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ABSTRACT

This paper presents an approach dedicated to accurately track one or several semantic objects in a video se-
quence. The accurate tracking of the partition object boundary is obtained by a label prediction. This prediction
is performed thanks to motion vectors obtained with two di�erent block-matching uses. In the predicted parti-
tion, a local segmentation is necessary only where matching failed and close to the predicted boundaries, in order
to get the most accurate boundaries. This local segmentation is then followed by a classi�cation step. During
the classi�cation a backward projection is used to assign or not a region to a given object.
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1. INTRODUCTION

The development of object-based video manipulation needs more and more techniques to accurately extract and
track video objects in natural video sequences. Normally the video object extraction includes two steps: the
object de�nition and the object tracking. We suppose in this paper that the video object de�nition is already
performed and we focus on a method to track with accuracy the object during its evolution in the video sequence.

Many methods use homogeneous gray scale/color as a criterion to track regions. Some of them are charac-
terized by a forward projection7, 11, 13. Once the partition P (t) of the frame F (t) is available, this partition is
motion compensated and spatially adjusted to obtain the next partition P (t + 1). In7, 13, the video object is
tracked by updating its boundary in each new frame. The weak point of these methods is their diÆculties to
deal with disconnected video objects or non-rigid motions. In11, 15, the authors de�ne a video object as a group
of spatial-homogeneous regions and track all of them. The main drawback of this method lies in the fact that
very small regions cannot be used in the de�nition of the object. This constraint may entail some diÆculties to
accurately de�ne the object on its boundary.

To preserve the object boundary accuracy during the tracking, we have to consider in each new frame all
the physical edges (spatial discontinuities). Indeed the video object boundary is located on these edges. Several
methods suggest to �rst apply an independent spatial segmentation on each new frame. Then they classify each
segmented homogeneous region according to the previous video object partition1, 5, 6, 10, 14. All these methods
require an over-segmentation to keep any physical edges of meaningful entities.

Our approach combines forward projection, local segmentation and classi�cation. It takes the advantage of
an over-segmentation close to the predicted object boundary, to reduce the calculation time and to increase the
reliability of the boundary. We present in the next section a brief description of our method. We develop the
key points of the method in sections 3 and 4. Some results are then provided in section 5 before conclusions.

The �rst author wants to thank Prof. M.T. Sun (Information Processing Laboratory, Department EE, University of
Washington, Seattle) and Dr. C. Gu (Microsoft Corporation, Redmond) for various interesting discussions and fruitful
cooperation during his stay at the Information Processing Laboratory.



2. OVERVIEW OF THE METHOD

2.1. Motion estimation and label prediction

Let's consider two successive frames (�g 1.a and .b) and the already known object partition P (t) of the �rst one
(�g 1.c). In our example, the partition consists of two labels that de�ne the object pixels and the rest of the
scene (background).

A motion estimation is performed between the original frames F (t) and F (t + 1). Like in10, it is based on
the block-matching algorithm. In order to increase the number of matches and their quality, we combined two
block-matching processes (see section 3).

The motion vectors obtained are applied to the known partition P (t) to predict as much as possible a label
for each pixel in F (t+1), that is to build a �rst approximation of P (t+1). Figure 1.d shows the predicted labels
in F (t+ 1). Black pixels stand for non predicted pixels (unlabeled areas).

By predicting labels in F (t + 1) we obtain an approximation of the object boundary. Pixels close to this
approximate boundary must be re-segmented to ensure the most accurate object contour. These pixels are
marked unlabeled. Besides, to be less sensitive to the eventual motion estimation errors, unlabeled areas are
dilated (�g 1.e).

Thanks to this label prediction a large number of pixels are already (correctly) classi�ed. We will present in
the next paragraph how the unlabeled areas are segmented to �nally extract the entire video object in F (t+1).

a) frame F (t) b) frame F (t+ 1)

c) object partition d) predicted labels in
P (t) F (t+ 1) by motion

compensation

e) �nal predicted labels
in F (t+ 1)

Figure 1. Label prediction (black pixels are unlabeled pixels)



2.2. Local segmentation

This step is performed after the label prediction. Its goal is to over-segment in homogeneous regions the re-
maining unlabeled areas in F (t+1) (pixels without predicted label). During the local segmentation process, the
neighborhood of the unlabeled pixels is involved as well, so that unlabeled pixels may easily re-stick to the exist-
ing partition. In this way, the segmentation step allows many tiny regions to be labeled (i.e. directly classi�ed
either as object or as background). Figure 2.a shows the result of the over-segmentation on the unlabeled areas
de�ned in �gure 1.e. The spatial segmentation method used is more detailed in Section 4.

2.3. Classi�cation

Even after segmentation, some regions still remain unlabeled. The goal of the classi�cation is to give each of
them either the label of an object or the label of the background: each region still unlabeled is projected on
the previous object partition P (t) to be assigned to the object or to the background5, 6, 14. Like in6, we use a
simple translational motion model to estimate the motion vector of a region. We classify the region according
to the label recovered in majority in P (t) after the projection. This classi�cation process provides a �nal object
partition P (t+ 1) for the frame F (t+ 1). A simple morphological post-processing to smooth the boundary and
to improve the visual quality is then applied to the �nal partition (�g 2.b).

a) local segmentation b) �nal object partition
result P (t+ 1)

Figure 2. Next object partition building (in (a) unlabeled regions are represented by di�erent dark gray levels)

3. ABOUT THE MOTION ESTIMATION METHOD

Our label prediction is based on the well known block-matching algorithm used in many video coding applications.

3.1. Block-matching algorithm

In order to estimate motion between two frames F1 and F2, this algorithm manipulates square blocks of several
pixels (8� 8 pixels for QCIF format videos). The motion vector of a speci�c block in the frame F1 is obtained
by searching the best matching block within a search area in F2. The matching criterion used is the Sum of
Absolute Di�erences (SAD). The SAD of two N �N blocks X and Y (X 2 F1, Y 2 F2) is de�ned as:

SAD(X;Y ) =

NX
i=1

NX
j=1

jX(i; j)� Y (i; j)j (1)

For a given source block, the best matching block is the block which minimizes the SAD within the search
area. Two blocks match or not according to the gray level repartition of their pixels. If they match, it is assumed
that they correspond to the same entity in the two frames to infer a motion vector. We have to notice that motion
vectors obtained by matching blocks that include parts of di�erent regions (i.e. that include discontinuities) are
more reliable than those obtained by matching blocks mainly composed by homogeneous gray level values.

A particularity that makes both the strength and the weakness of the block-matching technique is the
assumption that all pixels within a block undergo a uniform motion, namely a translation. This hypothesis



may be restrictive when rotations occur for instance, or for blocks that include several regions which might have
di�erent motions. But most of the time, since motion in videos is low, heterogeneous blocks manage to match
correctly. Besides that, blocks which don't satisfy at all this hypothesis can be rejected because they will only
match with a high SAD.

Many algorithms performing block-matching can be found in the literature (a recent and synthetic review
can be found in3). We use the Block Sum Pyramid Algorithm (BSPA)8. It is based on a fast motion estimation
method called the Successive Elimination Algorithm (SEA)9, which achieves the same estimation accuracy as
the Full Search Algorithm (FSA) while requiring less computation time.

3.2. Prediction by regular block-matching

Let us consider two successive frames F (t) and F (t+1). We can build a prediction of F (t+1) from F (t) with the
regular backward block-matching between F (t+ 1) and F (t): according to a regular grid, the algorithm divides
F (t + 1) into square source blocks of pixels. For each source block, a search is conducted within a con�ned
window in F (t) to locate the best matching block. Then a prediction of F (t+1) is approached by replacing each
source block by the corresponding one from F (t).

Of course, some di�erences (called prediction errors) may occur between the real F (t+1) and its prediction.
Backward is preferred to forward block-matching since it produces more simple predictions: every source pixel
gets one and only one prediction.

3.3. Local block-matching principle

During the regular block-matching, the division into source blocks of F (t+ 1) is classically applied on a regular
grid. In all our experiments, using a subset of source blocks centered on the edges of the objects increased the
quality of the edge prediction. We call this new block-matching the local block-matching.

This matching is still performed using two successive original images F (t) and F (t + 1). Only the choice of
the blocks to process and their localization is di�erent. In order to locate the blocks over the edges of the objects,
both the original source image and a good localization of its edges (in the form of a partition for instance) are
required.

Homogeneous blocks are not processed. To accurately locate edge blocks, the borders of the partition are
traversed and blocks are regularly disposed along them4. To increase the possibility of each part of the boundary
to be matched, the source blocks may slightly be superimposed (�gure 3).

a) original frame b) partition of the frame c) location of the source blocks

Figure 3. Example of how blocks are located for the local block-matching

3.4. Local vs. global block-matching

An objective comparison is necessary to show that local block-matching provides a better edge prediction than
regular block-matching. With two successive frames, measuring the quality of the two predictions close to the
region edges is a good way to make this comparison. Moreover, it can be performed over the whole sequence to
give an idea of the quality variation according to the sequence content.

In order to compare the two methods in the same experimental conditions, only block-matching in backward
mode is used. This implies that each F (t+1) edge set must be known a priori so that the blocks may be located



correctly in the case of the local block-matching. For this reason, each frame F (t+1) is independently spatially
segmented in homogeneous regions to provide the edge set location.

A �rst prediction P1 using the regular block-matching is performed. Only blocks containing edges in F (t+1)
will be taken into account for the comparison.

A second prediction P2 is achieved using the local block-matching (�gure 4).

The quality comparison is performed by calculating the mean square error close to edges between the original
frame F (t+ 1) and each of the two predictions P1 and P2. In F (t+ 1), P1 and P2, pixels that are involved in
the computation of the error are all the couples of pixels that are located across the edge set.

a) partition in homogeneous b) source blocks layout
regions (in false color)

Figure 4. Example of local blocks location used for the comparison of the 2 block-matching methods

Figure 5 shows the results of di�erent comparisons by using independently each block-matching. On all the
sequences processed, the error is lower or equal with the local block-matching. Besides, the more important the
motion in the sequence, the higher the variation between the two errors is.

3.5. Label prediction

In order to predict partitions, the motion vectors obtained during the original image block-matching are then
applied to the corresponding blocks of the partition itself to predict the next partition.

In other words, P (t + 1) is predicted with blocks of P (t) using motion vectors computed between F (t) and
F (t+1). Finally, the partition is predicted block by block. Each block is either homogeneous (all its pixels have
the same label) or not (the block is located on the border of two or more objects).

In our method we decided to combine the regular and local block-matching to predict labels. The regular
block-matching is used in backward mode to predict as much as possible a label for each pixel in F (t+1). Then
a local block-matching provides a more accurate predicted label for the pixels close to the video object boundary.
Since the local block-matching is performed according to the video object boundary de�ned in the partition P (t),
that means, we have to use this algorithm in forward mode.

During the motion estimation in order to avoid attributing a wrong motion vector to a block, a similarity
threshold is used: the motion vector obtained with two blocks that provide the minimum SAD may indeed be
used for the prediction if the value of the SAD is less than this threshold. Otherwise, the motion vector cannot
be used. This entails some non predicted zones. We �x the same similarity threshold for the two kinds of
block-matching.

Figure 6 highlights the label prediction robustness in case of a strong motion. To illustrate it, we voluntarily
achieved the process with two frames that are not successive, namely F (t) and F (t+3) (�g 6.a and .c). We apply
our method to predict labels in the second frame according to the available partition of the �rst one. We provide
as an intermediate result the prediction obtained by using only the regular block-matching (�g 6.d). Figure 6.e
shows the improvement obtained by using in addition the local block-matching. Indeed this method increases
both the number of matches close to the object boundary and their quality.

This prediction is then processed to be less sensitive to estimation errors (�g 6.f) and used to create the
desired object partition (�g 6.g).
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a) Foreman sequence b) Hall Monitor sequence
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c) Mother&Daughter sequence

Figure 5. Mean square error on edges over 80 frames for three di�erent sequences

4. ABOUT THE SEGMENTATION METHOD

The irregular pyramid12 can be used to spatially segment a whole frame or just some parts of it. This is a
particular region growing segmentation technique. Contrary to the watershed algorithm5, 10, it does not need
any initial markers. Its data structure is dedicated to its particularities: each level of the pyramid is represented
both with an adjacency graph and a partition.

Once built, the pyramid is a stack of partitions of the original image2, of decreasing resolution. Each new
level is obtained by merging in parallel similar adjacent regions. The pyramid construction stops when no more
adjacent regions can merge according to the similarity criterion. Its graph representation is well suited both to
re-stick a set of pixels to a main partition and to segment any arbitrary-shape areas.

In our case the similarity criterion is related to the luminance and chrominance components. The use of the
color information ensures that the �nal regions present color homogeneity. Two adjacent regions are considered
similar if their distance in color is lower than a �xed threshold (color threshold). The distance is de�ned as:



a) frame #111 b) object partition #111 c) frame #114

d) predicted labels by e) predicted labels by f) �nal predicted labels g) object partition #114
regular block-matching regular and local in frame #114 after segmentation

block-matching

Figure 6. Label prediction robustness

d(R1; R2) =

q
(y1 � y2)

2 + 
:[(u1 � u2)
2 + (v1 � v2)

2] (2)

where (yi; ui; vi) represents the Y UV color components of the region Ri. 
 is a normalization coeÆcient
used to compensate the di�erence of scale between the luminance component and the two chrominances. It is
automatically calculated on the �rst frame according to the width of its histograms:


 = min(
ymax � ymin

umax � umin
;
ymax � ymin

vmax � vmin
) (3)

Over-segmentation is necessary to keep very homogeneous regions and to avoid loss of meaningful edges.

In our approach the spatial segmentation occurs in two cases:

(i) to �ll areas of the image that could not be predicted: many reasons may explain what happened between
the two frames, mainly: a motion too strong for the block-matching algorithm, a local strong change or deforma-
tion, the appearance of an object. According to the similarity criterion, the corresponding region may stick to
a neighboring object (in other words the region is absorbed by the object). Obviously, the pixels of this region
inherit the object label.

If the similarity criterion does not allow the fusion of the region with any object, the region is considered as
unlabeled.

(ii) to �ll the narrow strip of pixels located over the object boundaries. Again, the segmentation can decide
to stick a pixel to a neighboring object or to create an unlabeled region.

Unlabeled regions are processed in the classi�cation step (section 2.3).



5. RESULTS

In this section we present some results obtained on four MPEG sequences in the QCIF format: Carphone,
Foreman, Coastguard and Mother&Daughter. For these sequences the initial object partitions (�g 7.e, �g 8.e, �g
9.e and �g 10.a) are manually obtained with an interactive user interface. The main segmentation parameters
are: color threshold = 7 levels of the components and the minimum size for a region: 5 pixels. The same set of
parameters is used for all the results.

Figure 7 and 8 show the accurate tracking of a non-rigid object. Figure 9) presents the tracking of an object
composed by a large number of small homogeneous regions. We can observe in these results the robustness of
our method to track edges that are poorly contrasted on the video object boundary (cf edges between the boat
extremities and the water).

Last result (�gure 10) gives the tracking result of several objects initially de�ned in the �gure 10.a.

Those results were obtained on a 1 GHz Pentium PC. Each frame is processed in less than one second.

6. CONCLUSION

The label prediction step provides several advantages: �rstly, a large percentage of the image surface can be
tracked as is, from frame to frame, with a high con�dence rate. Secondly, in the case of object appearance, lack
of good matches clearly indicates which areas could be concerned. Thirdly, it reinforces the tracking of the less
contrasted parts of the object boundary.

The local segmentation reduces the calculation time. Indeed the spatial segmentation is applied on the next
frame only where it is necessary. It obliges edges to be accurately updated / localized within a restricted area.
It also limits the number of regions which need the classi�cation by the backward projection.

The method can also be used to track several objects. The graph structure induced by the irregular pyramid
is a powerful way to represent the interaction of the objects that evolve in the scene.

At the moment, we have limited our work on video sequences in which discovered areas can be segmented
correctly using only the spatial homogeneity information. In the future, we will extend this method to take into
account new appearing objects, and to increase the robustness to deal with discovered areas which can contain
new elements of the object. This treatment will be done by using information from next frames.
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a) frame #50 b) frame #60 c) frame #70 d) frame #80

e) object #50 f) object #60 g) object #70 h) object #80

Figure 7. Non-rigid object tracking in Carphone sequence (First row presents the original frames and second row shows
the video object extracted)



a) frame #70 b) frame #80 c) frame #100 d) frame #110

e) object #70 f) object #80 g) object #100 h) object #110

Figure 8. Non-rigid object tracking in the Foreman sequence (First row presents the original frames and second row
shows the video object extracted)

a) frame #230 b) frame #240 c) frame #250 d) frame #260

e) object #230 f) object #240 g) object #250 h) object #260

Figure 9. Heterogeneous object tracking in Coastguard sequence (First row presents the original frames and second row
shows the video object extracted)



a) object partition #225

b) frame #225 c) frame #235 d) frame #245 e) frame #255

f) VO1 #225 g) VO1 #235 h) VO1 #245 i) VO1 #255

j) VO2 #225 k) VO2 #235 l) VO2 #245 m) VO2 #255

n) VO3 #225 o) VO3 #235 p) VO3 #245 q) VO3 #255

r) VO4 #225 s) VO4 #235 t) VO4 #245 u) VO4 #255

v) VO5 #225 w) VO5 #235 x) VO5 #245 y) VO5 #255

Figure 10. Several objects tracked in Mother&Daughter sequence (Second row presents the original frames, next rows
show the video objects extracted)


