(-1)MMvIaMavil=0/z,

i€l

Proof. Let us have a closer look at a pairipgvhose exit graph ig. What happens itX;(g) = V; N X(g) is completely
determined by. However, the structure of v, ;) WhereV;(g) = Vi N V(g) depends on finer details pf Edges ofp which

are incident to a vertex ift;(¢g) located to the left of the exit point; (¢) must connect this vertex to another verteXirg).
These edges split in two categories: the ones which connect two ventites [eft of the exit point and the ones which connect
a vertex on the left to a vertex on the right. We denotd.bfp) the set of vertices which belong to an edge of the first category,
and byM;(p) the vertices located to the left of (g) and belonging to an edge of the second one MBYp) we denote the set

of vertices which are connected to elementdffp). This subset oi/;(g) is located on the right of the exit point. We group
the remaining vertices df;(g), which are all on the right of the exit point, into a fourth $&{(p). Elements of this set connect
among themselves or with elementsif(p) for somej # i (see Figure 4). Setting

Lip)=JLip), M@p)=|JMip), M@p)=JM@p), R =]JRp),
il i€l iel iel
we obtain a partition
0(p) = (X(9), L(p), M(p), M'(p), R(p)),
of V' which is clearlyg-admissible. Moreover, setting

Li(p) =Ly, € PLp) NV,

mi(p) = pm@umeynv; € P(M(p) NVi, M'(p) N Vi),
r(p) =prep) € P(R(p)).
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Figure 4: The partition o¥; induced by a pairing. Solid lines belong to the exit grapi(p).

we obtain a ma@ fromex ™! ({g}) to the set

U {{9} X (HP(LH%)) X (HP(MQ%,M’H%)) x P(R)

0=(X,L,M,M’,R)€O(g) icl i€l

Since

p=gV <\/li(p)> % <\/ mi(p)) Vr(p),

i€l iel
¥ is injective. For any-admissible partitiod = (X, L, M, M’, R) and any

LeEPLNV;), mi€eP(MNV,M' nV;), rePR), (4.64)

the pairing

pP=gV (\/h) v (\/mi> vr, (4.65)

iel el
satisfies
ex(p) =g, 0(p)=0, L(p)=1L mi(p)=mi r(p)=r.
We conclude tha¥ is bijective. Thus, using Lemma 4.1, we can rewrite the si(g) as

e(gx)e(X, LNVi,...,LNV,,(MUM)NVi,...,(MUM')NV,, R)
0=(X,L,M,M’,R)cO(g)

H( > s(zi)n(zi)>H< > e(mi)Q(mi)> > ().
i€l \l;EP(LNV;) i€l \'m;eP(MNV;,M'NV;) reP(R)

The result now follows from Equ. (4.55) and (4.57).

4.4 Estimating truncated expectations
Apart from the entropic factd©(g)|, the following Lemma controls the partial susifg).
Lemma 4.4 For g € Ex(II) one has

S(g)l <272 1e(g) T el

vEV (9)
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Proof. Since 1 1
o(f) = Jla () alN} = 5\|f\|2,
we have, for anyX C V, the simple bound
lw(@(X)] <2772 TT Joll.
veX

Combining this estimate with the following Lemma, the result is an immediate quesee of Formula (4.631

Lemma 4.5 Let B be thek x k matrix defined byB;; = w(¢(u:)e(v;)). Then, the estimate

k
|det(B)] < 27" H(nuin Hwn),
=1
holds.

Proof. Let™ be a complex conjugation dn The real-linear map

Q: h — hab
fo- Q-T2 FreT

is isometric and such that

((ui,vj) = (ui, Tv;) + (uszUj)) = E(Qui,ij).

w(p(us)p(vy)) = :

N | =

It immediately follows that

det(B) = 27" wroek(a(Qu1) - - - a(Quy)a™ (Qug) - - - a*(Qur)),

wherewrock denotes the Fock-vacuum state@AR (h € h). The fact that

la(Qu)]| = lla”™(Qu)ll = [Qull = |lul,

for anyu € b yields the resultd

Foru,v € V such that, < v set

A, = 2 E@EN] _ ) 1Qu]
][ o] [l T
and for any graplp onV set
Alp) = [] Aw
uveEp
u<v

Note thatA,,, and hence\(p) take values in the interval, 1]. The following lemma, which controls the contribution of the
exit graphg to the sum (4.61) is immediate.

Lemma 4.6 For anyp € P(W)

2(p)| <272 (p) ( I1 le|> -

weW

Applying this bound tg; € Ex(II) and using Lemma 4.4 we finally get from Formula (4.61):

Lemma 4.7 Under the hypotheses of Lemma 4.2 the following estimate holds

jwr (AL, ..., Ag)| < 2712 (H ||v||> Y. 18@IAg).

veV geBEx(II)
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4.5 Counting exit graphs and their admissible partitions

Lemma 4.8 For any ordered partitiodI of V one has
|Ex(In)| < 4/

and for anyg € Ex(II)
©(g)] < 4.

Proof. We set|V| = 2N, II = (V4,...,V,) and|V;| = k,;. To construct an exit graph we must first seleagxit points
x; € V;. Thus, there aré; ks - - - k,, exit points configurations. Each exit point has now to be paired with a different vertex
yi € V, subject to some constraints. Releasing these constraints we obtain érdoppd2 N (2N — 1) --- (2N —n+1) on
the number of such pairings. Thus,

Ex(IT)| < 2NN — 1)« (2N — 1+ 1)ks - o = (2:>k1.--knn!.

The result follows from the facts that the binomial coefficient is bourtle2f™ andk; < 2%:.

A g-admissible partition is a partition df (¢) into four sets. Since there atd” (9! such partitions the second estimate
follows.O

4.6 Proof of Theorem 3.5

To prove Theorem 3.5 we sélt; = @(e'*" f;1) - - - p(e'i" fir,) and apply Lemma 4.7 to the case
Vi = {eitihfu,...,eitihfiki}, i1el = {1,...,77,}.

We se2N = |V| = ", k; and obtain

/[Ot]n|w:r(A1,...,An)|dtl...dtnég_N(H|v|) > 18| C(g), (4.66)

veV gEeBEx(II)

where

C(g) = / A(g)dty---dt,
[0,¢]™

Lemma 4.9 Let g be a graph with vertex sét. Denote byN.(g) the number of connected components of its skelgt®h
Then one has

/ A(g)dty -~ dt, < O Ne@Nel9), (4.67)
0.1

with

0= (L [ e etoian).

Proof. Assume first that the skeletgsyIl is connected. Then it has a spanning t(EBe7"). Fix a rootV; in T and for
J € I\ {r}letVy, bethe parentoV; in T. Letw € S, be a relabeling of the vertices @f such thatr(r) = 1 and
w(l(j)) < w(j) for j € I\ {r}. Define new variables by; = t; — t;(;) for j € I\ {r} ands, = ¢,.. The corresponding
Jacobian matrix isl;; = d:; — (1 — 6:)d;;y;- By our choice of the relabeling the reordered matrix

!/
Jij = Ja-1@ym-1) = 05 = (1= 0i1)0nain—1007));

is lower triangular with ones on the diagonal. Thus the Jacobian deternirginen by| det J| = |det J'| = 1.
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m A m N
R ARI R AR R

Ve Vi@ Vi) Vi

Figure 5: The pairingr induced by a maximally disconnected pairing

For each edg#; Vy(;) € T there is a corresponding edge= u;v; € g with u; = " f;4; € V; andv; = 10" iy, €
Vi(4) and therefore a factor

Aﬁj (Sj)

- ) (e (i) (Ui, D) for 5 < 1),
1 fsas Ao 1| oo fuorog )7 (ol fiay DI for j > 105),

in A(g). It follows that

Alg) < [ Acss)-
JEN{r)

t t
/ A(g)dty ---dty g/ ( II / Aej(sj)d8j> ds, < C" 't
[0,t]™ 0 t

JenN{r}" "~

and hence

In the general casg,/11 is the disjoint union ofiV.(g) connected subgraphs. Applying the above estimate to each of them
yields the result

Inserting the estimate (4.67) into Equ. (4.66) and using Lemma 4.8 ahyfiobtain, taking into account the fact that the
skeleton of an exit graph can have at mog2 connected components

2N
[ et A dedt, < (8VEmaxlfal) 0,
[O,t]” )

which concludes the proof of Part 1.

To prove part 2 it suffices to notice thatrifis odd then the skeleton of an exit graph can have at fiost 1)/2 connected
components.

To prove part 3, we go back to Formula (4.59) and write

t’"/2/ wr(Ar, .. Ap)dty e dty = Y s(p)f“/z/ Q(p) dty - - - dtn. (4.68)
[O,t]"

pEP(II) [0,¢]™

By Lemmata 4.6 and 4.9 one has,tas> oo,
t*””/ Q(p)dty - - - dt,, = O(N=P)~"/2),
[O’t]n

Thus, the pairingp € P(II) which contribute to the limit — oo are maximally disconnected in the sense that their skeleton
have exactlyr/2 connected components. The skelepgil of such a pairing induces a pairinge P,/ such that

p:plv"'vpn/27 pj EPO(Vﬁ(2j71)7VTr(2j))7
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wherePy(V;, V;) denotes the set of pairings & U V; whose skeleton w.r.t. the partitidiv;, V;) has no isolated vertex (see

Figure 5). Since the map— (, p1,...,pn/2) iS clearly bijective we can, for the purpose of computing the limit of (4a88)
t — oo, replacevr (A, ..., A,) by
> > e(PL Ve Vpn2) QpL VeV pn).

T€Pns2 P EPo(Va(2j—1)>Vr(2j))

By Lemma 4.1 we have

E(plvvpn/Z) :e(VT\'(1>7"' 7r(7z))€( ) "g(pn/Z)? Q(pl \/\/pn/Z) :Q(pl)Q(pn/Q)?
and by the remark following &(Vy (1), . . ., Vz(n)) = 1. Thus, the last expression can be rewritten as
n/2
11 e(p;)2p;)
TE€Pp 2 J=1 \p; EPO(VW(27 1)V (25))

Finally observe that, by Lemma 4.2,

> Q) = wr(Ai, Aj).

PEPo(Vi,Vj)

One easily concludes the proof by the remark following Theorem 3.%fendominated convergence theorem.
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