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PHYSICS OF FLUIDS VOLUME 13, NUMBER 12 DECEMBER 2001

Short wave phase shifts by large free surface solitary waves: Experiments
and models

Katell Guizien® and Eric Barthélemy
Laboratoire des Ecoulements Gghysiques et Industriels, BP 53, 38041 Grenoble Cedex 9, France

(Received 2 May 2000; accepted 17 July 2001

In this paper, we compare experiments on short gravity wave phase shifting by surface solitary
waves to a Wentzel-Kramers—Brillouin—Jeffréy8KBJ) refraction theory. Both weak interactions
(head-on interactignand strong interaction@vertaking interactionare examined. We derive a
dispersion relation and wave action conservation relation which are similar to the ones obtained for
short waves refraction on slowly varying media. The model requires an exact solitary wave solution.
To this end, a steady wave solution is numerically computed using the algorithm devised by
Byatt-Smith[Proc. R. Soc. London, Ser. 815 405 (1970]. However, two other solitary wave
solutions are incorporated in the model, namely the classical Korteweg and DeK/l€$ [ Phil.

Mag. 39, 422 (1895] solution (weakly nonlinear/small amplitude solitary wavend the Rayleigh

[Phil. Mag. 1, 257 (1876] solution (strongly nonlinear/large amplitude solitary wave
Measurements of the short wave phase shift show better agreement with the theoretical predictions
based on the Byatt-Smith numerical solution and the Rayleigh solution rather than the Korteweg and
De Vries one for large amplitude solitary waves. Theoretical phase shifts predictions based on
Rayleigh and Byatt-Smith numerical solutions agree with the experiment&/fgy<0.5. A new
heuristic formula for the phase shift allowing for large amplitude solitary waves is proposed as a
limiting case when the short wave wave number increases20@L American Institute of Physics.
[DOI: 10.1063/1.1409964

I. INTRODUCTION servation and the dispersion relation valid for surface waves
refracted by a steady current to the case of surface waves
In the present paper we analyze how short surface wavasding upon a much longer wavésec. V). This implies to
are modulated by free surface solitary waves. This approacimtroduce an effective gravity resulting from the vertical ac-
may be considered as a model of a more complex interactiogelerations of the long wave. Longuet-Higgins and SteWart
problem, namely nonlinear internal wave—surface wave inthen show that this latter approach yields the same result as
teraction. The latter is of importance for ocean remote sensheir calculations within the second-order Stokes theory as
ing applications. Indeed, on synthetic aperture rd@#&R)  long as the vertical accelerations of the longer wave is neg-
images of the ocean surface, signatures of long interndigible, like in shallow watefSec. \j. In a companion paper,
waves are due to Bragg wave modulations. From a theoreti-onguet-Higgins and Stewdrtade a further step forward.
cal point of view free surface solitary wave and short waveThey analyzed the change in amplitude of a short surface
interactions is a challenging problem. Indeed standard theawave on a steady nonuniform current. Under the slowly spa-
ries for short waves do not encompass long nonlinear waveglly varying current assumption they derive the laws ruling
and vice versa. As a first cut one may consider two lineawave amplitude, namely wave action conservation, and wave
waves one of which is very long compared to the other. Thidength modulations.
is the approach initiated by Longuet-Higgins and Stewart. The linear behavior of the long wave was relaxed by
They analyzed the change of the form of short surface waveSarrett and later, Bretherton and Garfetvho generalized
riding on longer ones within the framework of linearized the results obtained by Longuet-Higgins and Stewant.a
theory for finite depths. Interaction terms are derived fromvery general setting, using the averaged Lagrangian formu-
the second order of Stokes’ theory, which requires the adation, they show that the wave action conservation is a very
sumption of small steepness for both long and short wavesyeneral result for short linear wave of small steepness as long
They show that the short wave has a shorter wave length aras they propagate on a spatially and temporally slowly vary-
increased amplitude at the long wave’s crest. This Doppleing basic state. As just mentioned, the flow characteristics
effect is interpreted as the work done by the long waveof the basic state do not need to be linear and effective
against the radiation stress of the short one. In the samgravity is introduced accounting for vertical accelerations in
paper, the authors suggest to generalize the wave action coifite  underlying basic state. This is highlighted by
Longuet-Higgins. He applied wave action conservation to
dpresent address: Observatoire d'@uelogie Biologique, BP 44, 66650 show that .When the long wave s steep, up to the Stokes
Banyuls-sur-Ner, France. Telephone33 4 76 82 51 17; Fax+33 476 82 Wave maximum steepness of 0.4432, the steepness of the
50 01. Electronic mail: guizien@hmg.inpg.fr short wave riding on it undergoes much more enhancement
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than would be predicted by the second-order of Stokes’ lininstantaneous displacement, the phase ahiftindergone by
ear theory developed in his 1960 paper. Longuet-Higginghe short wave is expressed by
also underlined the need for a very accurate description of 2

. . . . L
the long wave, which he did through a particularly efficient Ap=——=k.L, (1)
algorithm. A

The paper of Bretherton and Garfets an encourage- where X is the short-wave wave length. This heuristic for-
ment to make alternative choices on the basic state. Nacirhula depends on the expressionlof L(A,hy) whereA is
and Mef derived analytically the solution for a short wave the solitary wave amplitude arfu, is the depth of water at
riding on a long wave given by the explicit formula for Ger- rest. In the present paper we discuss the relevancy of the
stner’s rotational wave. They qualitatively reproduceinstantaneous interaction assumption underlyibg
Longuet-Higgins’ numerical results, and show that instabili- ~ Experimentally, the phase shift undergone by the short
ties can appear for sufficiently large short wave steepnessave is measured using an harmonic analysis technique. The
compared to the long to short wave frequency ratio. order of magnitude of the phase shift corresponds to a short

The choice of a solitary wave has been made by a fewvave time shift of 0.1 second. Determination of such a small
authors and is the one made in this study. Using a methogshase shift is very sensitive to a variety of perturbing phe-
ology similar to the one proposed by Zhang and MelViftr  nomena. In Clamond and Barteeny’s experiments, solitary
infinite depth, Sheret al® derive a nonlinear Schdinger ~ waves had strong dispersive tails trailing the main pulse that
equation and wave action conservation for short waveauthors claim to affect the determination of the phase shift.
riding on a solitary wave. This confirms the suggestion byWe improved the solitary wave generation procedure in order
Bretherton and GarrettThey explicitly assume the perturb- to minimize the undesired trailing waves. Moreover, other
ing wave to be a short deep water wave. They also retrieve perturbing causes are examined.

“wave crest” conservation equation. Wave number, wave  Hereinafter, we present in Sec. Il A a derivation of the
amplitude, and frequency modulations of the short wave argvave action conservation and a new dispersion relation for
thus computed along a solitary wave profile. The latter isfirst-order Stokes waves interacting with a solitary wave us-
computed by Evans and Ford’procedure. Wave number ing a WKBJ perturbation method in the rectilinear coordi-
modulations along the solitary wave is an important stemates. This approach is similar to Shetral.® except that we
towards phase shift computations. Using a WKBJ perturbaallow for intermediate water depth and the wave crest con-
tion method within the shallow water theory, Clamond andservation equation is simplified in order to obtain an alge-
Germairt® allowed for solitary waves of the KdV type to braic dispersion relation. The solitary wave may be described
coexist with short waves. Predicted short wave phase shiftsither by the analytical solutions of Raylef§ror KdVv® or

are shown to agree with those measured during earlier expy Byatt-Smith's® numerical solution. Assuming a KdV
periments on interactions between a short monochromatisolitary wave, Clamond and Germé&iranalytical expression
surface wave and an external solitary wave in shallow wateof the phase shift is retrieved. We discuss in Sec. |1 B the
(mean depth, of 25.5 cm) by Clamond and Barfhemy!* relevance of these different solitary wave approximations in

Indeed, Clamond and Bartleeny'! experimented two the scope of solitary wave interaction with a short wave. The
short waves frequencies of 1.5 and 2.3({zh, of 2.35 and  theoretical results are then compared with experiments pre-
5.42 wherek., is the short wave wave numbeiThey only  sented in Sec. Il which are complementary to Clamond and
considered the case of waves propagating in opposite dire@arthdemy!! Indeed, for the first time, strong interactions
tion (head-on interaction referred to as a weak interaction. have been produced. Moreover, a broader range of short
This terminology was first introduced by Mifsfor solitary ~ wave wave numbers has been examillech, varies from
wave interactions. In contrast the case of a solitary wave.73 to 7.54. In Sec. IV, the wave number modulations de-
propagating in the same directi¢overtaking interactionis  duced from Sec. Il A are tested through comparison with the
called a strong interaction. It was shown that the surfaceneasured phase shifts undergone by the short waves. In
wave train, after interaction, was phase-shifted compared tsome cases, short waves breaking has been observed. Predic-
the surface wave train before. Phase shifts in this context hagbns of the maximum short wave steepness when breaking
never been mentioned before in the literature. Previous theavas observed are reported.
ries or experiments on phase shift predictions dealt with
sinusoidal waves.

Longuet-Higgins and Philligs showed that when two Il THEORETICAL ANALYSIS
sinusoidal waves of very different wave numbers interact, The aim is to devise a two-dimension@D) model to
the phase velocity of the shorter one will be decreased ostudy short surface waves modulations when the short waves
increaseddepending on the relative direction of propagationride on a solitary wave. We use a nonviscid, incompressible
of the waveg by an amount proportional to the mass trans-and homogeneous fluid with a depth at regt We assume
port at the surface of the longer wave. Mass transport inrrotational motions, therefore, the velocity field can be de-
solitary waves produces a small but finite displacenteat  rived from a velocity potentia® (x,z,t) and n¢(x,t) denotes
the water particles. Thus, on the same ground as Longuefree surface displacement with respect to the rest level.
Higgins and Phillips it is expected that short waves inter- The key step is to consider a long wave which is an
acting with solitary waves will be phase shifted by the dis-exact stationary solution of this flow in a reference frame
placement. Assuming linear superposition of motion andnoving at the wave phase speedTo this end, the new
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2 ns(X, 1) = 7.(X) + dn(X, )
z=0
D(X, 2,t) = ¢e(X, 2) + 66X, 2, 1)
z = '—hg

FIG. 1. Definition sketch.

horizontal variableX=x—ct that describes the co-moving

frame is introduced. It has long been known that this prob-

lem has an exact stationary solitary wave solution
(Lavrentie}’). At the present level of derivation it is not
necessary to specify its expression and we denote the velo

K. Guizien and E. Barthélemy

as(X)=—w’-iw|u - —M[G

e T w W| UegzMex " Vez G(X) X
+7]eXGZ])!

be(X) = —G(X) ext (Ug—C) (Uex— Vs 2Ue e x

~(Ue= C)[Gxt 7exG.]) — 2Ziw(Ue—0©),

Ue

Ce(X)=G(X) —ve(ve,— Uezﬁex)_(ue_c)( G(X) [Gx

+ 7exGz] —Vex— Nexv ez)

—iw[vet Mex(Ue—C)],

e de(X)=(Ue—C)[vet (Ug—C) ex],

ity potential and the free surface displacement associated

with this exact stationary wave bg(X,z) and 7.(X) (see

Fig. 1). Other exact solutions exist, amongst which are peri-

odic solutions.

€e(X)=(Ue— C)21

fo(X)=ve(Ue—C) 7ex.

We now seek for infinitesimal disturbances of this exact o
solution. The free surface elevation and velocity potential aré" The WKBJ approximation

expanded as series of a small paraméterf the following
form:

)
)

As in the Stokes theoryjis known to be proportional to
the short wave surface slope. Assuming that the perturbati
is sinusoidal in time of high-frequenay and that its ampli-
tudea is small compared to both its wavelengtfand depth
hy, the first-order then reduces to a classical set of line
partial differential equations. The perturbation potential
¢(X,z,t) is a harmonic function and the bottom is imperme-
able. The free surface displacement for the perturbation i
given by

7s(X,t) = ne(X) + 6n(X,1),

D (X,z,t)= dho(X,2) + dp(X,z,1).

0%, b

X HXG(X)=iwd=(Ue=C) Zo—ve—

(4)

where Ue=dex, Ve=¢e, and G(X)=g+(Ue—C)vex
+ U, Written onz= 7¢(X). One recognize&(X) to be
the effective gravity introduced by Longuet-Higgins and
Stewart and later Bretherton and GarrétThe effective
gravity is the sum of the gravity and vertical acceleration a
the free surface.

The free surface kinematic condition in addition to Ber-
noulli’s relation leads to the following equation for the per-
turbation velocity potential at the free surfare 7.(X):

) e )

3e(X) $Fbe(X) IX Jz Xz

FCe(X) - +de(X)

) P

+ee(X)W+fe(X)?=O, 5

with

on

Length scales associated with the perturbation are as-
sumed to be very small compared with the length scales of
the long wave. The short wave is continuously adapting its
characteristics to maintain itself as a high-frequency mono-
chromatic wave. This assumption of WKBJ type is equiva-
lent to that of Shyu and Phillip€ A small parameteru
=N/A (where\ is the short wave wavelength and is a
characteristic length of the solitary waves naturally in-
volved and a new variableX* = uX is introduced. The
WKBJ approximation postulates slow variations of the am-

litude A(X,z) and rapid variations in the phas¥X,z).
his is written in the following form:
(6)
S d* (X*,2)=A*(X*,2)e, iS*(X*,2)/u,
where ¢* (X*,z)=¢(X,z) and A*(X*,z)=A(X,z) and
S*(X*,z)=uS(X,z) are real numbers. The amplitude and
phase are expanded in even serieqaif the form

A*(X*,2)= A5 (X*,2) + u2 A% (X*,2)+- -+ O(u®),
(7)

S*F(X*,2) =S5 (X*,2) + u?Ss (X*,2)+- -+ O(u?").
®

At the lowest orderd "2 and u 1), the only nontrivial

relation is S;=S§(X*). The modulated wave number
K(X)=Sgy« is then introduced.

Depending on the relative scale afand 8, Eq. (5) will
simplify differently. Indeed, whem.~ & orders correspond-
ing to x and & cannot be separated. Dingem&heeports
studies of the refraction of waves by currents for which ver-
tical dependency predominates over horizontal and temporal
variations by assuminge<4. Regarding the interaction
problems, the correct assumptionis> 8 as made by MéP
to study the refraction of waves on slowly varying currents.
The main difference here with the available literature is not
to assume that the long wave is a linear one either in finite
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TABLE I. First two orders inu of the coefficients ir(5) and of the effective  \yith e=A/hy, f(X)= SGCH(,BX/Z), Bl2= /35/4h02 and Cg

gravity G(X). =ghy. We also assume that the wave number expands as a
o) O series ofe
ae(X) - w? iwve, K(X) =Kk, + ek, + 0(62). (15
be(X —2iw(ue— — g Mext (Ue— ex Ve . . . .
ceEX; I éu 9 g;ywx[vii(uggx;ex]v ) Expansions of the right and left-hand side of E®). in
de(X) 0 (Ue—C) [Ve+ (Ug—C) 77ex] series ofe including the first two leading orders yield
ee(x) (ue_ C)2 0 2 2
fo(X) 0 0 Q= (0+K.Co)“+ €[ 2¢o( @+ K=.Co) (kg — K f )]
G 0
%0 ¢ +O(), (16

gktanh(k( e+ ho)) =gk tant(k..ho)

depth or in infinite depth. Moreover, most authors have fo- + e[ gky tanh(k..ho) +gk..ho(k,

cused on amplitude modification and Doppler shift. In con- +k.f)(1—tant?(k..hg))]
trast, we will analyze the phase shift of the short wave. Our 5
approach also differs from that of Clamond and Gerrtfain +0(€%). (17)

since they explicitly assumed a solution in the small ampli-a¢ the lowest order, formul&9) together with(16) and (17)
tude approximation. In contrast, the exact solitary wave sopyovides the undisturbed dispersion relation Yot + o
lution we consider can be of large amplitude. However, the

coefficients of Eq.(5) contain terms of different orders in (0+k..Co)?=gk.. tanh{k..hy). (18
o=hg/A, that can be sorted out. The two leading orders aré the next order(e), formula (9) gives
given in Table I. ’

Assuming o~ u (A~hg), the perturbation fulfills the Ky —THx 19
following dispersion relation obtained by considering the or-  k_ (X), (19
der u°:

H with  T'=(Cot w2k —Cg)/(Co+Cg)  where ¢

Q?=gk(X)tan k(X)(7¢(X) +ho)]. (9 =dwpp/dk. and wi,=(w+k.Co)2. The phase shif(11)

It appears that the effective gravity reduces to gravity.then reads
The wave action conservation is retrieved at the oyafer +oo

A<p=ekool“j f(X)dX. (20

a’(Cqtc—ue(X))] 10
Q x_ ’ We retrieve in a more general framework the phase shift

A iven by Cl d and Germah
with Q= w—Kk(X)(us(X)—c), a=4,(Q/g the short wave Pkav GIVEN Dy Liamond and erm

amplitude at the first order an@y=d{}/dk the intrinsic Apkgy 4 \/X

group velocity. The dispersion relatid8) for given ug(X), koho %F hy (21)
ne(X) and c is solved numerically fork(X) using a

Newton—Raphson method. We may note thaf’ tends to 1 when the short wave

We briefly discuss qualitative behaviors. A& £ the  frequency increases.

short wave has a constant wave numker, the one ob-

served in the laboratory. Note thé) differs from the dis- B. Short wave modulation for different solitary wave
persion relation obtained for refraction on a slowly varyingsolutions

current. Indeed, changes in depth as the short wave rides on
the long wave are embedded (@) since (.(X)+hg) ap-
pears instead dfi; alone. The phase shifte is easily com-
puted when the modulated wave numkéX) is obtained. It

At this level, the exact solitary wave solutidpasic state
around which a perturbation is soughi$ not specified to
obtain(9) and(10). A different solitary wave approximation
may be used, as long as the terms neglected if®&aising

reads this approximation are at least an order of magnitude smaller
+oo than the perturbation contribution. This is required so that the
Ap= f (k(X)=k)dX, (1) pasic flow and the perturbation can be solved separately. The
- numerical solution proposed by Byatt-Snifthwill easily ful-
wherek(X) is the wave number in the physical space. fill this assumption, as the error allowed when computing it
Assuming a solitary wave solution of KdV type, the ba- can be less than 10 on the free surface elevation whereas
sic state reads the short wave amplitude is of order 1% We compute
7eX) = ef (X)hy, (12) Byatt-Smith numerical solution up t&/hy=0.7165 using

the accurate and efficient algorithm devised by Byatt-Smith

Ug(X) = ecf(X), (13  and Longuet-Higginé! The accuracy of Byatt-Smith nu-
merical solution is checked against measurements of both

c=Co(1l+€l2), (14 free surface elevation and phase spesk Figs. 2 and(3)]
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1.5 =
~
-
1.4} e
~
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1.3} - / -
L3

1.2}
1.1 limiting steepness

1

o 0.2 0.4 0.6 0.8 1
a- A/h()

2

1.5¢ -7 -
- - : s SER
m\ 1 - //' s
-
-
o
0.5 ..
limiting steepness
01 1.1 1.2 1.3 1.4 1.5
b - F
b - X/ho FIG. 3. Froude numbeF =c/+/gh, vs solitary wave dimensionless ampli-

tude A/h, (a) and outskirts decay coefficiert vs Froude numbetb) ob-
FIG. 2. Dimensionless free surface elevation at one location vs(@end  tained for Byatt-Smith’s numerical solutioi8 is then the Stokes outskirts
in the steady reference franb) obtained for Byatt-Smith’s numerical so- decay coefficient solution of the relatid¥?=tan(8)/8) (—), KdV (- -), or
lution (—), KdV (- -), or Rayleigh's(---) analytical solutions and experi- Rayleigh's(---) analytical solutions and experiments).
ments(O).

B [ 3A

Ser——, 23
for A/hy=<0.5. Indeed, we were not able to produce larger 2 4hg(ho+A) @3
solitary wave because of the device capabilitisse Sec.
1n. c=+g(ho+A), (24)

We shall also consider analytical solutiofwhich are  with the depth-averaged velocity given by
not strictly speaking exact solutionscluding the KdV or

shallow water approximation, which rely on both long waves ux,t)= c( 1— L ' (25)
and small-amplitude assumptiofweakly nonlinear theopy ho+ n(X,t)

Within the shallow water theory, all series expand in eitherand the horizontal and vertical velocity given by

even or uneven powers af=A/hy. This means that the ) )

order of magnitude that separates two consecutive approxi- u(x,z,t)=u+ (77+ho) T (z+ho) T (26)
mations is at leas¢?. Accordingly if first-order approxima- ” 6 > 2 o

tion is of order 1, corrections to obtain a second-order ap- b(x,2,t)= —T(ho+ 2). 27

proximation will be of orde?. Between 1 an@?, we ought
to be able to solve separately the perturbation first order This is the steady solution of the set of equations pro-
(~ 8=ak) leading to(9) and giving the rapid variation of posed by Serfé and later by Su and Gardrf&in a strongly
the phase, and the second-orderdu) leading to(10) and  nonlinear framework.
describing the slow variations in the amplitude of the pertur-  Since we assume~u and in order to be consistent
bation. This means that it is necessary &< w8, which  with our WKBJ perturbation method, the horizontal velocity
can be met in the KdV domain of validity whesis less than  at the free surface (X, z.) will be taken equal tar when
0.15. truncating terms of order? and higher in(5) for Rayleigh
Avoiding the latter restriction of small amplitude, and KdV approximations. For Byatt-Smith exact numerical
namely allowing e to be of order 1(strongly nonlinear solution, since this order separation is not possibléXx, 7.)
theory), Rayleigh* derived the following solitary wave so- will be taken equal to the full free surface horizontal velocity
lution, reported by Lami3 (Sec. 252 contribution. Moreover, separating orders, we require that
a*<u b, which meanss> 2. This condition will be ful-
n(x,t)=AsecR[ B(x—ct)/2], (22)  filled in the experiments.
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7 - 5
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8 3t
o -2
< ' 2
< 2
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—4 4
a -
L/h(j 14
12}
FIG. 4. Solitary wave dimensionless amplitude vs horizontal displacement
at the free surface obtained from Byatt-Smitl’'s-) numerical solution 10¢
complemented byX) ninth-order theory of FentofRef. 26 (®) calculation 8 sl
by Longuet-HiggingRef. 27, Rayleigh free surface velocityy—), formula ~=
(30), i.e., Rayleigh(---) and KdV (- -) depth-averaged velocities and experi- | 6+
ments from Longuet-HiggingRef. 25 (O). ~ al
2 -
As mentioned in the Introduction, the short wave phase o, 2

shift can be deduced heuristically from the particle displace-
mentL at the free surface of the solitary wave. The particle
dISpIacemenL at the free surface is defined in general by FIG. 5. Wave number modulations along the solitary wéXe=0 at the

=c—Uu(X,n) solitary wave crestpredicted by WKBJ theory for the strong interaction of
L= f - X, (28 a 2 Hz shortwavék,, = 16.09,hy=0.3 m) and a solitary wave of amplitude
0o u(x,m) A/hy=0.2025(a) and A/hy=0.4129(b) given by Byatt-Smith’s numerical

. . . solution(—), KdV (- -), and Rayleigh(- --).
whereu(x, ) denotes the horizontal velocity at the solitary

wave free surface in the co-moving frame ani the soli-
tary wave phase speed.

In the Korteweg and De Vrié3approximation, the hori-
zontal velocity at the free surface is the mean horizonta
velocity andL is given explicitly by

It is clear that displacements at the free surface derived
from Rayleigh free surface velocity or even Rayleigh depth-
averaged velocity are very accurate for a broader range of
solitary wave amplitude than KdV. Up t8/hy=0.4, dis-

4 A placements derived from the free surface velocity from
L= ‘/—jho \go- (29 Byatt-Smith's exact solution, Rayleigh's analytical solution
and displacements derived from Rayleigh depth-averaged

Thus, we note that formulé21) tends to the heuristic velocity merge, whereas displacement derived from KdV's
formula (1) whereL is given by (29) for high-frequency solution are much smaller sinc&/hy=0.15. For A/hg
short wave. For large amplitude solitary waves @A¥h,  =0.4, some discrepancies appear between the simplified ex-
<0.7), Longuet-Higgin® showed that formulé29) is rather  pression(30) and estimation ol obtained either from the
inaccurate and underestimates the horizontal displacemefree surface velocity of Rayleigh or the numerical solution
by 25% to 40%. However, it is still possible to derive from from Byatt-Smith. However, up té\/hy=0.7 the deviation
Rayleigh and Byatt-Smith velocities at the free surface othebetween formula(30) and Byatt-Smith is less than 10%
estimations folL to be included in the heuristic formul(d). whereas it reaches 40% between form(28) and Byatt-

We shall also consider an approximation fobased on the Smith. Besides, in the same range, the deviation between
depth averaged velocity of Rayleigh solution, which lead (30) and Longuet-Higgins’ experiments is at most of 20%.

to the following analytical expression fdr. Part of this deviation might be due to a suspected bias in
Longuet-Higgins measurements owing to the added displace-
L=ih0 ﬁ 1+ﬁ)_ (30) ment caused by a secondary hump following the solitary

V3 ho ho wave. Using formuld30) in the heuristic approach we over-

come the small amplitude KdV limit and short wave phase

On Fig. 4, we plot these estimations bf together with shift is given analytically by

Longuet-Higgin&® experiments. We also report on Fig. 4
Fentorf® ninth-order theory and Longuet-Higgfiscalcula- Aoy 4 [A A
tions for large amplitude solitary waves up to the limiting Khe V3 \/h—o(l+ h_o> (32)
steepness (0¥A/hy=0.8332). We also report this limiting

steepness on the plots of the Froude number versus solitary Indeed, we show by comparing the free surface displace-

wave amplituddFig. 3(@)] and of the outskirts decay coeffi- ment derived from the numerical solution of Byatt-Smith and
cient versus the Froude numbéiig. 3b)]. the displacement obtained from Rayleigh depth-averaged ve-
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1.2 As a conclusion, granted that Byatt-Smith’s numerical
solution is the exact solitary wave solution required in the
1.15 theory, Rayleigh’'s approximation appears to be better than
KdV’s to test the short wave phase shift in the interaction
g 11 with a solitary wave. But regarding Doppler effects and par-
L ticularly steepness prediction at the solitary wave crest, KdV
© 1 osl would give a better approximation than Rayleigh.
1 I1l. EXPERIMENTAL PROCEDURE
—4 4
g - The experiments are conducted in a 36 m long, 0.55 m
1.5 wide, and 1.2 m high flume as sketched out on Fig. 8. It is
1.45} : equipped with two wave makers.
1.4} 1 At one end of the flume a piston wave paddle can be
1.35¢ I displaced horizontally. The piston is linked to a hydraulic
3 1‘22 jack capable of a 600 mm stroke. The control system is
= P monitored by a computer. Different motions of the paddle
S 115} can be prescribed by the computer, enabling the generation
1.1} of either solitary waves or sinusoidal waves. This ability was
1.05} used for strong interactions when solitary waves and short
1 P waves need to be generated at the same end of the flume.
b Nevertheless the piston type wave maker, although not per-

fect, is more appropriate for long wave generation rather than
for short wave generation since it displaces the whole water
column uniformly. Ideally, the piston would need to flex in
such a manner as to reproduce the solitary wave vertical
locity that this simple formula accurately reproduce the heudistribution of the velocity. This is not possible with our
ristic approach for solitary waves up &'hy=0.4 and with wave maker. However, we need to prescribe an appropriate
less than 10% error up t&/hy=0.7. law of motion for the paddle in order to produce solitary
Finally, we have to compare the amplitude and wavewaves that are as pure as possible. Clamond and Geffain
number modulation obtained using each analytical approxiused a law deduced from the first-order shallow water theory.
mation of the solitary wave and the numerical solution. WaveAll solitary waves generated with this motion exhibit a main
number modulationgFig. 5 associated with KdV show bet- pulse followed by a dispersive tail with no more than 10% of
ter agreement than Rayleigh with the modulations obtainethe amplitude of the leading pulse. In order to decrease the
using Byatt-Smith’'s numerical solution. In all cases, theamplitude of the dispersive tail, different laws of motion for
highest maximum wave number modulations are given usinghe piston wave maker were tested. It appears that solitary
Byatt-Smith, with Rayleigh giving the lowest. The deviation waves generated using a paddle motion law conforming to
between Rayleigh and Byatt-Smith at the maximum of waveg25) are purer(smaller dispersive tail than with the original
number modulations reaches 40% fathy=0.5 in strong law) and more rapidly established. Moreover, by reproducing
interaction. With respect to amplitude modulatiqifsg. 6), different experiments concerning solitary wave generation
the deviation between Byatt-Smith and Rayleigh ranges fronwith any generation law, we assess that it is highly reproduc-
the double to four times the deviation between Byatt-Smithible. So that for a given paddle law, we could know the
and KdV when solitary wave amplitude increases. Yetsolitary wave amplitude at any location in the flume given
Byatt-Smith predicts amplitude modulation at the solitarythe probe accuracy. The law deduced from the Rayleigh so-
wave peak that are less than 6% greater than Ky  Iution implies larger paddle displacement than other laws.
Al/hy=0.5 in strong interaction As a consequence of both With regard to the finite stroke of the jack, this latter law lead
wave number and amplitude modulations, when comparingo smaller solitary wave amplitudes. For a water depth of
steepness maxima at the crest of the solitary W&igs. 1a)  hy=0.3 m the upper bound of the solitary wave dimension-
and 7b)], KdV and Byatt-Smith give close results up to less amplitude is 0.35 while the first-order shallow water law
A/hy=0.3. ForA/hy=0.3, predicted steepness maxima areallows a dimensionless amplitude up to 0.5.
smaller for KdV than for Byatt-Smith. In all cases, using For weak interactions, a plunging wedge wave maker
Rayleigh’s solution, predicted steepness maxima are smallewas used to generate high-frequency monochromatic sinu-
Yet, the phase shifts deduced from wave number modulasoidal waves. It is driven through a scotch-yakeelt?®) by
tions given by Rayleigh are in better agreement with Byatt-an electric motor rotating at constant speed. The frequency of
Smith than KdV, as shown in Figs(¢J and qd). This is in ~ the wedge motion ranges from 1 to 10 Hz. The amplitude of
line with our conclusion on particles displacements at thehe motion is adjusted by prescribing a fixed eccentricity.
free surface. We suggest this is due to the better descriptiofhis wave maker can be located at will anywhere along the
of both the outskirts decay coefficient and the phase speed flume. For the set of weak interactions, it was located at 28
Rayleigh solutior{see Figs. &) and 3b)]. m from the piston wave maker.

FIG. 6. Amplitude modulation¢same legend as Fig).5
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FIG. 7. (a) and (b) Steepness maxima at the crest of the solitary wave(endnd (d) phase shifts deduced from wave number modulations predicted by
WKBJ theory for weak and strong interactioha?2 Hz short wave(k,.,=16.09,hy=0.3 m) of amplitude 1 cm and a solitary wave given by Byatt-Smith’s
numerical solutiof—), KdV (- -), and Rayleigh--).

The depth at rest was fixed throughout the experimentthe experiments that damping was less pronounced after the
athy=0.3m. It is a compromise between the capabilities oftank had just been refilled, in other words when the free
the solitary wave wave maker and the high frequency wedgsurface was clean. We thus attributed this damping to the free
wave maker. In addition for this depth the short wave has @urface contamination, as Van Détnalready suggested.
dimensionless wave numbkgh, ranging from 2.73 to 7.54 Thus, as it is not possible, given the size of the tank, to
for frequencies varying from 1.5 to 2.5 Hz. It indicates thatmaintain the free surface clean enough, we did not proceed
experiments were performed for intermediate to deep wateover 2.5 Hz.
depths conditions. The short wave is in fact a wave group as  Surface displacements during the experiments on the in-
shown on Fig. @a). The front part is highly unstable. Enve- teraction between short surface waves and surface solitary
lope solitons can be generated in this front part and at leastaves are measured in fixed locations by resistive probes.
strong modulations of the amplitude are systematically obProbe precision was estimated at 0.5 mm for free surface
served. The central part of the recdieig. 9b)] shows a elevations lower than 5 cm and at 1 mm beyond this limit.
slight modulation in amplitude along with an asymmetry be-This is due to probe calibration. These probes are combined
tween crests and troughs due to second-order nonlinearitiei arrays and the distance between probes is fixed. The array
Harmonic analysis of this central zone shows that the firstan be moved along the flume, between 11 and 22 m from
harmonic component is a very small fraction of the funda-the piston wave maker depending on the experimental con-
mental component. Thus it is considered to be a nearly purditions. An extra probe can be dedicated to the measurement
monochromatic wave. Care is taken so that the measuremeat the solitary wave before it has interacted. All experimental
of the interaction is made in the central part. Over 2.5 Hz theecordings of interactions are measurements of free surface
wave is severely damped and propagates no further than 3 displacement against timbetween 15 and 25 seconds dura-
away from the plunging wave maker. It was noticed duringtion). The probes are located along the center line of the

479 mm 481 mm’
piston type wave maker 450 mm 453 mm
- : plunger type wave maker
1 2 3 4 5

00| sum FIG. 8. Sketch and dimensions of the
— b experimental equipment.

e i probes| array 1.2m

o 03m
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15 v . T - ' ' wave number modulations. The data processing to obtain this
1t phase shift is based on a harmonic analysis technique de-
tailed in Clamond and Barttemy! This was found to be

the most precise method. The methodology was tested on
pure synthetic sinusoidal signals with no other contribution.
051 I il (il In this case the phase shift between two arbitrary zones with

At | such signals is 0 since no other wave is present. This method
s , , 1 l , , applied to such signals yields a phase shift as low as the
0 5 10 15 20 2 3 3 machine roundoff error in double precision, namely

a- time (s) 10 *®rad. Concerning our experiments, we also tested the
error induced by the dispersive tail that follows the solitary

wave main pulse in zone C. To this end, two tests have been

' ' ' ' ‘ ‘ ' ‘ considered. First, we apply harmonic analysis to the super-
| imposition of a pure synthetic sinusoidal signal and a mea-
05 1 sured free surface elevation for a single solitary wave. We

considered solitary waves generated by the different paddle
motion laws we tested. But in the whole range of solitary
-05f wave amplitude, the improvements in reducing the disper-
sive tail did not show a significant reduction in phase shift

) , , . | ) . . error due to inaccuracy in the method because of the disper-
o5 % 1w % a2 sive tail. This error is at most 0.1 rad. Second, all interaction

b - time (s) experiments were repeated with solitary waves generated ei-
ther with Rayleigh or KdV paddle motion law. Phase shifts

FIG. 9. Recording ofahigh—frequenpy wave group at 10mfr0.m the wedgegptained from one or the other experiment series do not

wave ke . 0.3, ) 1 s of e recoring PN sqparate more than the error than can be estimated for a
single experiment. Indeed a large contribution to the error

comes from irregularities in the measured short wave signals.

flume to avoid lateral perturbations. We generate a solitary Nis Was assessed by the following test. A record of a freely
wave of amplitudeA, a short wave of frequenc§/ (wave propagating short wave is split in two. Phase shift between
numberk..), and of amplitudea.. . A typical example of an both parts is computed. This was repeatedly done and it was
interaction is presented on Fig. 10, on which four zones cafound that phase shifts could reach 1.5 rad without any ap-
be differentiated. Zone A is the recording of the short waveParent disturbances. This error in phase computation is
before interaction, zone B is the recording of the interactionmainly attributed to uncertainties in the frequency determi-
between the solitary wave and the short wave when the solipation of short signalérecords less than 10.sThe reliability
tary wave contribution is predominant, and zone C is theof the frequency of the wave maker was checked. It was felt
recording of the short wave after it has interacted. The slighthat the best way to estimate and reduce errors in phase shift
modulation is due to the dispersive tail trailing the soliton.determination was to repeat the measurements. All the phase
Zone D is a useless part of the recording. Indeed the reflecteghifts presented in this section are, therefore, an average on 5
solitary wave interacts with the dispersive tail and the shoror 6 values obtained at locations spanning 2omobe array.
wave. All the values presented fulfilled the criteria of an error lower
From the theoretical point of view, we know that the than 1 rad, estimated from two times the standard deviation
short wave undergoes wave number modulations during thef the 5 or 6 values. Experiments for which this criteria was
interaction. The modulations are difficult to obtain directly not fulfilled have been excluded. More details regarding ex-
from the measurements. However, phase shift of the wavperimental errors can be found in Guizi&hAs mentioned
train A with respect to the wave train B is a consequence ofibove, given a short wave frequency and a solitary wave

05 Hih H
0

n (cm)

FIG. 10. Free surface elevation against time at 19.423
m from the piston wave maker; for the solitary wave
Al/hy=0.3 and the frequency of the short wavefis
=25Hz (k,=25.15 for an amplitude of a,
=5.7mm hy=0.3m).

Ms (Cm)
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amplitude, we carried out experiments for the different soli-A ¢ /(k..hg). This is not surprising since formui@l) as-

tary wave laws of generation, considered as repetition of theumes that the short wave does not propagate during the
same experiments. Besides, the short wave amplitude wasteraction. Indeed, this assumption is met with decreasing
also allowed to vary, from 4 to 12 mm, as long as the shorerror as the frequency increases since then the short wave

wave out of the interaction was stable.

IV. RESULTS AND DISCUSSION

phase velocity also decreases. For weak interactions, since
the induced phase shifts are smaller, it remains difficult to
observe this effect as clearly. In order to clearly show this
argument, we plot on Fig. 12 the relative deviation between

The interaction between a surface solitary wave and ghase shifts given by formulé81) and experimental values
short wave can be analyzed using very simple arguments, &g formula(9) for a Rayleigh solitary wave as the short wave
recalled in the introduction. The short wave phase shift isvave number increases. In fact, this graph shows that the
then given by formuld31). We emphasize that this formula relative error one would do when using formyRi) to es-
is obtained by considering only displacement due to solitargimate the short wave phase shift, decreases when the short
waves, linearly and instantaneously. As a consequence, theave frequency increases. This error is less than 10% when

short wave direction of propagation is not taken into account.
It should be noted thdB1) is independent of the short wave
amplitudea.,. Figure 11 shows the experimental results of
nondimensional phase shiftse/(k..hy) againstyA/h, for
strong and weak interactions and various short wave frequen-
cies. We do not identify on the plots of Fig. 11 the short
wave amplitude. Indeed, it was not possible to show experi-
mentally any dependency of the short wave phase shift on
the short wave amplitude.

Heuristic phase shifh ¢ given by formula(31) is plot-
ted as a dotted curve. In this representation, it is the same
curve in all cases. Experimentally, weak interactions give
smaller phase shifts thakey while strong interactions give
larger ones. Moreover it appears that for strong interaction
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k..ho=30. However, the departure dfe,, from the dimen-  TABLE Il. Maximum short-wave steepness at the crest of the solitary wave
sional phase shift increases when the short wave frequen mput_ed fror'r@) and(10) when the short yvave was observe_d breaking in
. .. rong interaction and for the largest solitary waves experimenétiy(
increases as shown by Clamond and GermalFhis is be- =0.5) in weak interactiorithe short wave was NOT observed breaking in
cause the wave number increases more rapidly than thgese latter casgs

phase velocity decreases with increasing frequency.

On Fig. 11 we also plot the phase shiftg g, given by K=ho strong Weak
formula (21), A ¢g given by formula(9) for a Rayleigh(R) 2.73 0.267 0.189
solitary wave andA ¢gg given by formula(9) for a Byatt- 4.83 0.320 0.296
Smith (BS) solitary wave. Up toA/hy=0.15, formulas(21) 7.4 0.150 0.535

and (9) give very close results, which is in agreement with
the KdV theory limit. Indeed, we already showed in Sec. I A
how (9) reduces ta21) under the small amplitude assump- v cONCLUSION

tion. Formula(9) for a Rayleigh or a Byatt-Smith soliton _ _ _ _

allows to predict phase shifts for a wider range of solitary ~ Theoretically we found a dispersion relati¢9) to de-
waves, theoretically up to the limiting dimensionless ampli-SCribe the wave number modulations of a short wave riding
tude of 0.8332Longuet-Higgin&). In our experiments, we ©N @ solitary wave that is similar to the one obtained for the
were limited toA/h,<0.5. In weak interactions, taking into efraction of waves in slowly varying media, except that it
account the experimental errgepresented by the error bars includes free surface elevation. Wave action conservation
on Fig. 13, it is not possible to conclude on a better agree-10) iS also obtained. Any solitary wave solution may be
ment with one or the other formula. However, the advantage4S€d a_m?é'o'f asTumlr;g a small an;plm;]de %ne, Clrz?_rfr:on% and
of this formulas appear for strong interactions when phas ermain’s™ analytical expression for the phase shiit under-

shifts are the largest. Indeed, the experimental results fogonsvby the short v;/]avte is confirmed. b q litud
large solitary waves in strong interaction are closer to pre- € comparé short wave wave number and ampiitude

dictions of formulas(9) (either based on the Rayleigh soli- gm(.jttrj]l,atlons optal|ne(|:i tf.rortg) grl?d(\}o) Véhe? _u?:,ng Bylattt.— |
tary wave approximation or Byatt-Smith numerical solujion Mith S humerical Solution an orkayleign's analytica
for frequencies of 2 and 1.5 Hz. Repeated experimésgs solutions. The shape of the wave number modulation curve

pecially at 2 Hz confirm this trend. For 2.5 Hz, this ten- associated with KdV appears to be closer than Rayleigh to

g . the one obtained with Byatt-Smith, but it misses the maxi-
dency is not as clear, partly due to the early breaking ob- .
served. mum that occurs at the crest of the solitary wave for large

As a matter of fact, a 2.5 Hz short wave was observecfomary waves. Besides, phase shifts deduced from integra-

“breaking” for a solitary wave of dimensionless amplitude lon under the curve for Rayleigh's solitary waves are in
. . better agreement with Byatt-Smith’s predictions than for
A/hy=0.25 whereas for 2 and 1.5 Hz frequencies, breakin 9 y P

| dfor the | ¢ solit ively. f dV’s solitary waves. We suggest this is due to the better
only occurred for the largest solitary waves, respectively, Ordescription in Rayleigh’s solution of the phase speed and

Alho=0.4 andA/ho=0.45. We use here the term breaking to outskirts decay coefficient. Another feature is that particles
refer to foam patches that one can see on the free surfacgiq, acements at the free surface deduced from Rayleigh so-
This breaking is due to the steepening of the short Wavg inn are very accurate. We thus derived a new analytical
when both amplitude and wave number increase. Thus, Shoffm 13 (31) for the limiting case of high-frequency short
waves of different amplitudes but with the same frequency, es riding on large amplitude solitary waves. Experimen-
and interacting with the same solitary wave may be differenyyy strong interactions have been carried out for the first
tiated by breaking, whereas if only the phase shift is considgme. They clearly show the influence on the phase shift de-
ered they cannot. The maximum short wave steepness at th&mination of the direction of propagation of the waves in-
crest of the solitary wave when the short wave was ObserVeéracting as far as small wave number are concerned. Be-
breaking is computed fron®) and (10) using Byatt-Smith  gjges, the only case, when taking into account experimental
numerical solitary wave solution. These values bound to eXgrror, measurements enable to show a better agreement with
perimentally observed breaking are given in Table Il. Wegne of the theoretical formulas, occurs in strong interaction.
also report in Table Il the maximum steepness values prerhys, we show in that case thategr and Apgs Were in
dicted for the weak interaction with the largest solitary wavepetter agreement thai gy, With measurements. In addi-
experimented A/hy=0.5). Breaking was never clearly ob- tion, we show that when the short wave wave number in-
served in our weak interactiorieo foam patchegs Because creases, phase shifts tends to the heuristic formulg, .

of the uncertainty concerning the breaking limit, we may justindeed, in our experimental set, we covered a broader range
stress that for the same predicted steepness#02.5Hz  of short wave wave number then Clamond and Baeting*
(kxho=7.54), short waves are observed breaking in the During the experiments, some cases of breaking were
strong interaction but not in the weak interaction case. Moreebserved that may be attributed to significant steepening of
over, the predicted steepness when breaking is observed tise short wave induced by both wave number and amplitude
always smaller than the Stokes limit of 0.4461 for wavesmodulations. Indeed, breaking enables a difference to be
propagating at rest. This all suggests that breaking is nanhade between two short wave trains with the same fre-
determined only by the steepness but also by the underlyinguency but different amplitudes, whereas phase shift depends
velocities. only on the frequency of the short wave. This latter appears
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