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ESTIMATION OF GAUSSIAN GRAPHS BY MODEL SELECTION

CHRISTOPHE GIRAUD

Abstract. Our aim in this paper is to investigate Gaussian graph estimation from a theoretical
and non-asymptotic point of view. We start from a n-sample of a Gaussian law PC in R

p and
we focus on the disadvantageous case where n is smaller than p. To estimate the graph of
conditional dependences of PC , we propose to introduce a collection of candidate graphs and
then select one of them by minimizing a penalized empirical risk. Our main result assess the
performance of the procedure in a non-asymptotic setting. We pay a special attention to the
maximal degree D of the graphs that we can handle, which turns to be roughly n/(2 log p).

1. Introduction

Let us consider a Gaussian law PC in R
p with mean 0 and positive definite covariance matrix

C. We write θ for the matrix of the regression coefficients associated to the law PC , more

precisely θ =
[

θ
(j)
i

]

i,j=1,...,p
is the p × p matrix such that θ

(j)
j = 0 for j = 1, . . . , p and

E

[

X(j)
∣

∣X(k), k 6= j
]

=
∑

k 6=j

θ
(j)
k X(k), j ∈ {1, . . . , p} , a.s.

for any random vector X =
(

X(1), . . . ,X(p)
)T

of law PC . Our aim is to estimate the matrix θ by
model selection from a n-sample X1, . . . , Xn of the law PC . We will focus on the disadvantageous
case where the sample size n is smaller than the dimension p.

The shape of θ is usually represented by a graph G with p vertices {1, . . . , p} by setting an

edge between the vertices i and j when θ
(j)
i 6= 0. This graph is well-defined since θ

(j)
i = 0 if and

only if θ
(i)
j = 0; the latter property may be seen e.g. on the formula θ

(j)
i = −(C−1)i,j/(C−1)j,j

for all i 6= j. The objective in Gaussian graphs estimation is usually to detect the graph G. Even
if the purpose of our procedure is to estimate θ and not G, we propose to estimate G by the way
as follows. We associate to our estimator θ̂ of θ, the graph Ĝ where we set an edge between the

vertices i and j when either θ̂
(j)
i or θ̂

(i)
j is non-zero.

Estimation of Gaussian graphs with n ≪ p is currently an active field of research motivated by
applications to microarray analysis. The challenge is to infer from a small sample of microarrays
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the regulation network of a large family of genes. A possible way is to model the gene expression
levels in the microarray by a (high-dimensional) Gaussian law (as proposed in Kishino and
Waddell [11]) and then to detect the underlying graph G of conditional dependences from the
sample. This modeling has the nice property to be simple, but one of its drawback is that it
does not model retroaction loops, which is a common feature in biological processes.

Various procedure have been proposed to perform graph estimation. Many are based on
multiple testing, see for instance the papers of Schäfer and Strimmer [13], Drton and Perlman [7,
8] or Wille and Bühlmann [15]. We also mention the work of Verzelen and Villers [14] for testing
in a non-asymptotic framework whether there are (or not) missing edges in a given graph.
Recently, several authors advocate to take advantage of the nice computational properties of the
l1-penalization to either estimate the graph G or the concentration matrix C−1. Meinshausen and
Bühlmann [12] propose to learn the graph G by regressing with Lasso each variable against the
others. Huang et al. [10] or Yuan and Lin [16] (see also Banerjee et al. [1] and Friedman et al. [9])
suggest in turn to rather estimate C−1 by minimizing the log-likelihood for the concentration
matrix penalized by the l1-norm.

Our aim in this work is to investigate Gaussian graph estimation from a theoretical and non-
asymptotic point of view. First, we propose a procedure to estimate θ and asses its performance
in a non-asymptotic setting, which is important for biological data where typical values of n
are a few tens. Then, we discuss on the maximum degree of the graphs that we can accurately
estimate. Our work is theoretic and from a practical point of view the procedure we propose
suffers of a very high computational cost. In a future work, we will suggest various strategies to
reduce this cost and we will compare its performance to the performance of other procedures in
a numerical study.

To estimate the matrix θ, we introduce a collection of candidate graphs (possibly directed
graphs) on {1, . . . , p}. To each graph, we associate an estimator of θ by minimizing some
empirical risk over the space of the matrices in R

p×p with shape given by the graph at hand,
see Section 2 for the details. Then, we select one of these estimators by minimizing a penalized
criterion. We evaluate the performance of the procedure through the Mean Square Error of
Prediction (MSEP) of the resulting estimator θ̂. To define this quantity, we introduce a few

notations. For any k, q ∈ N, we denote by A(1), . . . , A(q) the q columns of a matrix A ∈ R
k×q.

We also write ‖ · ‖k×q for the Euclidean norm in R
k×q, namely

‖A‖2
k×q =

k
∑

i=1

q
∑

j=1

(

A
(j)
i

)2
=

q
∑

j=1

‖A(j)‖2
k×1, for any A ∈ R

k×q.

The MSEP of the estimator θ̂ is then

MSEP(θ̂) = E

[

‖C1/2(θ̂ − θ)‖2
p×p

]

=

p
∑

j=1

E

[

‖XT
new(θ̂(j) − θ(j))‖2

1×p

]

,

where C1/2 is the positive square root of C and Xnew is a random vector, independent of the
sample X1, . . . , Xn, with distribution PC . Our main result roughly states that if the candidate
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graphs have a degree small compared to n/(2 log p), then a slight variation of the estimator θ̂
performs almost as well as the best of the estimators in the collection in terms of the MSEP.
Next, we emphasize that it is hopeless to try to estimate accurately graphs with degree D large
compared to n/(1 + log(p/n)). To conclude, we prove that the size of the penalty involved in
the selection procedure is minimal in some sense.

The remaining of the paper is organized as follows. We describe the estimation procedure in
Section 2, we state our main results in Section 3 and Section 4 is devoted to the proofs.

2. Estimation procedure

In this section, we explain our procedure to estimate θ. We first introduce a collection of
graphs / models, then we associate to each model an estimator and finally we give a procedure
to select one of them.

2.1. Collection of models. We write ∆ = {(j, j) : j = 1, . . . , p} and M∗ for the set of all

the subset of {1, . . . , p}2 \ ∆. The set M∗ is in bijection with the set of directed graphs on
{1, . . . , p}. Indeed, to a set m in M∗ we can associate a directed graph on {1, . . . , p} by setting
for each (i, j) ∈ m a directed edge from i to j. To any m in M∗, we associate the linear space

Θm (we call henceforth model) of those matrices θ in R
p×p such that θ

(j)
i = 0 when (i, j) /∈ m.

To estimate θ, we will consider a collection of models {Θm, m ∈ M} indexed by some suitable
subset M of M∗.

We give below some possible choices for the set M. In the sequel, M∗,s denotes the set of
those m in M∗ that are symmetric with respect to ∆, which means that (i, j) ∈ m if and only if
(j, i) ∈ m. The set M∗,s is in bijection with the set of graphs on {1, . . . , p}: to a set m in M∗,s

we associate the graph with an edge between i and j if and only if (i, j) ∈ m. As mentioned

before, we known that θ
(j)
i = 0 if and only if θ

(i)
j = 0, so it seems irrelevant to (possibly)

introduce directed graphs instead of graphs. Nevertheless, we must keep in mind that our aim
is to estimate θ at best in terms of the MSEP. In some cases, the results can be improved when
using directed graphs instead of graphs, typically when for some i, j ∈ {1, . . . , p} the variance of

θ
(j)
i Xi is large compared to the conditional variance Var(X(j)|X(k), k 6= j), where as the variance

of θ
(i)
j Xj is small compared to Var(X(i)|X(k), k 6= i).

Henceforth, we write mj = {i : (i, j) ∈ m} for any j ∈ {1, . . . , p} and m ∈ M∗. We also
denote by |mj | the cardinality of mj and call degree of m (or of the graph associated to m) the
integer deg(m) = max {|mj | : j = 1, . . . , p}.

Some collections of interest.

Mc
D : We write Mc

D (respectively Mc,s
D ) for those m in M∗ (resp. M∗,s) such that |mj | ≤ D

for all j ∈ {1, . . . , p}. We note that the set Mc
D (resp. Mc,s

D ) is in bijection with the set
of directed graphs (resp. graphs) with p vertices and degree at most D.
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Mb
D : We write Mb

D ⊂ Mc
D (respectively Mb,s

D ) for the set of the m in M∗ (resp. M∗,s) with

cardinality at most D (resp. 2D). The set Mb
D (resp. Mb,s

D ) is in bijection with the set
of directed graphs (resp. graphs) with p vertices and at most D edges.

MD,q : For 1 ≤ D ≤ q we write MD,q ⊂ Mc
D (respectively Ms

D,q) for the set of the m in

M∗ (resp. M∗,s) with cardinality at most q (resp. 2q) and such that |mj | ≤ D for
all j ∈ {1, . . . , p}. As before, the set MD,q (resp. Ms

D,q) is in bijection with the set

of directed graphs (resp. graphs) with p vertices, degree bounded by D and at most q
edges.

We note that all the graphs in the above collections have a degree bounded by D.

2.2. Collection of estimators. We start with n observations X1, . . . , Xn i.i.d. with law PC .
We denote by X the n × p matrix X = [X1, . . . , Xn]T and we remind that X(1), . . . , X(p) stand
for the p columns of the matrix X.

We assume henceforth that 3 ≤ n < p and that M ⊂ Mc
D for some D ∈ {1, . . . , n − 2}. To

any m ∈ M we associate an estimator θ̂m of θ by minimizing the squares

(1) ‖X(θ̂m − I)‖2
n×p = min

θ̂∈Θm

‖X(θ̂ − I)‖2
n×p.

We note that the p × p matrix θ̂m then fulfills the equalities

Xθ̂(j)
m = Proj

XΘ
(j)
m

(

X(j)
)

, for j = 1, . . . , p,

where Θ
(j)
m is the linear space Θ

(j)
m =

{

θ(j) : θ ∈ Θm

}

⊂ R
p and Proj

XΘ
(j)
m

is the orthogonal

projector onto XΘ
(j)
m in R

n (for the usual scalar product). Hence, since the covariance matrix
C is positive definite and D is less than n, the minimizer of (1) is unique a.s.

2.3. Selection procedure. We estimate θ by θ̂ = θ̂m̂ where m̂ is any minimizer on M of the
criterion

(2) Crit(m) =

p
∑

j=1

[

‖X(j) − Xθ̂(j)
m ‖2 ×

(

1 +
pen(|mj |)
n − |mj |

)]

,

with the penalty function pen : N → R
+ computed as follows. As in Baraud et al. [3], we define

for any integers d and N the Dkhi function by

Dkhi(d, N, x) = P

(

Fd+2,N ≥ x

d + 2

)

− x

d
P

(

Fd,N+2 ≥ N + 2

Nd
x

)

, x > 0,

where Fd,N denotes a Fisher random variable with d and N degrees of freedom. The function
x 7→ Dkhi(d,N, x) is decreasing and we write EDkhi[d,N, x] for its inverse, see [3] Section 6.1 for
details. Then, we fix some constant K > 1 and set

(3) pen(d) = K
n − d

n − d − 1
EDkhi

[

d + 1, n − d − 1,
(

Cd
p−1(d + 1)(DM + 1)

)−1
]

,
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where DM = max {deg(m) : m ∈ M}.

Size of the penalty. The size of the penalty pen(d) is roughly 2Kd log p for large values of p.
Indeed, we will work in the sequel with collections of models, such that

DM ≤ η
n

2
(

1.1 +
√

log p
)2 , for some η < 1,

and then, we approximately have for large values of p and n

pen(d) . K
(

1 + eη
√

2 log p
)2

(d + 1), d ∈ {0, . . . , DM} ,

see Proposition 4 in Baraud et al. [3] for an exact bound. In Section 3.2, we show that the size
of this penalty is minimal in some sense.

Computational cost. The computational cost of the selection procedure appears to be very high.
For example, if M = Mc

D it increases as p(D+1) with the dimension p. In a future work, we will
propose various strategies to reduce the cardinality of the set M over which the minimization (2)
occurs.

3. Main results

We are not able to derive an upper bound for the MSEP of the estimator θ̂ (except when
M = Mc

D for some D). Nevertheless, next theorem bounds from above the MSEP of a slight

variation θ̃ of θ̂, defined by

(4) θ̃(j) = θ̂(j) 1{‖θ̂(j)‖≤√
p Tn}, for all j ∈ {1, . . . , p} , with Tn = n2 log n.

We note that θ̂ and θ̃ coincide in practice since the threshold level Tn increases very fast with
n, e.g. T20 ≈ 6.107.

In the sequel, we write σ2
j =

(

C−1
j,j

)−1
= Var(X(j) | X(k), k 6= j) and define θm by

‖C1/2(θ − θm)‖2 = min
αm∈Θm

‖C1/2(θ − αm)‖2.
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Theorem 1. Assume that DM = max {deg(m) : m ∈ M} fulfills the condition

(5) 1 ≤ DM ≤ η
n

2
(

1.1 +
√

log p
)2 , for some η < 1.

Then, the MSEP of the estimator θ̃ defined by (4) is upper bounded by

(6) E

[

‖C1/2(θ̃ − θ)‖2
]

≤ c(K, η) min
m∈M







‖C1/2(θ − θm)‖2

(

1 +
pen(DM)

n − DM

)

+
1

n

p
∑

j=1

(pen(|mj |) + K)σ2
j







+ Rn(η, C, θ)

where K is the constant appearing in (3), c(K, η) = K
(K−1)(1−√

η)4
and the residual term Rn(η, C, θ)

(made explicit in the proof) is of order a p2n−4 log n.

The proof of this theorem is delayed to Section 4.2. Below, we discuss the bound (6). We
first emphasize that the factor pen(DM)/(n−DM) behaves like a constant under condition (5)

and then we explain how (6) enables to compare the MSEP of θ̃ with the minimum over M of

the MSEP of θ̂m.

Proposition 4 in Baraud et al. [3] ensures that when DM fulfills Condition (5) we can bound
pen(DM)/(n−DM) by some constant depending on K and η only. Indeed, under Condition (5)
we approximately have for large values of n and p

pen(DM)

n − DM
.

K
(

1 + eη
√

2 log p
)2

n − DM
× η

n

2
(

1.1 +
√

log p
)2 ≍ Kη e2η.

When DM fulfills (5) the MSEP of the estimator θ̂m is bounded from below by

E

(

‖C1/2(θ − θ̂m)‖2
)

≥ ‖C1/2(θ − θm)‖2 +
1

(

1 +
√

η/(2 log p)
)2

p
∑

j=1

|mj |
σ2

j

n
.

Besides, we have
∑p

j=1 σ2
j = ‖C1/2(I − θ)‖2, so there exists some constant c′ depending on K

and η only, such that under Condition (5) we have

E

(

‖C1/2(θ − θ̃)‖2
)

≤ c′
[

log(p) inf
m∈M

E

(

‖C1/2(θ − θ̂m)‖2
)

∨ ‖C1/2(I − θ)‖2

n

]

+ Rn(η, C, θ).

The MSEP of θ̃ thus nearly achieves, up to a log(p) factor, the minimal MSEP of the collection

of estimators
{

θ̂m, m ∈ M
}

.
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3.1. Is Condition (5) optimal? Condition (5) requires that DM remains small compared to
n/(2 log p). We may wonder if this condition is necessary, or if we can hope to handle graphs
with larger degree D. A glance at the proof of Theorem 1 shows that Condition (5) can be

replaced by the weaker condition

(√
DM + 1 +

√

2 log CDM

p−1 + 1/(4CDM

p−1 )

)2

≤ ηn. Using the

classical bound CD
p−1 ≤ (ep/D)D, we obtain that the latter condition is satisfied when

(7) DM ≤ η

6
× n

1 + log p
DM

,

so we can replace Condition (5) by Condition (7) in Theorem 1. Let us check now that we
cannot improve (up to a multiplicative constant) upon (7).

Pythagora’s theorem gives ‖C1/2(θ − θ̂)‖2 = ‖C1/2(I − θ̂)‖2 − ‖C1/2(I − θ)‖2, so there is no

hope to control the size of ‖C1/2(θ − θ̂)‖2 if we do not have for some δ ∈ (0, 1) the inequalities
(8)

(1− δ)‖C1/2(I − α)‖p×p ≤ 1√
n
‖X(I − α)‖n×p ≤ (1 + δ)‖C1/2(I − α)‖p×p for all α ∈

⋃

m∈M
Θm

with large probability. Under Condition (5) or (7), Lemma 1 Section 4 ensures that these
inequalities hold for any δ >

√
η with probability 1 − 2 exp

(

−n(δ −√
η)2/2

)

. We emphasize
next that in the simple case where C = I, there exists a constant c(δ) > 0 (depending on δ only)
such that the Inequalities (8) cannot hold if Mb

D ⊂ M with

D ≥ c(δ)
n

1 + log p
n

.

Indeed, when C = I and Mb
D ⊂ M, the Inequalities (8) enforces that n−1/2X satisfies the

so-called δ-Restricted Isometry Property of order D introduced by Candès and Tao [4], namely

(1 − δ)‖β‖p×1 ≤ ‖n−1/2Xβ‖p×p ≤ (1 + δ)‖β‖p×1

for all β in R
p with at most D non-zero components. Barabiuk et al. [2] (see also Cohen et al. [5])

have noticed that there exists some constant c(δ) > 0 (depending on δ only) such that no n× p
matrix can fulfill the δ-Restricted Isometry Property of order D if D ≥ c(δ)n/(1 + log(p/n)).
In particular, the matrix X cannot satisfies the Inequalities (8) when Mb

D ⊂ M with D ≥
c(δ)n/(1 + log(p/n)).

3.2. Can we choose a smaller penalty? As mentioned before, under Condition (5) the

penalty pen(d) given by (3) is approximately upper bounded by K
(

1 + eη
√

2 log p
)2

(d + 1).
Similarly to Theorem 1 in Baraud et al. [3], a slight variation of the proof of Theorem 1 enables
to justify the use of a penalty of the form pen(d) = 2Kd log(p − 1) with K > 1 as long as DM
remains small (the condition on DM is then much stronger than Condition (5)). We underline
in this section, that it is not recommended to choose a smaller penalty. Indeed, next proposition
shows that choosing a penalty of the form pen(d) = 2(1−γ)d log(p−1) for some γ ∈ (0, 1) leads
to a strong overfitting in the simple case where θ = 0, which corresponds to C = I.
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Proposition 1. Consider three integers 1 ≤ D < n < p such that p ≥ e2/(1−γ) + 1 and
Mb

D ⊂ M. Assume that pen(d) = 2(1 − γ)d log(p − 1) for some γ ∈ (0, 1) and θ = 0. Then,
there exists some constant c(γ) made explicit in the proof, such that when m̂ is selected according
to (2)

P

(

|m̂| ≥ c(γ) min(n, pγ/4)

(log p)3/2
∧ ⌊γD/8⌋

)

≥ 1 − 3(p − 1)−1 − 2e−γ2n/83
.

In addition, in the case where M = Mc
D, we have

P

(

|m̂j | ≥
c(γ) min(n, pγ/4)

(log p)3/2
∧ ⌊γD/8⌋

)

≥ 1 − 3(p − 1)−1 − 2e−γ2n/83
for all j ∈ {1, . . . , p}.

4. Proofs

4.1. A concentration inequality.

Lemma 1. Consider three integers 1 ≤ d ≤ n ≤ p, a collection V1, . . . , VN of d-dimensional
linear subspaces of R

p and a n× p matrix Z whose coefficients are i.i.d. with standard gaussian
distribution. We set ‖ · ‖n = ‖ · ‖n×1/

√
n and

λ∗
d(Z) = inf

v∈V1∪...∪VN

‖Zv‖n

‖v‖p×1
.

Then, for any x ≥ 0

(9) P

(

λ∗
d(Z) ≤ 1 −

√
d +

√
2 log N + δN + x√

n

)

≤ P (N ≥ x) ≤ e−x2/2,

where N has a standard Gaussian distribution and δN =
(

N
√

8 log N
)−1

.

Similarly, for any x ≥ 0

(10) P

(

sup
v∈V1∪...∪VN

‖Zv‖n

‖v‖p×1
≥ 1 +

√
d +

√
2 log N + δN + x√

n

)

≤ P (N ≥ x) ≤ e−x2/2.

Proof. The map Z → (
√

n λ∗
d(Z)) is 1-Lipschitz, therefore the Gaussian concentration in-

equality enforces that

P
(

λ∗
d(Z) ≤ E (λ∗

d(Z)) − x/
√

n
)

≤ P (N ≥ x) ≤ e−x2/2.

To get (9), we need to bound E (λ∗
d(Z)) from below. For i = 1, . . . , N , we set

λi(Z) = inf
v∈Vi

‖Zv‖n

‖v‖ .
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We get from [6] the bound

P

(

λi(Z) ≤ 1 −
√

d

n
− x√

n

)

≤ P(N ≥ x)

hence, there exists some standard Gaussian random variables Ni such that

λi(Z) ≥ 1 −
√

d/n − (Ni)+ /
√

n,

where (x)+ denotes the positive part of x. Starting from Jensen inequality, we have for any
λ > 0

E

(

max
i=1,...,N

(Ni)+

)

≤ 1

λ
log E

(

eλ maxi=1,...,N (Ni)+
)

≤ 1

λ
log

(

N
∑

i=1

E

(

eλ(Ni)+
)

)

≤ 1

λ
log N +

1

λ
log
(

eλ2/2 + 1/2
)

≤ log N

λ
+

λ

2
+

e−λ2/2

2λ
.

Setting λ =
√

2 log N , we finally get

E (λ∗
d(Z)) = E

(

min
i=1,...,N

λi(Z)

)

≥ 1 −
√

d +
√

2 log N + δN√
n

This concludes the proof of (9) and the proof of (10) is similar.

4.2. Proof of Theorem 1. To keep formulaes short, we write henceforth D for DM.

a. From E

[

‖C1/2(θ̃ − θ)‖2
]

to E

[

‖X(θ̂ − θ)‖2
n

]

.

We set ‖ · ‖n = ‖ · ‖n×1/
√

n, λ0 =
(

1 −√
η
)2

,

λ1
j =

‖Xθ(j)‖n

‖C1/2θ(j)‖ and λ∗
j = inf







‖XC−1/2v‖n

‖v‖ : v ∈
⋃

m∈M∗
j,D

Vm
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where Vm = C1/2 < θ(j) > +C1/2Θ
(j)
m and M∗

j,D is the set of those subsets m of {1, . . . , j − 1, j + 1, . . . , p}×
{j} with cardinality D. Then, for any j = 1, . . . , p

E

[

‖C1/2(θ̃(j) − θ(j))‖2
]

= E

[

‖C1/2(θ̂(j) − θ(j))‖21{λ∗
j≥λ0, θ̂(j)=θ̃(j)}

]

+E

[

‖C1/2θ(j)‖21{λ∗
j≥λ0, θ̃(j)=0, λ1

j≤3/2}
]

+E

[

‖C1/2θ(j)‖21{λ∗
j≥λ0, θ̃(j)=0, λ1

j>3/2}
]

+E

[

‖C1/2(θ̃(j) − θ(j))‖21{λ∗
j <λ0}

]

= E
(j)
1 + E

(j)
2 + E

(j)
3 + E

(j)
4 .

Upper bound on E
(j)
1 . Since

C1/2(θ̂(j) − θ(j)) ∈
⋃

m∈M∗
j,D

Vm,

we have

‖C1/2(θ̂(j) − θ(j))‖21{λ∗
j≥λ0} ≤ λ−2

0 ‖X(θ̂(j) − θ(j))‖2
n

and therefore

(11) E
(j)
1 ≤ λ−2

0 E

[

‖X(θ̂(j) − θ(j))‖2
n

]

.

Upper bound on E
(j)
2 . All we need is to bound P

(

λ∗
j ≥ λ0, θ̃(j) = 0, λ1

j ≤ 3/2
)

from above.

Writing λ− for the smallest eigenvalue of C, we have on the event
{

λ∗
j ≥ λ0

}

‖θ̂(j)‖ ≤ ‖C1/2θ̂(j)‖√
λ− ≤ ‖Xθ̂(j)‖n

λ0

√
λ− .

Besides, for any m ∈ M,

Xθ̂(j)
m = Proj

XΘ
(j)
m

(

Xθ(j) + σjε
(j)
)

with ε(j) distributed as a standard Gaussian random variable in R
n. Therefore, on the event

{

λ∗
j ≥ λ0, θ̃(j) = 0, λ1

j ≤ 3/2
}

we have

‖θ̂(j)‖ ≤ ‖Xθ(j)‖n + σj‖ε(j)‖n

λ0

√
λ−

≤ 1.5 ‖C1/2θ(j)‖ + σj‖ε(j)‖n

λ0

√
λ− .
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As a consequence,

P

(

λ∗
j ≥ λ0, θ̃(j) = 0, λ1

j ≤ 3/2
)

≤ P

(

1.5 ‖C1/2θ(j)‖ + σj‖ε(j)‖n

λ0

√
λ− > Tn

√
p

)

≤
{

1 when 3 ‖C1/2θ(j)‖ > λ0

√

pλ− Tn

P

(

2σj‖ε(j)‖n > λ0

√

pλ− Tn

)

else,

≤
{

9 ‖C1/2θ(j)‖2/(λ2
0λ

− pT 2
n) when 3 ‖C1/2θ(j)‖ > λ0

√

pλ− Tn

4σ2
j /(λ2

0λ
− pT 2

n) else.

Finally,

(12) E
(j)
2 ≤ ‖C1/2θ(j)‖2

9 ‖C1/2θ(j)‖2 + 4σ2
j

λ2
0λ

− pT 2
n

.

Upper bound on E
(j)
3 . We note that n

(

λ1
j

)2
follows a χ2 distribution, with n degrees of freedom.

Markov inequality then yields the bound

P
(

λ1
j > 3/2

)

≤ exp
(

− n

2
(9/4 − 1 − log(9/4))

)

≤ exp(−n/5).

As a consequence, we have

(13) E
(j)
3 ≤ ‖C1/2θ(j)‖2 exp(−n/5).

Upper bound on E
(j)
4 . Writing λ+ for the largest eigenvalue of the covariance matrix C, we have

E
(j)
4 ≤ 2E

[(

‖C1/2θ(j)‖2 + ‖C1/2θ̂(j)‖2
)

1{λ∗
j <λ0}

]

≤ 2
(

‖C1/2θ(j)‖2 + λ+pT 2
n

)

P
(

λ∗
j < λ0

)

.

The random variable Z = XC−1/2 is n × p matrix whose coefficients are i.i.d. and have the
standard Gaussian distribution. The condition (5) enforces the bound

√
D + 1 +

√

2 log |M∗
j,D| + δ|M∗

j,D
|

√
n

≤ √
η,

so Lemma 1 ensures that

P
(

λ∗
j < λ0

)

≤ exp (−n(1 −√
η)η/2)

and finally

(14) E
(j)
4 ≤ 2

(

‖C1/2θ(j)‖2 + λ+pT 2
n

)

exp (−n(1 −√
η)η/2) .
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Conclusion. Putting together the bounds (11) to (14), we obtain

(15) E

[

‖C1/2(θ̃ − θ)‖2
]

=

p
∑

j=1

E

[

‖C1/2(θ̃ − θ)‖2
]

≤ λ−2
0 E

[

‖X(θ̂ − θ)‖2
n

]

+ Rn(η, C, θ)

with Rn(η, C, θ) =
∑p

j=1(E
(j)
2 + E

(j)
3 + E

(j)
4 ) of order a p2T−2

n = p2n−4 log n.

b. Upper bound on E

[

‖X(θ̂ − θ)‖2
n

]

. Let m∗ be an arbitrary index in M. Starting from the

inequality

p
∑

j=1

(

‖X(j) − Xθ̂
(j)
m̂ ‖2 ×

(

1 +
pen(|m̂j |)
n − |m̂j |

))

≤
p
∑

j=1

(

‖X(j) − Xθ̂
(j)
m∗‖2 ×

(

1 +
pen(|m∗

j |)
n − |m∗

j |

))

and following the same lines as in the proof of Theorem 2 in Baraud et al. [3] we obtain for any
K > 1

K − 1

K

p
∑

j=1

‖X(θ̂(j) − θ(j))‖2
n

≤
p
∑

j=1



‖X(θ(j) − θ̄
(j)
m∗)‖2

n + R
(j)
m∗ +

σ2
j

n



KU
(j)
m̂j

− pen(|m̂j |)
V

(j)
m̂j

n − |m̂j |







 ,

where for any m ∈ M and j ∈ {1, . . . , p}

Xθ̄(j)
m = Proj

XΘ
(j)
m

(Xθ(j)), E

(

R(j)
m

∣

∣X(k), k 6= j
)

≤ pen(|mj |)
[

‖X(θ(j) − θ̄
(j)
m )‖2

n

n − |mj |
+

σ2
j

n

]

a.s.

and the two random variables U
(j)
mj and V

(j)
mj are independent with a χ2(|mj | + 1) and a χ2(n −

|mj | − 1) distribution respectively. Combining this bound with Lemma 6 in Baraud et al. [3],
we get

K − 1

K
E

[

‖X(θ̂ − θ)‖2
n

]

≤ E
[

‖X(θ − θ̄m∗)‖2
n

]

+

p
∑

j=1

pen(|m∗
j |)





E

[

‖X(θ(j) − θ̄
(j)
m∗)‖2

n

]

n − |m∗
j |

+
σ2

j

n





+ K

p
∑

j=1

σ2
j

n

∑

mj∈Mj

(|mj | + 1)Dkhi

(

|mj | + 1, n − |mj | − 1,
(n − |mj | − 1)pen(|mj |)

K(n − |mj |)

)

,

where Mj = {mj , m ∈ M}. The choice (3) of the penalty ensures that the last term is equal to

K
∑p

j=1 σ2
j /n. We also note that ‖X(θ(j)− θ̄

(j)
m∗)‖2

n ≤ ‖X(θ(j)−θ
(j)
m∗)‖2

n for all j ∈ {1, . . . , p} since
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Xθ̄
(j)
m∗ = Proj

XΘ
(j)
m∗

(Xθ(j)). Combining this inequality with E

[

‖X(θ(j) − θ
(j)
m∗)‖2

n

]

= ‖C1/2(θ(j) − θ
(j)
m∗)‖2,

we obtain

K − 1

K
E

[

‖X(θ̂ − θ)‖2
n

]

≤ ‖C1/2(θ − θm∗)‖2 +

p
∑

j=1

pen(|m∗
j |)
[

‖C1/2(θ(j) − θ
(j)
m∗)‖2

n − |m∗
j |

+
σ2

j

n

]

+ K

p
∑

j=1

σ2
j

n

≤ ‖C1/2(θ − θm∗)‖2

(

1 +
pen(D)

n − D

)

+

p
∑

j=1

(pen(|mj |) + K)
σ2

j

n
(16)

c. Conclusion. The bound (16) is true for any m∗, so combined with (15) it gives (6).

4.3. Proof of Proposition 1. The proof of Proposition 1 is based on the following Lemma.

Let us consider a n × p random matrix Z whose coefficients Z
(j)
i are i.i.d. with standard

Gaussian distribution and a random variable ε independant of Z, with standard Gaussian law
in R

n.

To any subset s of {1, . . . , p} we associate the linear space Vs = span {ej , j ∈ s} ⊂ R
p, where

{e1, . . . , ep} is the canonical basis of R
p. We write Zθ̂s = ProjZVs

(ε), ŝd for the set of cardinality
d such that

(17) ‖Zθ̂ŝd
‖2 = max

|s|=d
‖Zθ̂s‖2.

and we define

Crit′(s) = ‖ε − Zθ̂s‖2

(

1 +
pen(|s|)
n − |s|

)

.

Lemma 2. Assume that p ≥ e2/(1−γ) and pen(d) = 2(1−γ)d log p. We write Dn,p for the largest
integer smaller than

5D/6,
pγ/4

(4 log p)3/2
and

γ2n

512(1.1 +
√

log p)2
.

Then, the probability to have

Crit′(s) > Crit′(ŝDn,p) for all s with cardinality smaller than γDn,p/6

is bounded from below by 1 − 3p−1 − 2 exp(−nγ2/512).

The proof of this lemma is technical and we only give here a sketch of it. For the details, we
refer to Section 4.4.
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Sketch of the proof of Lemma 2. We have

‖Zθ̂s‖2 = ‖ε‖2 − inf
α̂∈Vs

‖ε − Zα̂‖2

= sup
α̂∈Vs

[

2 < ε,Zα̂ > −‖Zα̂‖2
]

.

According to Lemma 1, when |s| is small compare to n/ log p, we have ‖Zα̂‖2 ≈ n‖α̂‖2 with
large probability and then

‖Zθ̂s‖2 ≈ sup
α̂∈Vs

[

2 < ZT ε, α̂ > −n‖α̂‖2
]

=
1

n
‖ProjVs

(ZT ε)‖2.

Now, ZT ε = ‖ε‖Y with Y independent of ε and with N (0, Ip) distribution, so

‖Zθ̂s‖2 ≈ ‖ε‖2

n
‖ProjVs

Y ‖2.

Since max|s|=d ‖ProjVs
Y ‖2 ≈ 2d log p with large probability, we have ‖Zθ̂ŝd

‖2 ≈ 2d log p×‖ε‖2/n
and then

min
|s|=d

Crit′(s) = Crit′(ŝd) ≈ ‖ε‖2

(

1 − 2γd log p

n

)

.

Therefore, with large probability we have Crit′(s) > Crit′(ŝDn,p) for all s with cardinality less
than γDn,p/6.

Proof of Proposition 1. We start with the case Mb
D ⊂ M. When |m̂| ≤ γDn,p−1/6, we have in

particular |m̂1| ≤ γDn,p−1/6. We build m̃ from m̂ by replacing m̂1 by a set m̃1 ⊂ {1}×{2, . . . , p}
which maximizes ‖Xθ̂

(1)
m̃ ‖2 among all the subset m̃1 of {1}×{2, . . . , p} with cardinality Dn,p−1. It

follows from Lemma 2 (with p replaced by p−1) that the probability to have Crit(m̂) ≤ Crit(m̃)
is bounded from above by 3(p − 1)−1 + 2 exp(−nγ2/512). Since m̃ ∈ Mb

D, the first part of
Proposition 1 follows.

When M = Mc
D, the same argument shows that for any j ∈ {1, . . . , p} the probability to

have |m̂j | ≤ γDn,p−1/6 is bounded from above by 3(p − 1)−1 + 2 exp(−nγ2/512).

4.4. Proof of Lemma 2. We write D for Dn,p and Ω0 for the event

Ω0 =

{

‖Zθ̂ŝD
‖2 ≥ 2D(1 − γ/2)‖ε‖2

n log p and

‖Zθ̂s‖2 ≤ 2 |s| (2 + γ)‖ε‖2
n log p, for all s with |s| ≤ D

}

.

We will prove first that on the event Ω0 we have Crit′(s) > Crit′(ŝDn,p) for any s with cardinality
less than γDn,p/6 and then we will prove that Ω0 has a probability bounded from below by
1 − 3p−1 − 2 exp(−nγ2/512).

We write ∆(s) = Crit′(ŝD)−Crit′(s). Since we are interested in the sign of ∆(s), we will still
write ∆(s) for any positive constant times ∆(s). We have on Ω0

∆(s)

‖ε‖2
≤
(

1 − 2 log p

n
(1 − γ/2)D

)(

1 +
pen(D)

n − D

)

−
(

1 − 2 log p

n
(2 + γ)|s|

)(

1 +
pen(|s|)
n − |s|

)

.
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We note that pen(|s|)/(n − |s|) ≤ pen(D)/(n − D). Multiplying by n/(2 log p) we obtain

∆(s) ≤ (1 − γ)D

(

1 +
D − 2(1 − γ/2)D log p

n − D

)

− (1 − γ/2)D

−(1 − γ)|s| + (2 + γ)|s| + (2 + γ)|s|pen(D)

n − D

≤ (1 − γ)D

(

1 +
D − 2(1 − γ/2)D log p + 2(2 + γ)|s| log p

n − D

)

− (1 − γ/2)D + (1 + 2γ)|s|.

When p ≥ e2/(1−γ) and |s| ≤ γD/6 the first term on the right hand side is bounded from above
by (1 − γ)D, then since γ < 1

∆(s) ≤ (1 + 2γ)γD/6 − γD/2 < 0.

We will now bound P (Ωc
0) from above. We write Y = ZT ε/‖ε‖ (with the convention that

Y = 0 when ε = 0) and

Ω1 =







2

2 + γ
≤ ‖Zα̂‖2

n

‖α̂‖2
≤ (1 − γ/2)−1/2 , for all α̂ ∈

⋃

|s|=D

Vs







,

Ω2 =

{

max
|s|=D

‖ProjVs
Y ‖2 ≥ 2(1 − γ/2)1/2D log p

}

,

Ω3 =

{

max
i=1,...,p

Y 2
i ≤ 4 log p

}

.

We first prove that Ω1 ∩ Ω2 ∩ Ω3 ⊂ Ω0. Indeed, we have on Ω1 ∩ Ω2

‖Zθ̂ŝD
‖2 = max

|s|=D
sup
α̂∈Vs

[

2 < ε,Zα̂ > −‖Zα̂‖2
]

≥ max
|s|=D

sup
α̂∈Vs

[

2 < ZT ε, α̂ > −n(1 − γ/2)−1/2‖α̂‖2
]

≥ (1 − γ/2)1/2 ‖ε‖2

n
max
|s|=D

‖ProjVs
Y ‖2

≥ 2D (1 − γ/2) ‖ε‖2
n log p.

Similarly, on Ω1 we have ‖Zθ̂s‖2 ≤ ‖ε‖2
n‖ProjVs

Y ‖2 × (2 + γ)/2 for all s with cardinality less

than D. Since ‖ProjVs
Y ‖2 ≤ |s|maxi=1,...,p(Y

2
i ), we have on Ω1 ∩ Ω3

‖Zθ̂s‖2 ≤ 2(2 + γ)|s| ‖ε‖2
n log p,

for all s with cardinality less than D and then Ω1 ∩ Ω2 ∩ Ω3 ⊂ Ω0.

To conclude, we bound P(Ωc
i ) from above, for i = 1, 2, 3. First, we have

P(Ωc
3) = P

(

max
i=1,...,p

Y 2
i > 4 log p

)

≤ 2p P(Y1 ≥ 2
√

log(p)) ≤ 2p−1.
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To bound P(Ωc
1), we note that (1 − γ/2)−1/4 ≥ 1 + γ/8 and

√

2/(2 + γ) ≤ 1 − γ/8 for any

0 < γ < 1, so Lemma 1 ensures that P(Ωc
1) ≤ 2e−nγ2/512. Finally, to bound P(Ωc

2), we sort the
Y 2

i in decreasing order Y 2
(1) > Y 2

(2) > . . . > Y 2
(p) and note that

max
|s|=D

‖ProjVs
Y ‖2 ≥ DY 2

(D).

Furthermore, we have

P

(

Y 2
(D) ≤ 2(1 − γ/2)1/2 log p

)

≤
(

D − 1

p

)

P

(

Y 2
1 ≤ 2(1 − γ/2)1/2 log p

)p−D+1

≤ pD−1

(

1 − p
√

1−γ/2

4(1 − γ/2)1/4
√

2 log p

)p−D+1

,

where the last inequality follows from p ≥ e2/(1−γ) and Inequality (60) in Baraud et al. [3].
Finally, we obtain

P

(

Y 2
(D) ≤ 2(1 − γ/2)1/2 log p

)

≤ p−1 exp

(

D log p − (p − D + 1)p
√

1−γ/2

4(1 − γ/2)1/4
√

2 log p

)

≤ p−1,

where the last inequality comes from D ≤ pγ/4/(4 log p)3/2. To conclude P(Ωc
2) ≤ p−1 and

P (Ωc
0) ≤ 3p−1 + 2 exp(−nγ2/512).
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Université de Nice Sophia-Antipolis, Laboratoire J-A Dieudonné, Parc Valrose, 06108 Nice cedex
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