N
N

N

HAL

open science

A practical approach for robust and flexible vehicle
routing using metaheuristics and Monte Carlo sampling

Kenneth Sorensen, Marc Sevaux

» To cite this version:

Kenneth Soérensen, Marc Sevaux. A practical approach for robust and flexible vehicle routing using
metaheuristics and Monte Carlo sampling. 2007. hal-00180641

HAL Id: hal-00180641
https://hal.science/hal-00180641

Preprint submitted on 19 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00180641
https://hal.archives-ouvertes.fr

A practical approach for robust and flexible
vehicle routing using metaheuristics and Monte
Carlo sampling

Kenneth $renseh, Marc Sevaux

Abstract

In this paper, we investigate how robust and flexible solutions of a nunfber o
stochastic variants of the capacitated vehicle routing problem can be abtdine
this end, we develop and discuss a method that combines a sampling basethpp
to estimate the robustness or flexibility of a solution with a metaheuristic optimiza-
tion technique. This combination allows us to solve larger problems with more com-
plex stochastic structures than traditional methods based on stochastarpnoigg.
It is also more flexible in the sense that adaptation of the approach to more com-
plex problems can be easily done. We explicitly recognize the fact that theate
maker’s risk preference should be taken into account when choosiiist or flex-
ible solution and show how this can be done using our approach.

Key words : stochastic vehicle routing, robustness, flexibility, Monte Carlo sam-
pling, metaheuristics, memetic algorithm

1 Robust and flexible vehicle routing

The objective of vehicle routing problems is to determine d¢inder in which to visit
a spatially distributed set of customers using a set of ehiso that the total travel cost
(distance, time) is minimized. Standard vehicle routingrfolations however, assume
that all data concerning customer demand, travel costsaetcknown with perfect cer-
tainty at design time. For many reasons, e.g. the unceytegfdated to traffic conditions,
these assumptions are unwarranted in a large number ofqalesituations. As a result,
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a number of vehicle routing formulations designed to fioloustsolutions have been de-
veloped. Three types of such formulations, commonly refeto asstochastic vehicle
routing problemscan be distinguished: problems with stochastiwel times(e.g. Lam-
bert et al. [1993]), problems with stochastiemandge.g. Stewart and Golden [1983]),
and problems with stochastiustomersi.e. in which each customer has a certain prob-
ability of requiring service (e.g. Bertsimas [1992]). Foruavey, we refer to Gendreau
et al. [1996].

For stochastic problemsybustor flexiblesolutions are required. Consistent with the
definitions found in the literature (see e.g. Kouvelis andX07], Mulvey et al. [1995],
Roy [1998], Vincke [1999], Dias and @haco [1999], Branke [2001]), we call a solution
to a stochastic optimization problemwbustif it has a high quality regardless of the actual
realization of the stochastic parameters. In other wordslation that consistently has
a high performance across all possible outcomes of the astichparameters, is called
robust. Usually, stochastic optimization algorithms rapé to find the solution that has
either the besexpectedjuality or the bestvorst-casequality over all potential outcomes
of the stochastic parameters. In many cases however, &sobain be (partially) changed
once the actual values of the stochastic parameters beaumaank In this case, a solution
is preferred that can be successfully adapted to any réalizaf the stochastic parame-
ters. Such a solution is calldxible In other words, dlexiblesolution is one that has
a high quality after adaptation to the outcomes of the stetah@arameters, whereas a
robustsolution is one that has a high quality without adaptatiotinéostochastic parame-
ters. In the remainder, we will call the procedure that isduseadapt the solution to the
actual values of the stochastic parametenespair procedure.

Several problems arise with these methods, that inhibit tiee in real-life vehicle
routing applications. First, most of the methods exactmethods, implying that they
are unable to solve problems of realistic size. Indeed, disated by Birge [1997], the
complexity of stochastic programs grows proportionallyite number of possible reali-
sations of the stochastic parameters, which in turn growsmentially with the number
of stochastic parameters. Because in realistic cases thiberis usually very large or
even infinite (in the case of continuous distributions),yorgry small problems can be
solved to “optimality”. To partially overcome this problem part of the stochastic pro-
gramming literature has fused on methods that use some foMoote Carlo sampling
of the stochastic parameters. For stochastic linear pnogiiag problemsstochastic de-
compositiorfHigle and Sen, 1991] anidhportance samplinginfanger, 1994] have been
developed. For discrete stochastic problems, Norkin ¢1888a,b] develop a sampling
branch-and-bound. Whereas these methods use samplingeaenlifsteps of the op-
timization method to estimate e.g. function values, shenple average approximation
method[Kleywegt et al., 2001] uses sampling to generate a set opkastenarios and
then attempts to optimize the corresponding determinetpected-value problem. This
method has been successfully applied to supply chain dgsimslems [Goetschalckx
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et al., 2001] and routing problems [Verweij et al., 2003],caug others.

A second drawback to traditional stochastic programminthous is the fact that they
make heavy use of the specific stochastic structure of thelgarothey consider and are
very difficult to adapt to other problems. Thirdly, almost @gorithms developed for
stochastic routing attempt to find the solution with the wgiiexpected valueAlthough
the average performance of a solution is certainly an ingmbradication of its robustness,
it does not take into account the risk-preference of thesitmtimaker.

In this paper, we develop a method that is able to overconsetheblems. We adopt
a pragmatic approach to stochastic optimization and ajmaie the stochastically opti-
mal solution on two levels. First, we use a sampling-basgdageh to quickly estimate
the robustness of a solution. This allows us to quickly antduianeously evaluate both
average and worst-case performance of a solution, but noon@leccated measures of ro-
bustness can be incorporated. Our sampling-based appatshallows us to evaluate
solutions of problems with many stochastic parametersoi@#yg, we use a metaheuristic
to find the solution with the best approximate robustnessadheristic, which allows us
to solve large problems. Our approach adapts a metahedast deterministic problem
by replacing its evaluation function by a so-calletiust evaluation functian

2 Problem description and deterministic solution method

The CVRP is defined on an undirected graph= (V, E) with a set of node$” =
{0,1,...,n}. Node O corresponds to the depot, that has a set of identtatles of
capacity) and maximal travel cost. Nodes 1 to: represent a set of spatially distributed
customers, the demand of which is givendyy The travel cost between customeand
customer; is given byc;;, the weight of the edge between nodand node;j. The
objective of the deterministic VRP is to find a set of minimurtat@ost routes that have
the following properties: (1) each route begins and endseatepot, (2) each customer
is visited exactly once, (3) the capacity and maximal tragst of the vehicles is not
exceeded.

To solve this problem, we have developed a [RM, or menetic algorithm with pop-
ulation management. A MM is a memetic algorithm (a GA hybridised with local
search) that uses distances to measure and control theitlivefr a small population.
This allows to maintain diversity in the population whilegkgng the size of the popula-
tion small. For a more elaborate description of M, we refer to 8rensen and Sevaux
[2005].

In our MA|PM, solutions are represented as a string of customa&ttsout trip delim-
iters S = 515, ...5,. When necessary (e.g. to calculate their objective functadue)
they are decoded optimally using thglit decoding procedurBy Prins [2004]. This pro-
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cedure finds the optimal points at which to split the soluiida tours so that the resulting
decoded solution is feasible and the total travel cost isTaed. It makes use of an aux-
iliary directed weighted grapi = (X, F, W). The vertex sefX containsn + 1 nodes
(wheren is the number of customers served), labelled from O (the iépa.

The edge sef’ is constructed as follows. An eddé j) from vertexi to vertex
(¢ < j) is added when a trip containing customgrs, to S; is feasible, i.e. if

J
k=it1
and
Jj—=1 J
Wij = Cosppy + D €850 +Cs0+ Y €5, < C. (2)
k=it1 k=it1

The weightw;; of the arc(i, j) is equal to the sum of the travel distances covered
in the trip0 — S,y — Sipe — ... — §; — 0, plus the sum of drop costs in this
trip. The minimum-cost path from vertex O to vertexn H gives the shortest set of trips
corresponding to this encoding. If more than one min-cost paists, each of these paths
will give a set of trips with equal total length. Since thegnd/ contains only positive
weights and no circuits, the shortest path can be efficiasglgulated using Bellman’s
algorithm [Bellman, 1958].

A second procedure used heavily by our N#M for the CVRP is a distance mea-
sure based on the edit distance. Given three possible egliatigns (add character, re-
move character and substitute character), the edit dist4act) is defined as the minimal
number of edit operations required to transform a strimgto another string. The edit
distance is heavily studied in the literature. A simple dyi@programming algorithm
[Wagner and Fischer, 1974] calculates this measut¥itt) wheren is the length of both
strings. Other, more efficient algorithms have been deesl¢forensen, 2003].

Vehicle routing solutions can be regarded as sets of streaysh string representing a
tour. As tours have no direction, each string may be revershd distance measure for
the CVRP developed indensen [2003] calculates the minimal number of edit opmTat
required to transform a VRP solution into another one, kegpito account that both
solutions consist of a set of reversable strings. This idpnassigning tours from the
first solution to the second one so that the total number afired edit operations is
minimized.

Given two solutionss andt havingm andn trips respectively, the distance measure
constructs a square matri¥ of sizemax(m,n). Each column and each row represents
a trip of s andt respectively. Empty trips are added to the solution with gshllest
number of trips to give both solutions an equal number ostripell (i, j) of M contains
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the minimum ofd(s;, t;) andd(s;,t;), wheres; is thei-th trip of solutions and?; is the
reversedj-th trip of solutiont. A linear assignment problem is then calculated to find the
matching of trips in solution to trips in solutiont. The cost of the assignment problem

is the distance between the two solutions.

In the MA|PM, the distance measure is used fopulation managemeim order to
maintain the diversity of a small population of high-qualihdividuals and overcome
problems of premature convergence. Before a (candidateli@olis added to the popu-
lation, the algorithm checks to see whether it satisfiepthmulation diversity criterion
i.e. whether it is sufficiently different from all other meenis of the population. This is
done by measuring the so-calldatance to the populatign.e. the minimum distance
of the candidate solution to any solution already in the petpan. The solution cannot
be added until its distance to the population is greater thaequal to the value of the
population diversity parameteh. This value can be used to control the diversity of the
population as an increase &f will tend to increase population diversity, while a small
value will tend to decrease it. Intensification and divetatfion phases can be alternated
by setting the value o\ to appropriate levels [@ensen and Sevaux, 2005].

The MA|PM also uses a fast local optimization algorithm, that cetssif two simple
tabu search procedures that are used alternatively untiieneof them finds any more
improvements. Theserttabu search procedure attempts to locate any customer at any
other potential location in the solution (i.e. any otheran in any other tour) and takes
the move that decreases the total distance most (or inaré@dsast when no improving
moves can be found). An insertion of a customer into anotbeation is only allowed
when no constraints are violated by this move and when th®ices does not appear on
the tabu list. This insert procedure is repeated until thet-Beund solution during this
tabu search phase has not been improved for a fixed numberwasma\ fixed-length
tabu list is maintained to avoid cycling. The tabu list camsathe customers that were
most recently moved. Thewaptabu search procedure attempts to swap every pair of
customers and swaps the pair that yields the largest imprentin objective function
value. The swap of a pair of customers is only allowed whenékalting solution does
not violate any constraints and when the pair of customesgs dot appear on the tabu list.
This procedure is repeated until a fixed number of non-imipgnoves. In this case, the
tabu list contains pairs of of items that were most recemiggped. Pairs that appear on
the tabu list are excluded from swapping.

The crossover operator used in our NPM is thelinear ordered crossovefl OX).
This operator starts by randomly dividing both parents thtee parts. The first offspring
solution is found by copying the middle part from parent ond eompleting the solution
by circularly scanning parent two, starting from the thiarpand wrapping to the first
part. The second offspring is formed by reversing the roféseparents.

Our MA|PM for the CVRP starts by generating a set of random permutatball
customers. These are then decoded (using the split pragednd subjected to local
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search (alternating the two tabu search operators until @ nmprovement is found).
The initial population consists of a small number (usually $olutions. At each gener-
ation, two solutions are drawn from the population usingreaby tournament selection
operator (i.e. we retain the best of two randomly chosentigols). These two solutions
are subjected to the LOX operator. Both offspring solutiorestaen decoded and sub-
jected to the tabu search local searches. When the solutishesathe diversity criterion,
it is added to the population. If not, it mutateduntil it does satisfy the diversity criterion
and added to the population. The mutation operator randemaps two customers and
repeats this step until the resulting solution satisfiesithersity criterion.

We use aradaptivepopulation management scheme, in which the valu® sfslowly
decreased to allow it to intensify and increased again wheséarch appears to be stuck
in a local optimum, i.e. no more improving solutions are fodar a fixed number of
generations.

Some experiments show that our MM is competitive with the best-known ap-
proaches in the literature. For detailed results, we ref&tensen [2003].

3 A sampling-based approach for robust and flexible ve-
hicle routing

In this section, we modify the MM developed in the previous section, so that it
is able to deal with stochastic vehicle routing problemsisTi& done by replacing the
objective function by a so-calledbust evaluation functigrthat measures the robustness
or flexibility of the solution. Arepair functionis used if the solution can be adapted when
the actual values of the stochastic parameters become known

In a nutshell, our approach is the following. We use a metasige; such as our
MA |PM, that generates a set of solutions that are both diverskare a high quality. For
each solution we encounter, we calculate one or more mesasinabustness or flexibility,
referred to as a robust evaluation function value. Finally,choose the solution that has
the best robust evaluation function value. When two or morasuees of robustness or
flexibility are calculated, we choose the solution that Ihesitest combined value using a
multi-objective decision making process.

A robust evaluation function value for a given solution idcotated by repeatedly
applying the solution to a sampling of the stochastic patarseand calculating the cor-
responding (deterministic) objective function value. 3&é®bjective function values are
then combined into one or more measures of robustness. pba rocedure is available,
the solution is repaired before it is evaluated. The conoépepair function is closely
related to the stochastic programming concepteaburse but differs from it that any
procedure, even a heuristic one, may be used.
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A typical robust evaluation functiofi* is of the form

wheref is the (deterministic) objective function,is the set of stochastic parameters, and
S is the sampling functionS; () represents theth sampling of the stochastic parameters
and f(z, S;(m)) is the objective function value of solutian when applied to theé-th
sampling. n. is the number of deterministic evalutions per robust evaluas, i.e. the
number of evaluations of the solution on a random samplirth@stochastic parameters.
If the solution can be repaired, the repair functinis invoked before evaluation the
solution and the robust evaluation function becomes

fo(@) = nieifm(x,si(w))).

i=1

Other useful robust evaluation functions include therst-caseperformance, given
(for a minimization problem) by

fclr) = max £ (2, 5,(r))

or the standard deviation

o"(1) = || = DL () — ()

n —
€ i=1

These measures explicitly incorporate the risk prefer@fdke decision maker into the
process. E.g. the solution that has the best worst-caserpenice will generally be more
“conservative” or “risk-averse” than the one that has thet lagerage-case performance.
The decision maker may decide to find the solution that mirési*(z) +\o*(x), where

A is a parameter expressing the risk-averseness of the @eamsker. Other, even more
complex measures of robustness may be used, such as thdiptplhat the quality
of the solution falls below a certain threshold. Of course¢e they are obtained using
Monte Carlo simulation, the robust evaluation function ealare only estimates of the
true robustness measures. However, statistical theorpearsed to estimate the relia-
bility of the estimates. For a sufficiently large number cdlenations (e.gn. > 30), the
central limit theorem states th#t(z) is approximately normally distributed. From this,
it follows that an100(1 — «) confidence interval for the real average performance of a
solution is given by

(0" (@)

fi(@) £ 210 -
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For a more elaborate discussion, we refer to Law and Kelte@q]JL

One possible extension of our method is the uspesfalty functiongo penalize vi-
olation of constraints. For some samples of the stochaatiampeters, a solution might
become infeasible. A penalty functidh may be used to express the severity of the con-
straint violations and added to the robust evaluation fonctalue as follows:

1 e

fr(@) = =Y [f(#:8i(m) + P(; ().

n
€ =1

In our method, stochastic information can be expressed d®thdependent probability
distributions on the parameters of the problem, or as a sstafarios in which each
of the parameters has a fixed value. In the latter case, the @l is the number of
scenarios, and the sampling functiSns used to evaluate the performance of a solution
under the different scenarios.

We believe that our approach has several advantages odérainal methods based
on stochastic programming, most importantly the fact thatdonsiderably more flexible,
considerably easier to implement and applicable to mudetaand much more complex
problems. Moreover, it allows the decision maker to evauwamplex robustness char-
acteristics of a solution, using any type of stochasticimi@tion that is available and
incorporating his risk preference.

4 Experiments

In this section, we perform some experiments on differemtlsstic versions of the
CVRP. Unless otherwise indicated, our MM uses a population of size 10. The pop-
ulation diversity parameteA is set to 20 initially and reduced by one unit for each 3
generationsA is set to its initial level after 60 unproductive generasioBoth theswap
tabu searchand themove tabu searcprocedures use a tabu tenure of 30 and repeat until
10 -improving moves.

Data sets for the stochastic versions are derived from thestGhdes et al. [1979]
instances for the deterministic CVRP, available from the OBrdny*. We generally
assume that the distributions of the stochastic paramatersidependent and have their
mean equal to the corresponding value in the deterministia det. Unless otherwise
indicated, the robust evaluation function value is based.ca 1000 evaluations.

Iht t p: // peopl e. brunel . ac. uk/ ~mastjj b/ jeb/ orlib/vrpinfo.htn
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4.1 \ehicle routing with stochastic demand and cost

In this set of experiments, customer demanis assumed to be uniformly distributed
between0.75¢; and 1.25¢;. Travel cost between customerand j are uniformly dis-
tributed between.8¢;; and1.2¢;;. ¢; andc;; are the averages of the demand and travel
cost distributions respectively and equal to the valueadadn the deterministic data set.
Note that the deterministic problem is theean value formulationf the stochastic prob-
lem, i.e. the deterministic problem can be obtained byrsgtil stochastic parameters to
their expected value.

We assume that the routes have to be determined before tled @&@iues of customers
demand and travel cost are known and cannot be changed aftisrwWVe therefore at-
tempt to findrobustsolutions. For some samples of the stochastic demand amdacos
solution might violate the maximum travel cost constrap#s route or the capacity con-
straints of the vehicles. We therefore introduce two pgralhctions. Letc;;;, and g,
represent thé-th random numbers taken from the distributions;gpfandg; respectively.
The deterministic objective function value of solutionevaluated on thé-th sampling
of the stochastic parameters can be calculated as follows.

xSk Z Z Cijk,

l €ij EEZ( )

whereL(x) represents the set of edges included inttietour of solutionz, ¢;; the edge
between customeisandj. If the total cost in a given route is larger th@nthe maximum
cost), then a fixed penalty per unit of exceeded cost is added.

Pcost(x Sk = (1 Z maX Z Cijlk — O)

e”-EEl (ac)

Similarly, if the total demand served in a given route exsabe maximum demang, a
fixed penalty cost per unit of exceeded demand is added.

Pcapamt)(x Sk = Qg Z maX ) Z ik — Q)7 (3)

v; €Vy ()

whereV;(x) represents the set of vertices (customers) in tafrsolutionz. o, is the
penalty cost per unit of exceeded travel cost, is the penalty per unit of exceeded
capacity. We setr; = 100 anday = 500.

We look for solutions that have both a good average-case god@worst-case per-
formance. To this end, we define two robust evaluation fonsti f*(z) and f;.. To
calculatef* for solutionz, we calculate the total travel cost increased with the &lue
of both penalty functions for,. random samples of the stochastic parameters and take
the average. Fof;., we take the maximum value. For each solution encountered, w
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also measure the standard deviatd() and the valuef (), the deterministic objective
function value.

The MA|PM is applied to the 14 vehicle routing problems. Robust extéda function
f*is used in the binary tournament selection procedure tesstdutions from the pop-
ulation for crossover. This guides the search towards nabest solutions. We stop the
MA |PM after 200 generations, yielding 400 solutions. Detarkesllts are in appendix
(table3). Tablel is an extract from this table holding treules of a single experiment.

Data file m Criterion f r* o* S
vrpnc01 50 f 549.76 3211.60 2891.00 17779.56
fi 604.76  605.01 13.21 876.66
15 629.12  629.28 10.61 661.48
Table 1. Vehicle routing with stochastic demand and costs,
example result

For each data set, three rows are presented. The first rowinsrthe characteristics
of the solution that minimizeg, i.e. the solution that would be found by our method in the
deterministic case, if we would ignore all stochastic infation. The second and third
rows contain the characteristics of the solution that mina@sf* and f;. respectively. It
can be seen that the solutions in the second and third rows soasiderably better with
respect to all robustness indicatos( fi. andc*). These two solutions are therefore
considerably more robust than the solution in the first rawyjmg that their is a strong
need to take the stochastic information into account.

5000

N

o

o

o
T

3000

2000+

1000

Robust evaluatiorf* ()

0 1000 2000 3000 4000 5000
Ordinary evaluatiory (z)

Figure 1: Ordinary evaluation and robust evaluation foneil
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This is further illustrated in figurel, where we plot the eduof f versus f* for
all 400 solutions. From this figure, it is clear that all robsslutions (lowf*) have a
good deterministic objective function value, but that tbeerse is not necessarily true.
The decision maker can choose on of the two robust solutioesepted in table3 or
alternatively one of the other non-dominated solutionsu¢gams for which there does
not exist a solution which scores better with respect toaust evaluation functions)
generated by the MPRM. These are not shown because of space restrictions.

4.2 Vehicle routing with stochastic customers and a repair function

In some situations, the vehicle dispatcher does not knowlvarce which customers
will require service and which not. A possible strategy isd@ate all customers and
repair the solution once the list of customers that do reggervice becomes known. This
situation may occur when customers need to book a serviadvemae, but may cancel at
short notice. A solution that can be effectively repairedaBedflexible

In an experiment, each customer has a 50% probability ofiieguservice. A 100%
service level is required and the company therefore dec¢aldssign conservative solu-
tions that are still feasible if all customers in a route riegjgervice. The repair procedure
used by the company is to remove all customers that do notreesgrvice from a given
route. If the customer in-th position in a given route is removed, the vehicle travels
directly from the customer in positian- 1 to the customer in positioi++ 1. Total travel
cost is measured after the customers have been removedHeorttes.

The MA|PM is run for 200 generations. Each of the 400 generatedisotuis evalu-
ated 1000 times on a random list of customers. As in the puswxperiment, we record
the averageg™, the maximumyf;;. and the standard deviatiert over alln,. evaluations.
Results can be found in table4.

From this table, it is clear that not much profit can be gaingdding the robust op-
timization approach, as the solution that has the best \@lyehas approximately the
same robustness characteristics as the solution thatiapmne of the robust evalua-
tion function values. The main reason for this is the request that the solution should
be feasible even when all customers are present. This saaulery conservative solu-
tions that—when the actual customers to serve are obsemnséd-enly a fraction of the
available resources (capacity and maximum cost). The bagian of the deterministic
problem, utilising as much of these resources as poss#ileerefore likely to be a better
solution for the reduced set of customers, than other swolsthat do not use the resources
as fully. As a result, this solution is very likely to be flebab
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5 Use of the robust evaluation function and computation
times

The use of our approach for robust and flexible vehicle rguteguires some design
issues to be tackled. Especially the question when to usebust evaluation function,
should be taken with some care. Obviously, the robust etraludunction is used to
evaluate the robustness properties of a solution. Howévean also be used to guide
the search towards more robust solutions. In our|RM, the robust evaluation func-
tion is used to guide the search in the binary tournamentseteprocess. However, it
is not used for the move selection of the tabu search locainggtion procedures. In
both tabu search procedures, the (deterministic) obgdtinction value is used to select
the next move. The reason for this is that the use of the radeduation function for
move selection in the tabu search procedures would haviedsn prohibitive comput-
ing time increases. The bulk of computing time is spent onravipg solutions using
the tabu search procedures. While this is necessary to diitginquality solutions, the
tabu search procedures require a large number of evalsatMareover, the calculation
of the cost of a move can easily be short-circuited when ahatéstic objective function
is used, but this no longer holds when a robust evaluatioctiomis used. Indeed, it can
be easily seen that that when a customerinserted between customérsnd;, the total
cost of this route changes by, +c;; —c;; (provided that the route remains feasible). Sim-
ilar reasoning applies for removing a customer from a routa@pping two customers.
These shortcut calculations allow a move to be evaluatdtbwitre-evaluating the entire
solution, but they are no longer valid for a robust evaluafimction.

By using the robust evaluation function for selection of sohs from the population,
it only has to be calculated twice for each generation (whath Bolutions are added to
the population). This results in relatively small compgtitme increases as can be seen
in table 2. This table compares the computing times for 20@gsions for the MAPM
in the deterministic and the stochastic case (experimehtsiochastic demand and cost).
Computation time never increases by more than a factor of 3.08

One of the design choices that influence the computationwhren using our robust
optimization approach is the value of, the number of objective function evaluations
to perform to calculate the value of the robust evaluatiarcfion. In the experiments
performed in this paper, we put the valuemgfat 1000 and still obtained relatively small
computing time increases, but this may not always be the dasgecially in situations
where the objective function is time-intensive to calceljahe value oh, must be care-
fully chosen. As we mentioned before, a confidence interamlle calculated around the
value of f*. The value ofu, should be chosen in such a way that the confidence interval
is small enough. How small exactly the confidence intervalusth be, depends on the
specific application, the level of confidence that is requivg the decision maker and the
computing time available.
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Datafile n avg.determ.(s) avg. stoch. (s) ai‘é%%‘fr‘n
vrpncO0l 50 68.84 99.30 1.44
vrpnc02 75 205.59 408.59 1.99
vrpnc03 100 363.23 573.17 1.58
vrpnc04 150 932.70 1856.12 1.99
vrpnc05 199 1969.29 4266.21 2.17
vrpnc06 50 92.57 97.52 1.05
vrpnc07 75 205.43 423.80 2.06
vrpnc08 100 369.90 655.88 1.77
vrpnc09 150 967.54 2329.98 241
vrpncl0 199 1657.46 5102.75 3.08
vrpncll 120 667.53 1215.21 1.82
vrpncl2 100 292.09 698.23 2.39
vrpncl3 120 772.81 1008.80 1.31
vrpncl4 100 526.89 722.35 1.37
All N/A 649.42 1389.85 2.14

Table 2: Computing times (200 generations)

6 Conclusions

In this paper, we have developed an approach to find robustlexitlle solutions
of several stochastic versions of the capacitated vehatléng problem. Our approach
combines the optimization power of metaheuristics with ko@Garlo simulation based
estimation of the robustness or flexibility of a solution. épair procedure is introduced
when flexible solutions are needed and penalty functions lmeaptroduced to penalize
violation of constraints. Our approach recognizes the feechore complex expressions
of robustness or flexibility than the often-used averagéperance to be entered into the
decision-making process.

We have tested our approach on vehicle routing problems stdbhastic demand
and cost and with stochastic customers. We have also dextsssne design issues,
specifically how the search can be guided towards robusbabligesolutions and how the
computing time increase can be kept within limits.

We believe that our approach offers considerable advastager more traditional
methods based on stochastic programming, especially wh@red to large-scale, real-
life stochastic vehicle routing applications.
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Table 3: Vehicle routing with stochastic demand and costs

Datafile mn  Criterion I I o* Tvs CPU (s)
vrpnc0l 50 f 549.76  3211.60 2891.00 17779.56 101

fr 604.76 605.01 13.21 876.66

f 629.12 629.28 10.61 661.48
vrpnc02 75 f 891.86  8335.36 4986.75 30836.52 349

i 956.57 1134.44 617.56 6509.91

f 956.57 1134.44 617.56 6509.91
vrpnc03 100 f 887.97  2904.39 2753.68 16150.60 541

i 971.38 977.51 72.99  2236.30

f 971.38 977.51 72.99 2236.30
vrpnc04 150 f 1149.53 5313.22  3869.58 23450.44 1893

I 1208.36  1596.03 1063.23  9598.45

13 1208.36  1596.03 1063.23  9598.45
vrpnc05 199 f 1512.77 10112.13 5737.19 33182.36 4153

i 1687.18  3040.09 2118.64 15630.12

3 1687.18  3040.09 2118.64 15630.12
vrpnc06 50 f 559.87 567.68  122.64  3350.03 98

I 559.87 567.68  122.64  3350.03

3 579.51 579.42 9.58 605.79
vrpnc07 75 f 995.55 2583.40 2285.52 11686.45 415

I 1070.72  1077.22 79.39  2512.38

3 1070.72  1077.22 79.39  2512.38
vrpnc08 100 f 945.33 946.03 38.49 2106.94 648

I 945.33 946.03 38.49  2106.94

s 965.35 965.21 11.81 999.43
vrpnc09 150 f 1352.35 1506.98 659.95 6979.06 2265

fr 1404.10 1404.68 16.24 1460.92

I 1404.10 1404.68 16.24 1460.92
vrpncl0 199 f 1597.51 3683.01 2822.85 18401.49 5117

fr 1697.23 1698.18 31.61 2415.77

15 1784.14  1783.08 18.10  1837.73
vrpncll 120 f 1260.55 4775.36  3331.22  21620.35 1229

fr 1492.17 1504.12 212.15 6115.15

f 1507.27 1507.52 26.71 1601.84
vrpncl2 100 I 883.55  8004.79 5372.87 30825.31 698

fr 1138.66 1638.14 1359.21 9534.97

f 1138.66 1638.14 1359.21 9534.97
vrpncl3 120 f 1368.33 4629.15 3227.07 18598.48 1079

i 1565.28  1611.20  315.01  6819.88

3 1727.20 1734.02 73.03 3117.71
vrpncld 100 f 952.46 7706.49 5126.85 29321.32 719

I 1033.58  1775.53 1707.77 13073.67

3 1125.71 2192.62 1891.78 12757.21
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Table 4: Vehicle routing with stochastic customers andirgpacedure

Datafile mn  Criterion f r* o* T CPU (s)
vrpnc01 50 f 527.46 424.39  28.30 494.89 99.30

Ii 528.22  423.92 28.85  488.88

15 528.22  423.92 28.85  488.88
vrpnc02 75 I 905.22  736.65 45.95  854.83 408.59

i 942.20 721.21 43.89 846.89

13 92741 72853 47.00  836.21
vrpnc03 100 f 852.05  703.72 34.09 788.00 573.17

I 852.14  696.88 32.00 776.41

13 852.14  696.88 32.00 776.41
vrpnc04 150 f 1130.42 977.25 32.34 1067.67 1856.12

fr 1130.42  977.25 32.34 1067.67

13 1134.48  979.88 33.22 1065.78
vrpnc05 199 f 1466.17 1286.28 32.03 1366.59 4266.21

i 1483.99 1282.70 39.68 1384.81

s 1466.17 1286.28 32.03 1366.59
vrpnc06 50 f 567.92 457.43  32.55 533.51 97.52

i 577.01 456.09 34.14 553.61

s 569.51  459.30 32.16  528.00
vrpnc07 75 f 990.71 809.90 51.78 919.41 423.80

i 1000.02 806.21  56.00 945.15

3 990.71 809.90 51.78 919.41
vrpnc08 100 f 933.72 786.23  36.69 872.24 655.88

i 942.00 779.18 40.24 890.61

s 933.72 786.23  36.69 872.24
vrpnc09 150 f 1351.54 1152.77 40.75 1257.38 2329.98

i 1351.54  1152.77 40.75 1257.38

s 1351.54 1152.77 40.75 1257.38
vrpncl0 199 f 1574.00 1379.91 41.69 1497.29 5102.75

I 1577.60 1377.88 42.73 1483.68

s 1577.60 1377.88 42.73 1483.68
vrpncll 120 f 1122.20 1019.96 21.55 1083.10 1215.21

i 1123.32  1019.26 22.61 1081.70

s 1125.26  1020.72 21.19 1074.73
vrpncl2 100 I 861.27 77477 2427  839.91 698.23

I 862.98  771.46 24.77  820.59

13 862.98  771.46 24.77  820.59
vrpncl3 120 f 1239.06 1121.11 22.49 1177.47 1008.80

fr 1250.98 1117.50 23.57 1177.95

fs 1239.06 1121.11 22.49 117747
vrpncld 100 f 878.46 768.03 23.92 833.47 722.35

fr 878.46  768.03 23.92  833.47

s 878.46  768.03 23.92  833.47
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