
HAL Id: hal-00181820
https://hal.science/hal-00181820

Submitted on 24 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Novel Unified Architecture for Public-Key
Cryptography

A. Cilardo, A. Mazzeo, N. Mazzocca, L. Romano

To cite this version:
A. Cilardo, A. Mazzeo, N. Mazzocca, L. Romano. A Novel Unified Architecture for Public-Key
Cryptography. DATE’05, Mar 2005, Munich, Germany. pp.52-57. �hal-00181820�

https://hal.science/hal-00181820
https://hal.archives-ouvertes.fr


A Novel Unified Architecture for Public-Key Cryptography

A. Cilardo, A. Mazzeo, N. Mazzocca, L. Romano
Università degli Studi di Napoli Federico II
Dipartimento di Informatica e Sistemistica

via Claudio 20, 80125 Napoli, Italy
{acilardo, mazzeo, n.mazzocca, lrom}@unina.it

Abstract

In this paper we propose a fully-parallel, bit-sliced uni-
fied architecture designed to perform modular multipica-
tion/exponentiation and GF (2M ) multiplication as the core
operations of RSA and EC cryptography.

The architecture uses radix-2 Montgomery technique for
modular arithmetic, and a radix-4 MSD-first approach for
GF (2M ) multiplication. To the best of our knowledge, it is
the first unified proposal based on such a hybrid approach.
The architecture structure is bit-sliced and is highly regular,
modular, and scalable, as virtually any datapath length can
be obtained at a linear cost in terms of hardware resources
and no costs in terms of critical path. Our proposal outper-
forms all similar unified architectures found in the technical
literature in terms of clock count and critical path.

The architecture has been implemented on a Field-
Programmable Gate Array (FPGA) device. A highly
compact and efficient design was obtained taking advan-
tage of the architectural characteristics.1

1.. Introduction

The ever-increasing demand for security, along with
several crucial requirements like performance and tamper-
resistance, has caused in the recent years an increasing de-
ployment of hardware devices to support security services,
such as confidentiality, authentication, integrity and non-
repudiation.

In particular, asymmetric, or public-key, cryptography
plays an important role in all modern security-aware appli-
cations, since it has the fundamental property of enabling

1 This work was supported in part by the Italian National Research
Council (CNR), by Ministero dell’Istruzione, dell’Università e della
Ricerca (MIUR), and by Regione Campania, within the framework
of following projects: SP1 Sicurezza dei documenti elettronici, Ges-
tione in sicurezza dei flussi documentali associati ad applicazioni
di commercio elettronico, Centri Regionali di Competenza ICT, and
Telemedicina.

digital signature and encryption without any sharing of se-
cret information between the interested parties.

Among the existing techniques the Rivest-Shamir-
Adleman (RSA) algorithm [12] is at present the most
widely adopted public-key cryptography algorithm. How-
ever, Elliptic Curve (EC) cryptography [10] has been gain-
ing more and more popularity and importance during the
last years, and has been embedded in many security proto-
cols and standards [7].

While hardware-based implementations of public-key
algorithms are very computationally efficient and generally
offer high levels of tamper-resistance, they are typically in-
flexible and often yield specific, parameter-dependent solu-
tions. During the last years, many research activities have
been attempting to define flexible hardware architectures,
that are suitable to perform the fundamental public-key
cryptographic operations independent of the parameter val-
ues (e.g., the value of the modulus used for modular arith-
metic), the operand length, and even the specific class of
mathematical operations to compute. In particular, a few
proposals have been recently made [14, 15, 6, 13] to pro-
vide unified hardware architectures for executing both inte-
ger modular arithmetic and GF (2M ) operations, thus cov-
ering all the underlying arithmetics supporting RSA cryp-
tography and EC cryptography.

Almost all existing architectures make use of Mont-
gomery multiplication [11]. The Montgomery multiplica-
tion algorithm was initially proposed as an efficient method
to perform modular multiplication in prime fields. It was
then shown in [9] that Montgomery multiplication can also
be used in GF (2M ), when elements are represented in the
standard basis and the irreducible polynomial for the field
is taken arbitrarily.

However, it should be noted that, apart from the pos-
sibility of designing unified architectures, no real benefit
comes from the Montgomery extension to GF (2M ) arith-
metic, since in this case all operations are already intrin-
sically carry-less and, in principle, the Montgomery tech-
nique does not affect the operation speed. On the other hand,
there is still the additional pre- and post-processing over-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



head required by the Montgomery transformation, that turns
out to be the price to pay for obtaining a unified architec-
ture.

In this paper we propose a fully-parallel, bit-sliced uni-
fied architecture designed to perform modular multipica-
tion/exponentiation and GF (2M ) multiplication as the core
operations of RSA and EC cryptography. The heart of the
architecture is the dual-mode adder, a hardware block pro-
posed in [3, 4, 5] that supports both carry-save and carry-
propagate addition. In this work the dual-mode adder is ex-
tended to become a dual-field adder relying on its intrinsic
capability of alternating carry and carry-less operation.

The architecture uses radix-2 Montgomery technique
for modular arithmetic, and a radix-4 most-significant-digit
(MSD) first approach for GF (2M ) multiplication. To the
best of our knowledge, it is the first unified proposal based
on such a hybrid approach. The architecture structure is bit-
sliced and is highly regular, modular, and scalable, as virtu-
ally any datapath length can be obtained at a linear cost in
terms of hardware resources and no costs in terms of critical
path. Our solution outperforms all similar unified proposals
found in the technical literature in terms of clock count and
architectural critical path.

The architecture has been implemented using Field-
Programmable Gate Array (FPGA) as the target tech-
nology. A highly compact and efficient design was ob-
tained taking advantage of the architectural characteris-
tics.

The rest of the paper is organized as follows. Section 2
presents the proposed algorithm for computing the RSA
modular exponentiation and GF (2M ) multiplication. Sec-
tion 3 describes the architecture implementing the RSA
modular exponentiation/GF (2M ) multiplication. Section 4
provides details about physical implementation of the pro-
posed architecture and presents the results achieved. Sec-
tion 5 gives some comparisons against similar architectures
and concludes the paper with some final remarks.

2.. Algorithms

Algorithm for RSA exponentiation. For implementa-
tion of modular multiplication we used a modified form of
the standard radix-2 Montgomery algorithm [11]. Our ver-
sion of the algorithm (referred to as MonProd) is based on
some optimizations proposed in [16, 3, 4, 5] and uses an in-
termediate carry save representation of operands to avoid
carry propagation in the loop body.
Algorithm 1 - Carry-Save Montgomery Product MonProd(A,B)
radix-2.
Given N =

∑K−1
i=0 Ni ·2i, A =

∑K+4
i=0 Ai ·2i < 2N , B < 2N ,

where N0 = 1, Ai, Ni ∈ {0, 1}, AK+1 . . . AK+4 = 0, com-
putes a number falling in [0, 2N [ which is modulo N congru-
ent with (A · B · 2−(K+2)) mod N

1. S := 0, C := 0

2. V := 0

3. for h := 0 to K + 4 do

4. q := q(S2, S1, C1, C0, N1)

5. VNEXT := Ah · 4B + q · N
6. S := S/2, (S, C) := S + C + V

7. V := VNEXT

8. end for

9. return S/2 + C

where (S, C) := S + C + V denotes a carry-save addi-
tion, i.e. given S =

∑K+3
i=0 Si · 2i, C =

∑K+3
i=0 Ci · 2i,

V =
∑K+3

i=0 Vi · 2i, the updated values of S and C are ob-
tained as Si := Si ⊕ Ci ⊕ Vi and Ci := SiCi + SiVi + CiVi.

During the hth iteration, q represents the least signifi-
cant bit of the partial product U (U = S/2 + C) com-
puted during the (h + 1)th iteration. The least significant
bits of the current U are needed to choose which value of
V to add during the next operation in the loop of the Mont-
gomery’s algorithm. These bits can be easily derived even
though numbers are in carry-save form. It is worth empha-
sizing that in our MonProd algorithm step 6, which per-
forms the current operation, has no dependency upon steps
4-5, which decide on the subsequent operation. Thus, con-
trol operations and data operations can be executed concur-
rently even if the addition is implemented on a fully paral-
lel structure. The quantities 4B and 4B + N can be com-
puted and stored before executing the MonProd algorithm,
and added during the MonProd loop according to the val-
ues of Ah and q (step 5).

In the following we report the exponentiation algorithm
for computing XE mod N known as Right-To-Left binary
method [8], modified in order to take advantage of Mont-
gomery product as defined in Algorithm 1.
Algorithm 2 - Right-To-Left Modular Exponentiation using Mont-
gomery Product.
Given N =

∑K−1
i=0 Ni · 2i, X < N , E =

∑H−1
i=0 Ei · 2i < N ,

and W = (2K+2)2 mod N . computes P = XE mod N .
1. Z := MonProd(X, W )

2. P := MonProd(1, W )

3. for j := 0 to H − 1 do

4. Z := MonProd(Z, Z)

5. if (Ej = 1) then P := MonProd(P, Z)

6. end for

7. return MonProd(P, 1)

where MonProd(A, B) is a number falling in [0, 2N [ which is
modulo N congruent with (A · B · 2−(K+2)) mod N .

For a given modulus value, the factor W =
(2K+2)2 mod N remains unchanged. It is thus possi-
ble to use a precomputed value for such a factor and
reduce residue calculation to a MonProd. It is worth not-
ing that, due to the absence of dependencies between
instructions 4 and 5, these can be executed in paral-
lel.

For further details about our versions of modular multi-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



plication and modular exponentiation algorithms, please re-
fer to [3, 4, 5].

Algorithm for GF (2M ) multiplication. We deal with el-
liptic curves (ECs) defined by the nonsupersingular Weier-
straß equation over binary fields GF (2M ). Due to the lack
of space, we do not give details about EC cryptography.
The interested reader is referred to, for example, [10, 7].
Suffice it to say here that all operations necessary for EC
cryptosystems can always be reduced to sequences of ad-
dition and multiplication operations in the underlying fi-
nite field, namely GF (2M ) in our case, that thus play a
fundamental role for implementation of EC cryptography.
In turn, the representation of the field elements is crucial
for the efficiency of all field operations. For our architec-
ture, we use the polynomial or standard representation. A
field GF (2M ) is isomorphic to GF (2)[x]/N(x), where
N(x) = xM +

∑M−1
i=0 Ni ·xi is a monic irreducible polyno-

mial of degree M with coefficients Ni ∈ {0, 1}. Here each
residue class is represented by the polynomial of least de-
gree in its class. A standard basis representation uses the
basis defined by the set of elements {0, α, α2, . . . , αM−1}
where α is a root of the irreducible polynomial N(x). In
this basis, field elements are represented as polynomials in
α of degree less than M with coefficients 0 or 1. Addi-
tion/subtraction between elements is simply performed by
bitwise XORing their coefficients, and multiplication is per-
formed, conceptually, by performing the usual polynomial
multiplication, followed by reduction modulo N(x).

Polynomial representation is particularly efficient for
hardware implementation, where field elements are rep-
resented as bit strings. Implementation of field addition
is straightforward. Multiplication, however, is quite more
complex and turns out to be the critical operation for all
practical EC implementations.

In the following, we report the algorithm we adopted
for our architecture. It is based on a radix-4 representation
of field elements and uses a most-significant-digit first ap-
proach.

Algorithm 3 - Most-Significant-Digit first radix-4 algo-
rithm for GF (2M ) multiplication.
Given N(x) =

∑M
i=0 Ni · xi, A(x) =

∑M−1
i=0 Ai · xi,

B(x) =
∑M−1

i=0 Bi · xi where Ni, Ai, Bi ∈ {0, 1}, NM = 1,
computes A(x) · B(x) mod N(x)
1. X := 0
2. V := 0
3. for h := �M/2� downto 0 do
4. g := g(XM−1 . . . XM−4, NM−1 . . . NM−3,
- BM−1 . . . BM−3, A2h+1 . . . A2h−2)
5. VNEXT := (A2h+1 · x + A2h) · B ⊕ g · N
6. X := 4X ⊕ V
7. V := VNEXT

8. end for
9. return X

where A2·�M/2�+1= . . . = AM = A−1= A−2 = 0, ⊕ de-

notes a bit-wise XOR, and g ∈ {0, 1, x, 1 + x}.

At each step, a multiple of the irreducible polynomial
N is added to the partial result X for zeroing its most sig-
nificant digit. Note that there is not carry propagation here,
so the decision about the next operation to perform can be
taken based only on the most significant bits of the operands
(by means of the function g). This behaviour is somewhat
dual to the previously presented Montgomery algorithm. As
for Algorithm 1, step 6, which performs the current opera-
tion, has no dependency upon steps 4-5, which decide on the
subsequent operation. Thus, control operations and data op-
erations can be executed concurrently.

3.. Unified Architecture

In this section we describe the fully-parallel, bit-sliced
unified architecture designed to perform modular multipica-
tion/exponentiation and GF (2M ) multiplication as the core
operations of RSA and EC cryptography.

The architecture extends a previously devised solu-
tion implementing RSA modular exponentiation [3, 4, 5],
that supported both carry-save and carry-propagate ad-
dition within the same hardware block, the dual-mode
adder. This work shows how such a block can be ex-
tended in a straightforward way to become a dual-field
adder, that is a block supporting both modular multi-
plication and GF (2M ) multiplication. This extension is
accomplished in a natural way and with almost no addi-
tional hardware due to the capability of alternating carry
and carry-less operation intrinsic to the originally con-
ceived dual-mode adder [3, 4, 5].

FP

GP

E

T
SH

AP

AZ

N
X

BN

GZ

FZ

g

SHi
SHi-1

SHj

Figure 1. The overall unified architecture.

The overall architecture is depicted in Figure 1, while the
bit-slice structure is shown in Figure 2

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



AP

i

F
P

i

GP

i

Ni

X
i

T
i

BNi

G
Z

i

F
Z

i

AZ

i

SH
i

E
i

X-mux Y-mux

Z
-m

u
x

Z-DMA

P-DMA

D
P
i

D
Z
i

D
P
i

0 0

0

D
Z
i

D
Z
i

1 0

0
In

i

D
Z
i

D
Z
i-2

D
Z
i

D
Z
i-1

AP
i+1

FP
i+1

GP
i

AP
i

FP
i

GP
i-1

BN
i+1

BN
i

G Z
i

F
Z
i+1

DZ
i

AZ
i

D
Z
i-1

SH i-1

AZ
i+1

SHi

SH i+1

F
Z
i

DZ
i- 1

AZ
i-1

DZ
i-2

SH i-2

AZ
i

SH i-1

SH i

P
-S

e
c
tio

n
Z

-S
e

c
tio

n

G Z
i-1

0

Figure 2. The structure of the ith bit-slice.

The architecture works on up to L-bit moduli for RSA
cryptography and up to L + 3-bit operands for GF (2M )
multiplication. Its structure is comprised of L + 4 bit-slices
due to the maximum size of intermediate results during
RSA operation.

The architecture is designed to perform in parallel the
two coupled multiplications of Algorithm 2 based on the
radix-2 Montgomery technique, resorting to the carry-save
representation for the main loop of the multiplication pro-
cess and the carry-propagate addition for the final conver-
sion into the non-redundant form. In addition, the same
architecture can compute a GF (2M ) multiplication using
a radix-4 most-significant-digit (MSD) first approach, that
does not require any transformation on operands while be-
ing as efficient as the Montgomery multiplication.

The Dual-Mode (DM) Adder in the upper portion of Fig-
ure 1 and Figure 2, along with the associate registers F p,
Gp, and Ap are altogether referred to as P -section in the
following, while the remaining part of the architecture is re-
ferred to as Z-section. The P -section is used to speed up
modular exponentiation execution. As explained in [3, 4],
this technique halves the execution time for RSA modu-
lar exponentiation, while increasing the hardware costs by a
factor less than 2. Note that it would be possible to suppress
the P -section and obtain a more compact modular/GF (2M )
multiplier not specifically optimized for RSA exponentia-
tion.

The names of the registers in Figure 1 as well as flip-
flops in Figure 2, are kept as general as possible since dif-
ferent registers are used for holding different quantities dur-
ing modular arithemtic/GF (2M ) operations. In the follow-
ing subsections we particularize the operation of each com-

ponent to show how the unified architecture can be used to
compute both RSA modualar exponentiation and GF (2M )
multiplication.

RSA Operation. During RSA operation the architecture
performs concurrently the two coupled multiplications of
Algorithm 2. The superscripts Z and P in the figures in-
dicate that the corresponding signals and components are
specifically involved in Z and P product computation of
Algorithm 2.

Flip-flops N , X , and BN are used to hold the shared
quantities N , 4B, and 4B + N , respectively, that are ac-
cessed by both the Z and P sections. Sum-Carry pairs are
stored into the (F, G) pairs respectively, for each of the two
sections. The exponent and the left-operands of Z and P
multiplications are handled by registers SH , AZ , and AP ,
respectively, all used as single-bit right shift-registers. The
quantity W used in Algorithm 2 is stored into register T .
All operands are right-aligned when fed into the architec-
ture.

Each of the two DM adder arrays in Figure 1 uses the
register G (GZ or GP ) to hold the carry part of the carry-
save pair during the loop of the MonProd algorithm, while
the flip-flops of register G are individually used for carry
propagation during a (K + 4)-bit carry-propagate addition.
More precisely, within the ith bit-slice, each of the two DM
adders can add the ith bit of F/2 (i.e. Fi+1), Gi, and one of
{0, Ni, (4B)i, (4B + N)i} in carry-save mode for execut-
ing F := F/2, (F, G) := F +G+V in the MonProd loop
body taking one clock cycle altogether. In carry-propagate
mode the DM adder can add the bits Fi+1, Gi together
with the carry coming from the (i − 1)th bit-slice for ex-
ecuting the MonProd post-processing addition F/2 + G,
taking K + 4 clock cycles altogether. The Z DM adder
can also add the bits (4B)i (held by flip-flop Xi) and Ni

in carry-propagate mode for executing the MonProd pre-
processing addition 4B + N (stored into register BN ). It is
worth noting that the two carry-propagate additions F/2+G
for the P and the Z MonProd (performed concurrently by
both the P section and the Z section after the MonProd
loop) and the carry-propagate addition 4B +N (where B is
the previous Z product and the addition is performed before
starting the following MonProd loop) can overlap during
the modular exponentiation process, thus taking K+5 clock
cycles altogether.

A complete modular exponentiation process takes (2K+
14)(H + 2) + K + 7 clock cycles, where K ≤ L is the ac-
tual bit size of the modulus and H is the bit size of the expo-
nent. The dominant term 2KH is due to K + 5 carry-save
additions and the overlapped (K + 4)-bit carry-propagate
additions, to be iterated H +2 times within the modular ex-
ponentiation algorithm.

GF (2M ) Operation. During GF (2M ) operation the archi-
tecture performs the radix-4, MSD-first multiplication of al-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



gorithm 3 within the Z-Section.
Flip-Flops X are used to hold the partial result, while

flip-flops N , T , GZ , and BN are used to hold the quan-
tities N , 2N , B, and 2B + 2N , respectively. Thus, multi-
plexer X-Mux can drive into the adder one of the quanti-
ties 0, B, N , or B + N , while multiplexer Z-Mux can do
the same with quantities 0, 2B, 2N , or 2B + 2N . There-
fore, any of the values {0, B,N,B +N,B +2N, . . . , 3B +
2N, 2B + 3N, 3B + 3N} can be obtained on the fly and
added to the shifted partial result 4X through multiplexer
Y-Mux. All operations within the main loop of Algorithm 3
are thus accomplished in one clock cycle (note that g at step
5 of Algorithm 3 is a 2-bit number).

The left-operand A of the multiplication is handled by
register SH , used here as a two-bit left-shift register. Reg-
ister FZ is used for holding temporary data during the ini-
tialization phase. The shifts for F/2 and 4X are wired. Note
that all operands are left-aligned when fed into the architec-
ture for GF (2M ) multiplication.

Altogether, a complete GF (2M ) process takes �M/2�+
6 clock cycles, including the initial setup to input operands
and compute 2N and 2B + 2N . The factor 1

2 applied to the
dominant term in the above formula derives directly from
the radix-4 technique used for the multiplication.

One important thing to note for both RSA and GF opera-
tion modes is that a look-ahead technique is adopted to gov-
ern the multiplication process. This technique can be rec-
ognized in the fact that “control” operations necessary to
compute VNEXT in Algorithms 1 and 3 are independent of
“data-path” operations necessary to update the partial re-
sults (the pair (S,C) for RSA or the value X for GF) dur-
ing the same cycle. From an architectural viewpoint, this al-
lows the controller to know in advance the least/most (for
RSA/GF respectively) significant bits of the partial result
and issue the control signals one clock cycle before they ac-
tually apply. Control signals have thus to be delayed and,
importantly, they can be easily broadcast across the struc-
ture by means of flip-flops, which break up the critical path
and enable very efficient hardware implementations. Note
also that the computational effort necessary to compute the
control bits in advance is comparable to that of data-path
operations, so the controller/datapath pipeline is well bal-
anced. Another important property of our architecture is that
each bit-slice communicates only with its neighbours, that
is, all data signals are strictly local. This is an advantageous
condition for any hardware implementation.

4.. Physical Implementation

The architecture presented in the previous section has
been implemented on a Field-Programmable Gate Array
(FPGA), namely a Xilinx Virtex-E2000 device, for the case
L = 1024, which corresponds to 1028 bit-slices to be physi-
cally placed on the chip. In order to exploit the regularity of

the architecture and to optimize time and area performance,
we firstly synthesized the basic building block of the design,
i.e. the bit-slice of Figure 2. The synthesized bit-slice re-
quires 24 LUTs, 12 flip-flops, and 3 tristate buffers and has
a critical path of 5.25ns. Then, we implemented the overall
design. We resorted to a “serpentine” scheme on the chip to
preserve the locality of data signals and make sure each bit-
slice is close to the two preceding bit-slices and to the next
one. A 84 × 80-CLB area was used to accommodate the
complete architecture on the FPGA device. We left a cross-
shaped zone within the data-path area (see Figure 3) to al-
low the synthesis tool to place the controller. This place-
ment constraint facilitate the place-and-route step, and re-
duce the net delay due to control signal broadcasting, since
the controller is embedded in the data-path. We resorted to a
number of additional design techniques, such as the manual
replication of flip-flops broadcasting control signals, which
ensures each replicated flip-flop is wired to a set of bit-slices
close to each other to minimize net delay. For furhter de-
tails, refer to [3, 4].

0

259 780

260 779

}

FPGA Floorplan

1

40 CLBs

19

20

Controller

18

21

258

2

} 4 CLBs 40 CLBs }
}

3
9

C
L

B
s

}2
C

L
B

s
3
9

C
L

B
s

}
519 520

1027

Figure 3. The data-path placement scheme.

Figure 3 shows the whole design implemented on the tar-
geted device after the place-and-route process. Altogether,
the design takes 6,709 CLBs (25,633 LUTs, 13,542 flip-
flops, and 3084 tristate buffers), i.e. it requires 71% of
the target device resources. The minimum clock period is
12.93ns. From the formulas of section 3, a 1024-bit full
length exponentiation, i.e. a modular multiplication with an
exponent E and a modulus N with a length of 1024 bits, is
accomplished in 27.36 ms. A GF (2M ) multiplication with
M = 163 takes 1.138 µs.

5.. Comparison and Conclusions

To the best of our knowledge, there exist no unified ar-
chitectures fully implementing the RSA modular exponenti-
ation along with GF (2M ) multiplication, thus we compare

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



our architecture to the fastest FPGA-based implementation
of radix-2 Montgomery algorithm [1, 2]. The implementa-
tion in [1] takes 40 ms for a 1024-bit modular exponen-
tiation, while our implementation takes 27.36 ms, achiev-
ing a 32% reduction. The physical device used in [1] is not
the same as ours. This makes an exact comparison difficult
in terms of hardware resource requirements and time per-
formance. The architecture of [1] shows a critical path of
one 4-bit adder. Our architecture presents a critical path of
one single-bit full-adder and some selection logic. Also, it
should be noted that, unlike the architecture of [1], our de-
sign does not make use of optimized blocks and has consid-
erable device-independent features.

As far as GF (2M ) is concerned, there exist many GF-
specific architectures and implementations in the technical
literature. Here, we specifically focus on unified architec-
tures proposed in the recent years, that are capable of ex-
ecuting modular and GF (2M ) arithmetic within the same
hardware architecture.

While we provide an FPGA-based implementa-
tion, all unified architectures considered for comparison
report ASIC-based implementations, so it is not possi-
ble to give an exact evaluation in terms of area resources
and absolute execution time. Therefore, we use the num-
ber of clock cycles and an estimation of the critical path
in terms of basic hardware blocks, for each of the com-
pared architectures.

In [14], extensive results are provided with respect to the
dual-radix (radix-2 for GF (p) and radix-4 for GF (2M ))
particularized to the word-length of w=32 and optimized
for operands of up to 256 bits. For this architecture, a crit-
ical path of one multi-bit full-adder and some selection
logic (multiplexers) is obtained, and, taking as a reference
a GF (2160) multiplication, the clock count is equal to 166.
In [6], a MSD-first approach is taken for both GF (2M ) and
GF (p). The critical path of this architecture is made of two
single-bit full-adders and some selection logic, while the
clock count for a 160-bit multiplication is 160 cycles. [13]
proposes an arithmetic core block and a unified multiplier
architecture built on it. Three different word lengths (i.e. w
= 8, 16, 32) are considered. Time complexity is poor com-
pared to the other two architectures as even the multiplier
with the shortest word length (w = 8) has seven single-bit
full adders and one w-bit carry propagation adder (CPA) in
its critical path. For w = 8, a 160-bit multiplication takes
882 cycles.

In our architecture, the critical path includes only one
single-bit full-adder and some extra logic necessary to se-
lect the operands. In addition, the clock count is much lower
than the previous architectures: 86 clock cycles for a 160-bit
multiplication. We also emphasize that our architecture is
the first unified proposal based on a dual-radix, LSb/MSD-
first hybrid approach, as it uses radix-2 Montgomery tech-
nique for modular arithmetic, and radix-4 MSD-first tech-

nique for GF (2M ). This choice is based on the observation
that, for GF (2M ) operations, Montgomery technique has
basically no benefit while still requiring the domain trans-
formation overhead.

As a future work, we plan to explore how this technique
could apply to different, non fully-parallel architectures.

References

[1] T. Blum and C. Paar. Montgomery modular exponentia-
tion on reconfigurable hardware. Proc. 14th Symp. Computer
Arithmetic, pages 70–77, 1999.

[2] T. Blum and C. Paar. High-radix Montgomery modular ex-
ponentiation on reconfigurable hardware. IEEE Trans. on
Computers, 50(7):759–764, July 2001.

[3] A. Cilardo. Modular exponentiation on reconfig-
urable hardware. Master’s thesis, Università degli
Studi Federico II, Napoli, January 2003. Available at
http://cds.unina.it/∼acilardo.

[4] A. Cilardo, A. Mazzeo, L. Romano, and G. Saggese. Carry-
save Montgomery modular exponentiation on reconfigurable
hardware. IEEE Proc. of the Design, Automation and Test
Europe (DATE) Conference, 3:206–211, February 2004.

[5] A. Cilardo, A. Mazzeo, L. Romano, and G. Saggese. Ex-
ploring the design-space for FPGA-based implementation
of RSA. Elsevier Microprocessors and Microsystems,
28(4):183–191, May 2004.

[6] J. Großscha̋dl. A bit-serial multiplier architecture for finite
fields GF (p) and GF (2k). In Proc. of Cryptographic Hard-
ware and Embedded Systems - Lecture Notes in Computer
Science n. 2162. Springer-Verlag, Berlin, 2001.

[7] IEEE-P1363. Standard Specifications For Public-Key Cryp-
tography. 2000.

[8] D. Knuth. The Art of Computer Programming: Seminumeri-
cal Algorithms. Addison-Wesley, 1981.

[9] C. K. Koç and T. Acar. Montgomery multiplication in
GF (2k). Designs, Codes and Cryptography, 14(1):57–69,
April 1998.

[10] A. J. Menezes. Elliptic Curve Public Key Cryptosystems.
Kluwer Academic Publishers, Boston, MA, 1993.

[11] P. L. Montgomery. Modular multiplication without trial divi-
sion. Math. of Computation, 170(44):519–521, April 1985.

[12] R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures. Commun. ACM, 21:120–126,
1978.

[13] A. Satoh and K. Takano. A scalable dual-field elliptic curve
cryptographic processor. IEEE Transactions on Computers,
4:449–460, April 2003.

[14] E. Savaş, A. F. Tenca, M. E. Çiftçibasi, and Ç. K. Koç. Novel
multiplier architectures for GF (p) and GF (2n). IEE Pro-
ceedings - Computers and Digital Techniques, 151(2):147–
160, March 2004.

[15] A. F. Tenca, E. Savaş, and Ç. K. Koç. A design framework
for scalable and unified multipliers in GF (p) and GF (2m).
International Journal of Computer Research, 2004.

[16] C. D. Walter. Systolic modular multiplication. IEEE Trans.
on Computers, 42(3):376–378, March 1993.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 


