Synthesis of fractional Laguerre basis for system approximation

Abstract : Fractional differentiation systems are characterized by the presence of non-exponential aperiodic multimodes. Although rational orthogonal bases can be used to model any $L_2[0, \infty[$ system, they fail to quickly capture the aperiodic multimode behavior with a limited number of terms. Hence, fractional orthogonal bases are expected to better approximate fractional models with fewer parameters. Intuitive reasoning could lead to simply extending the differentiation order of existing bases from integer to any positive real number. However, classical Laguerre, and by extension Kautz and generalized orthogonal basis functions, are divergent as soon as their differentiation order is non-integer. In this paper, the first fractional orthogonal basis is synthesized, extrapolating the definition of Laguerre functions to any fractional order derivative. Completeness of the new basis is demonstrated. Hence, a new class of fixed denominator models is provided for fractional system approximation and identification.
Type de document :
Article dans une revue
Automatica, Elsevier, 2007, 43 (9), pp.1640-1648. 〈10.1016/j.automatica.2007.02.013〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger
Contributeur : Rachid Malti <>
Soumis le : samedi 20 octobre 2007 - 11:09:08
Dernière modification le : vendredi 16 février 2018 - 19:10:01
Document(s) archivé(s) le : dimanche 11 avril 2010 - 23:24:01


Fichiers produits par l'(les) auteur(s)



Mohamed Aoun, Rachid Malti, François Levron, Alain Oustaloup. Synthesis of fractional Laguerre basis for system approximation. Automatica, Elsevier, 2007, 43 (9), pp.1640-1648. 〈10.1016/j.automatica.2007.02.013〉. 〈hal-00180684〉



Consultations de la notice


Téléchargements de fichiers