Synthesis, Structural Characterization of the first N-heterocyclic carbene ligand fused to a porphyrin
Sébastien Richeter, Aurélie Hadj-Aïssa, Céline Taffin, Arie van der Lee, Dominique Leclercq

To cite this version:

HAL Id: hal-00183367
https://hal.archives-ouvertes.fr/hal-00183367
Submitted on 30 Oct 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Synthesis and Structural Characterization of the First N-Heterocyclic Carbene Fused to a Porphyrin

Sébastien Richeter*, Aurélie Hadj-Aïssa¹, Céline Taffin¹, Arie van der Lee³ and Dominique Leclercq*

The functionalization of two neighboring β-pyrrol positions of a porphyrin by a fused N-heterocyclic carbene, the subsequent metallation of this external coordination site by palladium(II) and the structural characterization of the compounds obtained are presented.

The synthesis of multiporphyrin systems is of great interest because of their wide potential applications in catalysis, molecular materials and medicine. A lot of synthetic strategies have been developed to built multiporphyrin systems through covalent and non-covalent bonds. The use of coordination bonds to link porphyrins together opened exciting opportunities to built systems with different shapes, such as linear, cyclic, 2D and 3D geometries. The classical building blocks employed for this strategy are porphyrins bearing one or more peripheral coordination sites, as it is well illustrated by the examples of porphyrins liked to pyridyl derivatives. This can also be applied to the porphyrin containing functional or tunable groups in conjugation with the carbene moiety. Thus, we focused our attention in the design of imidazole fused to an NHC (Figure 1).

Surprisingly, the number of examples of porphyrins bearing N-heterocyclic carbene (NHC) ligands as external coordination site remains limited and, to our knowledge, there is no example of NHC conjugated with the aromatic core of the porphyrin. Stable N-heterocyclic carbenes (NHCs), first isolated by Arduengo et al., are versatile ligands for transition metal complexes and remain very important in the field of organometallic chemistry and homogeneous catalysis. Beyond catalysis, NHCs are emerging as relevant components in materials science. It is obvious that there is a considerable potential for NHCs containing functional or tunable groups in conjugation with the carbene moiety. Thus, we focused our attention in the design of the porphyrin containing an imidazole ring fused across a β,β'-pyrrolic position and fully conjugated to the macrocycle. The formation of the imidazolium salt 2 gives a synthetic access to the porphyrin 3 fused to an NHC (Figure 1).

The peripheral functionalization of porphyrins is of great interest in order to access to new chromophores or to new multiporphyrin systems. Crossley and co. prepared fused porphyrin-imidazole systems by the condensation of porphyrin-2,3-diones with an arylaldehyde in the presence of ammonia. Following this procedure, the compounds obtained have a 2'-arylimidazole ring. Herein, we report an other synthetic approach to access to the fused porphyrin-imidazole 1 with a non functionalized 2'-imidazole carbon (Scheme 1). The synthetic porphyrin used as starting material is the complex 4. First, a nitration reaction was realized according to the literature procedure to yield the β-nitroporphyrin 5. The electron withdrawing group NO2 switched the reactivity of the neighboring pyrrolic β-carbon to an electrophilic center. Callot and co. showed that the 4-amino-4H-1,2,4-triazole is a powerful amination reagent for α,β-unsaturated ketones and aldehydes conjugated with the porphyrin core. This can also be applied to 5 and it was possible to get the compound 6 in good yield (81%). The β-NH2 1H NMR signal of 6 could be detected as a broad singlet at δ = 6.55 ppm in CDCl3. Its UV-visible absorption bands are bathochromically shifted compared to 5. The lowest energy absorption band of 6 shifts to 600 nm (587 nm for 5).
The porphyrin 7 was obtained by the reduction of the NO₂ group of 6 with NaBH₄ in the presence of methanol and Pd/C.¹¹ Five
The porphyrin 7 was not isolated but used straightforward for the formation of the imidazole ring.

The cyclization reaction with formic acid was more challenging and realized in two steps compared to the classical
procedure described for 2,3-diaminobenzene derivatives (one quantitative step).¹² First, the alcohol 8 was obtained by the
complete condensation reaction of 7 with formic acid in refluxing
toluene (1:1 mixture) in less than 10 minutes. Then, two
complete condensation of the 1H NMR timescale. The double N- alkylation of the imidazole shows broad signals due to the slow imidazole tautomerism on
the porphyrin-imidazole 1 by the elimination of a molecule of
water and the formation of the ester
9
by the elimination of a molecule of
water and the formation of the ester
9
in toluene. The overall yield
from 6 to 1 was 48%. The 1H NMR spectrum of 1 in CDCl₃
shows broad signals due to the slow imidazole tautomerism on
the 1H NMR timescale. The double N-alkylation of the imidazole ring of 1 with iodomethane yields the corresponding imidazolium salt 2 in 76% yield. A sharp singlet at δ = 11.50 ppm corresponding to the iminium C(2')-H is observed in the 1H NMR spectrum (C₆D₆) of 2. This downfield chemical shift shows the highly electron-withdrawing nature of the metalloporphyrin macrocycle.

Then, we investigated the possibility to generate the carbene fused to the porphyrin 3. As a proof of its existence, we performed the direct metallation of 2 with the basic metal
precursor Pd(OAc)₂ in refluxing toluene.²³ This reaction proceeded smoothly leading to the formation of the complex 10 which was purified by chromatography on silica gel (Scheme 3).

The evidence of the formation of the complex 10 was also provided by FAB+ mass spectrometry. The molecular
pic corresponding to the dimer was observed at m/z = 2289. Two fragments were observed at m/z = 2162 and 1324 and correspond to the dimer whose one ligand was removed, respectively
the iodine and the porphyrin-NHC. The signal observed at m/z = 963 corresponds to the cationic porphyrin 2. The UV-visible
absorption bands of 10 are slightly broadened and red-shifted compared to those of the imidazolium 2. This result trends to show that there is negligible ground state electronic communication between the propyrins through the palladium center.

The single-crystal X-ray analysis unambiguously establish the structure of the complex 10 and the trans geometry around the palladium (II) (Figure 2). The two porphyrin moieties are not flat but are ruffled because the C(5)-Ni-C(15) and C(10)-Ni-C(20) angles are close to 165°. Despite this distorted geometry of the aromatic core of the porphyrin, the additional imidazolylidene ring and the adjacent pyrrole are coplanar. The nickel (II) was found in an slightly distorted square planar geometry: the four Ni-N distances are almost equivalent (1.900, 1.906, 1.924, and 1.960 Å) and the four N-Ni-N angles are close to 90° (88.45, 90.09, 91.16, and 91.29°). In this square-planar trans palladium (II) complex, the Pd–C distances which are consistent with Pd–C single bonds (2.037 Å) are shorter than the Pd–I distances (2.591 Å). The two imidazolylidene rings are close to coplanarity and are tilted ~82° from the square planar central plane PdC₂. This tilted conformation minimizes the steric interactions between the methyl groups and the iodines linked to the palladium (II) but also the steric interactions between the ‘Bu groups close to the palladium center.

To conclude, we have presented here a new synthetic procedure to obtain a porphyrin with an additional imidazole ring fused across a β,β'-pyrrolic position. We have shown that it is possible to generate an NHC at the periphery of a porphyrin and to use it as a coordination site to built multiporphyrin assemblies. We are currently studying the tuning of the optical and redox properties of the NHC-porphyrin systems. The synthesis of bis(NHC)porphyrins are also under investigation.

Notes and references

1 Crystallographic data were recorded with an Xcalibur CCD camera (Oxford Diffraction) using graphite monochromated Mo Kα radiation (λ = 0.71073 Å), 40 s per frame. The structure was solved using Patterson methods and refined using full-matrix least squares methods.
Hydrogen atoms (except one belonging to a chloroform molecule) were located from the Fourier difference map and not refined. Crystal data for 10(4-CH3Cl): C13H17Cl3I2Ni2Pd, Ms = 2765.48, monoclinic, space group C2/c (no. 14), a = 22.1838(7) Å, b = 9.3174(4) Å, c = 31.4826(13) Å, β = 103.73(0)°, V = 6728.43(50) Å³ Z = 2, dcalcd = 1.365 g/cm³, T = 173 K, λ (Mo Kα) = 0.71073 Å, μ (Mo Kα) = 0.128 mm⁻¹, 18567 reflections collected, 3351 unique reflections I > 2σ(I), Rf = 0.0263 and wRf = 0.0527 for all reflections, Rf = 0.0764 and wRf = 0.0887 for observed reflections.


12 A. 1.25(1) Å, θ = 9.3174(4) Å, c = 31.4826(13) Å, β = 103.73(0)°, V = 6728.43(50) Å³ Z = 2, dcalcd = 1.365 g/cm³, T = 173 K, λ (Mo Kα) = 0.71073 Å, μ (Mo Kα) = 0.128 mm⁻¹, 18567 reflections collected, 3351 unique reflections I > 2σ(I), Rf = 0.0263 and wRf = 0.0527 for all reflections, Rf = 0.0764 and wRf = 0.0887 for observed reflections.