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On the First Integral Conjecture of René Thom

Jacky CRESSON, Aris DANIILIDIS & Masahiro SHIOTA

Abstract. More than half a century ago R. Thom asserted in an unpublished manuscript
that, generically, vector fields on compact connected smooth manifolds without boundary can
admit only trivial continuous first integrals. Though somehow unprecise for what concerns
the interpretation of the word “generically”, this statement is ostensibly true and is nowadays
commonly accepted. On the other hand, the (few) known formal proofs of Thom’s conjecture
are all relying to the classical Sard theorem and are thus requiring the technical assumption
that first integrals should be of class Ck with k ≥ d, where d is the dimension of the manifold.
In this work, using a recent nonsmooth extension of Sard theorem we establish the validity of
Thom’s conjecture for locally Lipschitz first integrals, interpreting genericity in the C1 sense.
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1 Introduction

The purpose of this paper is to discuss the following conjecture attributed to René Thom (see [19],
[8], [13], for example) which is part of the folklore in the dynamical systems community:

Thom conjecture: For 1 ≤ r ≤ ∞, Cr-generically vector fields on d-dimensional compact,
smooth, connected manifolds without boundary do not admit nontrivial continuous first integrals.

René Thom [19] proposes a scheme for a formal proof relying on the assumption that a
Cr closing lemma (r ≥ 1) is true [8]. The C1-closing lemma (case r = 1) has indeed been proved
by Pugh ([14], [15]). Nevertheless, very little is known for a Cr-closing lemma with r ≥ 2 (see
also [9], [16]) so that Thom’s strategy should be revised.

In [13], Peixoto proves Thom conjecture for r = 1 assuming that first integrals are of class Ck

with k ≥ d, i.e. a relation between the regularity class of the first integrals to be considered and
the dimension of the underlying compact manifold. As pointed out by Peixoto, this condition
is only of technical nature and relates to the use of the classical Sard theorem in a crucial part
of the proof. More precisely, denoting by XM the set of C1-vector fields on the d-dimensional
compact manifold M , Peixoto’s proof is divided in three steps:

Let X ∈ XM and f : M → R be a first integral of class Cd.

- By Sard’s lemma, there exists in f(M) an interval ]a, b[ made up of regular values. For
any y ∈]a, b[, f−1(y) is an (d − 1)-dimensional, compact, differentiable manifold, invariant un-
der X.

- By Pugh’s general density theorem for each y ∈]a, b[, f−1(y) does not contain singularities
or closed orbits of X since they are generic. As a consequence, singularities and closed orbits
are all located at the critical levels of f .
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- Any trajectory γ in f−1(y) is such that ω(γ) ⊂ f−1(y) and cannot be contained in the
closure of the set of singularities or closed orbits, in contradiction to Pugh’s general density
theorem.

T. Bewley [2] extends Peixoto’s theorem for 1 ≤ r ≤ ∞. The proof has then been simplified
by R. Mañe [11]. Mañe’s proof seems to have been rediscovered by M. Hurley [10]. However,
the technical assumption of Peixoto (Cd-regularity of the first integrals) stays behind all these
works, because of the use of Sard’s theorem. Nevertheless, Thom conjecture seems to be true in
general.

In this paper, we cancel the aforementioned regularity condition by interpreting the word
“nontrivial” as “being essentially definable with respect to an o-minimal approximation” (see
Definition 2.6 below). In this context we prove the validity of Thom’s conjecture for r = 1 and
for Lipschitz continuous first integrals.

The technic of the proof follows the strategy used by M. Artin and B. Mazur ([1]) to prove
that generically the number of isolated periodic points of a diffeomorphism grows at most ex-
ponentially. Indeed, using a recently established nonsmooth version of Sard theorem (see [3,
Theorem 7] or [4, Corollary 9]) and Peixoto’s scheme of proof ([13]) we first show that in an
o-minimal manifold (that is, a manifold that is an o-minimal set), generically, o-minimal first
integrals are constant. Then by approximating every compact differentiable manifold by a Nash
manifold we derive a general statement.

• Preliminaries in dynamical systems.

Given a C1 manifold M we denote by XM the space of all C1-vector fields on M equipped with
the C1 topology. Let φt : M → M be the one-parameter group of diffeomorphisms generated by
a vector field X on M . A point p ∈ M is called nonwandering, if given any neighborhood U

of p, there are arbitrarily large values of t for which U ∩φt(U) 6= ∅. Denoting by Ω the set of all
nonwandering points we have the following genericity result due to C. Pugh ([14], [15]).

General density theorem (GDT): The set GM of vector fields X ∈ XM such that properties
(G1)–(G4) below hold is residual in XM .

(G1) X has only a finite number of singularities, all generic ;

(G2) Closed orbits of X are generic ;

(G3) The stable and unstable manifolds associated to the singularities and the closed orbits
of X are transversal ;

(G4) Ω = Γ̄, where Γ stands for the union of all singular points and closed orbits of X.

We use the following definition of a first integral :

Definition 1.1 (First integral). A first integral of a vector field X on a compact connected
manifold M of dimension d is a continuous function f : M → R which is constant on the orbits
of the flow generated by X but it is not constant on any nonempty open set of M .

As mentioned in the introduction, Peixoto [13] only considers Ck-first integrals with k ≥ d.
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• Preliminaries in o-minimal geometry.

Let us recall the definition of an o-minimal structure (see [7] for example).

Definition 1.2 (o-minimal structure). An o-minimal structure on the ordered field R is a
sequence of Boolean algebras O = {On}n≥1 such that for each n ∈ N

(i) A ∈ On =⇒ A × R ∈ On+1 and R × A ∈ On+1 ;

(ii) A ∈ On+1 =⇒ Π(A) ∈ On

(Π: Rn+1 → Rn denotes the canonical projection onto Rn) ;

(iii) On contains the family of algebraic subsets of Rn, that is, the sets of the form

{x ∈ Rn : p(x) = 0},

where p : Rn → R is a polynomial function ;

(iv) O1 consists exactly of the finite unions of intervals and points.

An important example of o-minimal structure is the collection of semialgebraic sets (see [6]
for example), that is, sets that can be obtained by Boolean combinations of sets of the form

{x ∈ Rn : p(x) = 0, q1(x) < 0, . . . , qm(x) < 0} ,

where p, q1, . . . , qm are polynomial functions in Rn. Indeed, properties (i), (iii) and (iv) of
Definition 1.2 are straightforward, while (ii) is a consequence of the Tarski-Seidenberg principle.

A subset A of Rn is called definable (in the o-minimal structure O) if it belongs to On. Given
any S ⊂ Rn a mapping F : S → R is called definable in O (respectively, semialgebraic) if its
graph is a definable (respectively, semialgebraic) subset of Rn × R.

• Preliminaries in variational analysis.

Let g : U → R be a Lipschitz continuous function where U is a nonempty open subset of Rd.
The generalized derivative of g at x0 in the direction v ∈ Rn is defined as follows (see [5, Section 2]
for example):

go(x0, e) = lim sup
x→x0

tց0+

g(x + te) − g(x)

t
(1)

where t ց 0+ indicates the fact that t > 0 and t → 0. It turns out that the function v 7→ go(x0, v)
is positively homogeneous and convex, giving rise to the Clarke subdifferential of g at x0 defined
as follows:

∂g(x0) = {x∗ ∈ Rd : go(x0, v) ≥ 〈x∗, v〉, ∀v ∈ Rd}. (2)

In case that g is of class C1 (or more generally, strictly differentiable at x0) it follows that

∂g(x0) = {∇g(x0)}.

A point x0 ∈ U is called Clarke critical, if 0 ∈ ∂g(x0). We say that y0 ∈ g(U) is a Clarke
critical value if the level set g−1(y0) contains at least one Clarke critical point. Given a Lipschitz
continuous function f : M → R defined on a C1 manifold M we give the following definition of
(nonsmooth) critical value.

3



Definition 1.3 (Clarke critical value). We say that y0 ∈ f(M) is a Clarke critical value of
the function f : M → R, if there exists p ∈ f−1(y0) and a local chart (ϕ,U) around p such that
0 ∈ ∂(f ◦ ϕ−1)(ϕ(p)). In this case, p ∈ M is a Clarke critical point for f .

It can be easily shown (see [17, Exercise 10.7], for example) that the above definition does not
depend on the choice of the chart.

2 Main results

Throughout this section M will be a C1 compact connected submanifold of Rn (without bound-
ary), TM its corresponding tangent bundle and XM the space of C1 vector fields on M equipped
with the C1 topology. Let us recall that submanifolds of Rn admit ε-tubular neighborhoods for
all ε > 0 sufficiently small. We further consider a C1-submanifold N of Rn, a C1-diffeomorphism
F : M → N and ε > 0.

Definition 2.1 (Approximation of a manifold). (i) We say that (N,F ) is a C1-approxi-
mation of M (of precision ǫ), if N belongs to an ǫ-tubular neighborhood Uǫ of M and F can
be extended to a C1-diffeomorphism F̃ : Rn → Rn, which is isotopic to the identity id, satisfies
F̃ |Rn�Ur

≡ id and

max
x∈Rn

{

||F̃ (x) − x|| + || dF̃ (x) − id ||
}

< ǫ.

(We shall use the notation F̃ ∼ǫ id to indicate that F̃ is ǫ-C1-closed to the identity mapping.)

(ii) A C1-approximation (N,F ) of M is called semialgebraic (respectively, definable) if the
manifold N is a semialgebraic subset of Rn (respectively, a definable set in an o-minimal struc-
ture).

In the sequel, we shall need the following approximation result.

Lemma 2.2 (Semialgebraic approximation). Let M be a C1 compact submanifold of Rn.
Then for every ε > 0, there exists a semialgebraic ε-approximation of M .

Proof. Fix ε > 0 and let U be an open ǫ-tubular neighborhood of M in Rn for some ǫ ∈ (0, ε).
Applying [18, Theorem I.3.6] (for A = Rn and B = C1), we deduce the existence of a C1-
embedding F of M into U which is ǫ-close to the identity map id in the C1 topology such that
F (M) = N is a Nash manifold (that is, N is a C∞-manifold and a semialgebraic set). Then
F can be extended to a C1 diffeomorphism F̃ of Rn by a partition of unity of class C1 such that
F̃ = id on Rn \ U . Moreover there exists a C1 isotopy {Ft}t∈[0,1], such that Ft = id on Rn \ U ,

F0 ≡ id and F1 = F̃ and the map Ft : Rn × [0, 1] → Rn is ǫ-close to the projection to Rn in the
C1 topology. �

Given a C1-manifold M and a C1-vector field X ∈ XM , the following result relates generic
singularities of hyperbolic type of X with Clarke critical values of Lipschitz continuous first
integrals of X.

Lemma 2.3 (Location of singularities). Assume f : M → R is a Lipschitz continuous first
integral for the vector field X ∈ XM . Then all generic singularities and all closed orbits of
hyperbolic type are located at the Clarke-critical level sets.
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Proof. Let p0 be either a singular point of hyperbolic type or any point of a closed orbit of
hyperbolic type and let π : U → M be the exponential mapping around p0 = π(0), where U is
an open neighborhood of 0 ∈ Tp0

M ∼= Rd (d denoting the dimension of M). It follows that the
function g = f ◦ π is Lipschitz continuous. Since the stable and unstable manifolds of the flaw
of the field X at p0 are transversal and since f is a first integral, it follows that for some basis
{ei}i∈{1,...,d} of Tp0

M one has

go(0,±ei) ≥ g′(0,±ei) := lim
tց0+

g(±tei) − g(0)

t
= 0,

where g0(0, ·) is given by (1). In view of (2) we deduce that 0 ∈ ∂g(0), hence f(p0) is a critical
value of f . �

Lemma 2.4 (Density of critical values for GDT fields). In the situation of Lemma 2.3,
let us further assume that X ∈ GM . Then the Clarke critical values of f are dense in f(M).

Proof. Let Γ denote the union of all singular points and closed orbits of the field X. Since
X ∈ GM , it follows from Lemma 2.3 that the set f(Γ) is included to the Clarke critical values.
Continuity of f and compactness of M yield f(Γ) = f(Γ) = f(Ω). Since Ω contains all ω-limits
of orbits of X, taking any y ∈ f(M) and any x ∈ f−1(y)�Γ we denote by γ the orbit passing
through x and by γ∞ the set of ω-limits of γ. Then by continuity y = f(γ) = f(γ∞) ⊂ f(Ω).
This proves the assertion. �

Corollary 2.5 (Thom conjecture – definable version). Let X ∈ GM . Then X does not
admit any Lipschitz continuous definable first integral.

Proof. Assume f is a Lipschitz continuous first integral of X on M and denote by S the set
of its Clarke critical points. If f is o-minimal, then so is M (cf. property (ii) of Definition 1.2),
the tangential mappings π : U ⊂ Tp0

M → M (around any point p0 ∈ M) and the composite
functions of the form g = f ◦ π (notation according to the proof of Lemma 2.3). Note that p is
a critical point of f if and only if π−1(p) is a critical point of g = f ◦π where π is any tangential
mapping with p ∈ π(U). Applying [4, Corollary 8] we deduce that the set of Clarke critical
values of each function g is of measure zero. Using a standard compactness argument we deduce
that f(S) is of measure zero, thus in particular f(M) \ f(S) contains an interval (y1, y2). But
this contradicts the density result of Lemma 2.4. �

If the manifold M is not a definable subset of Rn the above result holds vacuously and gives
no information. To deal with this case, the forthcoming notion of essential o-minimality with
respect to a given o-minimal approximation turns out to be a useful substitute for our purposes.
Let us fix ǫ > 0 and a definable ǫ-approximation (N,F ) of M .

Definition 2.6 (Essential o-minimality with respect to a definable approximation).
A mapping f : M → R is called essentially o-minimal with respect to a definable approxima-
tion (N,F ) of M if the mapping f ◦ F−1 : N → R is o-minimal.

Note that every o-minimal function on M is essentially o-minimal with respect to any approxi-
mation (N,F ) of M for which the diffeomorphism F is o-minimal. Setting

M = {p ∈ R2 : p ∈ Graph(h)}
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where h(t) = t3 sin(x−1), if t 6= 0 and 0 if t = 0, we obtain a nondefinable C1-submanifold
of R2. Thus the (projection) function f : M → R with f((t, h(t)) = t is not o-minimal. It
can be easily seen that for every ǫ > 0 there exists an ǫ-approximation (N,F ) with respect to
which f is essentially o-minimal. On the other hand, if χK is the characteristic function of the
Cantor set K of (0, 1), the function g : R → R defined by g(x) =

∫ x

0 χK(t) dt for all x ∈ R is not
essentially o-minimal with respect to any approximation. Roughly speaking, a function that is
not essentially o-minimal contains intrinsic irreparable oscillations.

In view of Lemma 2.2, for every ǫ > 0 there exists a C1 definable manifold N and a dif-
feomorphism F : M → N such that F ∼ǫ id . Fixing the approximation, we associate to every
vector field X : M → TM on M the conjugate C1-vector field X̃ : N → TN on N defined as
follows:

X̃(q) = dF (F−1(q),X(F−1(q)).

Note that X̃ is uniquely determined by X. Let us further denote by GN the vector fields of N

that satisfy the generic GDT assumptions. We are ready to state our main result.

Theorem 2.7 (Genericity of non-existence of first integrals). Let M be a C1 compact
submanifold of Rn and ǫ > 0. For the C1 topology, the set of vector fields in M that do not
admit Lipschitz continuous first integrals which are essentially o-minimal with respect to a given
definable ǫ-approximation of M is generic.

Proof. Let us fix any definable ǫ-approximation of M and let us denote by GN the vector fields
of N that satisfy the generic GDT assumptions. By Pugh’s density theorem GN is a C1-residual
subset of XN and by Corollary 2.5, if Y ∈ GN then Y does not possess any o-minimal Lipschitz
continuous first integral. Let G denote the set of vector fields of X that conjugate inside GN ,
that is,

G = {X ∈ XM : X̃ ∈ GN}.

Then G is residual in XM . Pick any X ∈ G and assume that f : M → R is a Lipschitz continuous
first integral of X. Since the trajectories of X are transported to the trajectories of X̃ ∈ GN

through the mapping F, it follows that f̃ = f ◦ F is a first integral of X̃ in N. This shows that
f cannot be essentially o-minimal with respect to (N,F ). �
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