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A practical approach for robust and flexible
vehicle routing using metaheuristics and Monte

Carlo sampling
Kenneth S̈orensen∗, Marc Sevaux†

Abstract

In this paper, we investigate how robust and flexible solutions of a number of
stochastic variants of the capacitated vehicle routing problem can be obtained. To
this end, we develop and discuss a method that combines a sampling based approach
to estimate the robustness or flexibility of a solution with a metaheuristic optimiza-
tion technique. This combination allows us to solve larger problems with more com-
plex stochastic structures than traditional methods based on stochastic programming.
It is also more flexible in the sense that adaptation of the approach to more com-
plex problems can be easily done. We explicitly recognize the fact that the decision
maker’s risk preference should be taken into account when choosing arobust or flex-
ible solution and show how this can be done using our approach.

Key words : stochastic vehicle routing, robustness, flexibility, Monte Carlo sam-
pling, metaheuristics, memetic algorithm

1 Robust and flexible vehicle routing

The objective of vehicle routing problems is to determine the order in which to visit
a spatially distributed set of customers using a set of vehicles so that the total travel cost
(distance, time) is minimized. Standard vehicle routing formulations however, assume
that all data concerning customer demand, travel costs, etc. are known with perfect cer-
tainty at design time. For many reasons, e.g. the uncertainty related to traffic conditions,
these assumptions are unwarranted in a large number of practical situations. As a result,
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a number of vehicle routing formulations designed to findrobustsolutions have been de-
veloped. Three types of such formulations, commonly referred to asstochastic vehicle
routing problemscan be distinguished: problems with stochastictravel times(e.g. Lam-
bert et al. [1993]), problems with stochasticdemands(e.g. Stewart and Golden [1983]),
and problems with stochasticcustomers, i.e. in which each customer has a certain prob-
ability of requiring service (e.g. Bertsimas [1992]). For a survey, we refer to Gendreau
et al. [1996].

For stochastic problems,robustor flexiblesolutions are required. Consistent with the
definitions found in the literature (see e.g. Kouvelis and Yu[1997], Mulvey et al. [1995],
Roy [1998], Vincke [1999], Dias and Clı́maco [1999], Branke [2001]), we call a solution
to a stochastic optimization problemrobustif it has a high quality regardless of the actual
realization of the stochastic parameters. In other words, asolution that consistently has
a high performance across all possible outcomes of the stochastic parameters, is called
robust. Usually, stochastic optimization algorithms attempt to find the solution that has
either the bestexpectedquality or the bestworst-casequality over all potential outcomes
of the stochastic parameters. In many cases however, a solution can be (partially) changed
once the actual values of the stochastic parameters become known. In this case, a solution
is preferred that can be successfully adapted to any realization of the stochastic parame-
ters. Such a solution is calledflexible. In other words, aflexiblesolution is one that has
a high quality after adaptation to the outcomes of the stochastic parameters, whereas a
robustsolution is one that has a high quality without adaptation tothe stochastic parame-
ters. In the remainder, we will call the procedure that is used to adapt the solution to the
actual values of the stochastic parameters arepair procedure.

Several problems arise with these methods, that inhibit their use in real-life vehicle
routing applications. First, most of the methods areexactmethods, implying that they
are unable to solve problems of realistic size. Indeed, as indicated by Birge [1997], the
complexity of stochastic programs grows proportionally tothe number of possible reali-
sations of the stochastic parameters, which in turn grows exponentially with the number
of stochastic parameters. Because in realistic cases this number is usually very large or
even infinite (in the case of continuous distributions), only very small problems can be
solved to “optimality”. To partially overcome this problem, a part of the stochastic pro-
gramming literature has fused on methods that use some form of Monte Carlo sampling
of the stochastic parameters. For stochastic linear programming problems,stochastic de-
composition[Higle and Sen, 1991] andimportance sampling[Infanger, 1994] have been
developed. For discrete stochastic problems, Norkin et al.[1998a,b] develop a sampling
branch-and-bound. Whereas these methods use sampling at different steps of the op-
timization method to estimate e.g. function values, thesample average approximation
method[Kleywegt et al., 2001] uses sampling to generate a set of sample scenarios and
then attempts to optimize the corresponding deterministicexpected-value problem. This
method has been successfully applied to supply chain designproblems [Goetschalckx
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et al., 2001] and routing problems [Verweij et al., 2003], among others.

A second drawback to traditional stochastic programming methods is the fact that they
make heavy use of the specific stochastic structure of the problem they consider and are
very difficult to adapt to other problems. Thirdly, almost all algorithms developed for
stochastic routing attempt to find the solution with the optimal expected value. Although
the average performance of a solution is certainly an important indication of its robustness,
it does not take into account the risk-preference of the decision maker.

In this paper, we develop a method that is able to overcome these problems. We adopt
a pragmatic approach to stochastic optimization and approximate the stochastically opti-
mal solution on two levels. First, we use a sampling-based approach to quickly estimate
the robustness of a solution. This allows us to quickly and simultaneously evaluate both
average and worst-case performance of a solution, but more complicated measures of ro-
bustness can be incorporated. Our sampling-based approachalso allows us to evaluate
solutions of problems with many stochastic parameters. Secondly, we use a metaheuristic
to find the solution with the best approximate robustness characteristic, which allows us
to solve large problems. Our approach adapts a metaheuristic for a deterministic problem
by replacing its evaluation function by a so-calledrobust evaluation function.

2 Problem description and deterministic solution method

The CVRP is defined on an undirected graphG = (V,E) with a set of nodesV =
{0, 1, . . . , n}. Node 0 corresponds to the depot, that has a set of identical vehicles of
capacityQ and maximal travel costC. Nodes 1 ton represent a set of spatially distributed
customers, the demand of which is given byqi. The travel cost between customeri and
customerj is given bycij, the weight of the edge between nodei and nodej. The
objective of the deterministic VRP is to find a set of minimum total cost routes that have
the following properties: (1) each route begins and ends at the depot, (2) each customer
is visited exactly once, (3) the capacity and maximal travelcost of the vehicles is not
exceeded.

To solve this problem, we have developed a MA|PM, or menetic algorithm with pop-
ulation management. A MA|PM is a memetic algorithm (a GA hybridised with local
search) that uses distances to measure and control the diversity of a small population.
This allows to maintain diversity in the population while keeping the size of the popula-
tion small. For a more elaborate description of MA|PM, we refer to S̈orensen and Sevaux
[2005].

In our MA|PM, solutions are represented as a string of customers,without trip delim-
iters S = S1S2 . . . Sn. When necessary (e.g. to calculate their objective functionvalue)
they are decoded optimally using thesplit decoding procedureby Prins [2004]. This pro-
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cedure finds the optimal points at which to split the solutioninto tours so that the resulting
decoded solution is feasible and the total travel cost is minimized. It makes use of an aux-
iliary directed weighted graphH = (X,F,W ). The vertex setX containsn + 1 nodes
(wheren is the number of customers served), labelled from 0 (the depot) to n.

The edge setF is constructed as follows. An edge(i, j) from vertexi to vertexj

(i < j) is added when a trip containing customersSi+1 to Sj is feasible, i.e. if

j
∑

k=i+1

qSk
≤ Q (1)

and

wij = c0Si+1
+

j−1
∑

k=i+1

cSkSk+1
+ cSj0 +

j
∑

k=i+1

eSk
≤ C. (2)

The weightwij of the arc(i, j) is equal to the sum of the travel distances covered
in the trip 0 → Si+1 → Si+2 → . . . → Sj → 0, plus the sum of drop costs in this
trip. The minimum-cost path from vertex 0 to vertexn in H gives the shortest set of trips
corresponding to this encoding. If more than one min-cost path exists, each of these paths
will give a set of trips with equal total length. Since the graph H contains only positive
weights and no circuits, the shortest path can be efficientlycalculated using Bellman’s
algorithm [Bellman, 1958].

A second procedure used heavily by our MA|PM for the CVRP is a distance mea-
sure based on the edit distance. Given three possible edit operations (add character, re-
move character and substitute character), the edit distanced(s, t) is defined as the minimal
number of edit operations required to transform a strings into another stringt. The edit
distance is heavily studied in the literature. A simple dynamic programming algorithm
[Wagner and Fischer, 1974] calculates this measure inO(n2) wheren is the length of both
strings. Other, more efficient algorithms have been developed [S̈orensen, 2003].

Vehicle routing solutions can be regarded as sets of strings, each string representing a
tour. As tours have no direction, each string may be reversed. The distance measure for
the CVRP developed in S̈orensen [2003] calculates the minimal number of edit operations
required to transform a VRP solution into another one, keeping into account that both
solutions consist of a set of reversable strings. This is done by assigning tours from the
first solution to the second one so that the total number of required edit operations is
minimized.

Given two solutionss andt havingm andn trips respectively, the distance measure
constructs a square matrixM of sizemax(m,n). Each column and each row represents
a trip of s and t respectively. Empty trips are added to the solution with thesmallest
number of trips to give both solutions an equal number of trips. Cell(i, j) of M contains
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the minimum ofd(si, tj) andd(si, t̃j), wheresi is thei-th trip of solutions and t̃j is the
reversedj-th trip of solutiont. A linear assignment problem is then calculated to find the
matching of trips in solutions to trips in solutiont. The cost of the assignment problem
is the distance between the two solutions.

In the MA|PM, the distance measure is used forpopulation managementin order to
maintain the diversity of a small population of high-quality individuals and overcome
problems of premature convergence. Before a (candidate) solution is added to the popu-
lation, the algorithm checks to see whether it satisfies thepopulation diversity criterion,
i.e. whether it is sufficiently different from all other members of the population. This is
done by measuring the so-calleddistance to the population, i.e. the minimum distance
of the candidate solution to any solution already in the population. The solution cannot
be added until its distance to the population is greater thanor equal to the value of the
population diversity parameter∆. This value can be used to control the diversity of the
population as an increase of∆ will tend to increase population diversity, while a small
value will tend to decrease it. Intensification and diversification phases can be alternated
by setting the value of∆ to appropriate levels [S̈orensen and Sevaux, 2005].

The MA|PM also uses a fast local optimization algorithm, that consists of two simple
tabu search procedures that are used alternatively until neither of them finds any more
improvements. Theinsert tabu search procedure attempts to locate any customer at any
other potential location in the solution (i.e. any other location in any other tour) and takes
the move that decreases the total distance most (or increases it least when no improving
moves can be found). An insertion of a customer into another location is only allowed
when no constraints are violated by this move and when the customer does not appear on
the tabu list. This insert procedure is repeated until the best-found solution during this
tabu search phase has not been improved for a fixed number of moves. A fixed-length
tabu list is maintained to avoid cycling. The tabu list contains the customers that were
most recently moved. Theswaptabu search procedure attempts to swap every pair of
customers and swaps the pair that yields the largest improvement in objective function
value. The swap of a pair of customers is only allowed when theresulting solution does
not violate any constraints and when the pair of customers does not appear on the tabu list.
This procedure is repeated until a fixed number of non-improving moves. In this case, the
tabu list contains pairs of of items that were most recently swapped. Pairs that appear on
the tabu list are excluded from swapping.

The crossover operator used in our MA|PM is thelinear ordered crossover(LOX).
This operator starts by randomly dividing both parents intothree parts. The first offspring
solution is found by copying the middle part from parent one and completing the solution
by circularly scanning parent two, starting from the third part and wrapping to the first
part. The second offspring is formed by reversing the roles of the parents.

Our MA|PM for the CVRP starts by generating a set of random permutations of all
customers. These are then decoded (using the split procedure) and subjected to local
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search (alternating the two tabu search operators until no more improvement is found).
The initial population consists of a small number (usually 10) solutions. At each gener-
ation, two solutions are drawn from the population using a binary tournament selection
operator (i.e. we retain the best of two randomly chosen solutions). These two solutions
are subjected to the LOX operator. Both offspring solutions are then decoded and sub-
jected to the tabu search local searches. When the solution satisfies the diversity criterion,
it is added to the population. If not, it ismutateduntil it does satisfy the diversity criterion
and added to the population. The mutation operator randomlyswaps two customers and
repeats this step until the resulting solution satisfies thediversity criterion.

We use anadaptivepopulation management scheme, in which the value of∆ is slowly
decreased to allow it to intensify and increased again when the search appears to be stuck
in a local optimum, i.e. no more improving solutions are found for a fixed number of
generations.

Some experiments show that our MA|PM is competitive with the best-known ap-
proaches in the literature. For detailed results, we refer to Sörensen [2003].

3 A sampling-based approach for robust and flexible ve-
hicle routing

In this section, we modify the MA|PM developed in the previous section, so that it
is able to deal with stochastic vehicle routing problems. This is done by replacing the
objective function by a so-calledrobust evaluation function, that measures the robustness
or flexibility of the solution. Arepair functionis used if the solution can be adapted when
the actual values of the stochastic parameters become known.

In a nutshell, our approach is the following. We use a metaheuristic, such as our
MA |PM, that generates a set of solutions that are both diverse and have a high quality. For
each solution we encounter, we calculate one or more measures of robustness or flexibility,
referred to as a robust evaluation function value. Finally,we choose the solution that has
the best robust evaluation function value. When two or more measures of robustness or
flexibility are calculated, we choose the solution that has the best combined value using a
multi-objective decision making process.

A robust evaluation function value for a given solution is calculated by repeatedly
applying the solution to a sampling of the stochastic parameters and calculating the cor-
responding (deterministic) objective function value. These objective function values are
then combined into one or more measures of robustness. If a repair procedure is available,
the solution is repaired before it is evaluated. The conceptof repair function is closely
related to the stochastic programming concept ofrecourse, but differs from it that any
procedure, even a heuristic one, may be used.
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A typical robust evaluation functionf ∗ is of the form

f ∗(x) =
1

ne

ne
∑

i=1

f(x,Si(π)),

wheref is the (deterministic) objective function,π is the set of stochastic parameters, and
S is the sampling function.Si(π) represents thei-th sampling of the stochastic parameters
and f(x,Si(π)) is the objective function value of solutionx when applied to thei-th
sampling. ne is the number of deterministic evalutions per robust evaluations, i.e. the
number of evaluations of the solution on a random sampling ofthe stochastic parameters.
If the solution can be repaired, the repair functionR is invoked before evaluation the
solution and the robust evaluation function becomes

f ∗(x) =
1

ne

ne
∑

i=1

f(R(x,Si(π))).

Other useful robust evaluation functions include theworst-caseperformance, given
(for a minimization problem) by

f ∗

wc(x) = max
i

f(x,Si(π)),

or the standard deviation

σ∗(x) =

√

√

√

√

1

ne − 1

ne
∑

i=1

[f(x;Si(π)) − f ∗(x)]2.

These measures explicitly incorporate the risk preferenceof the decision maker into the
process. E.g. the solution that has the best worst-case performance will generally be more
“conservative” or “risk-averse” than the one that has the best average-case performance.
The decision maker may decide to find the solution that minimizesf ∗(x)+λσ∗(x), where
λ is a parameter expressing the risk-averseness of the decision maker. Other, even more
complex measures of robustness may be used, such as the probability that the quality
of the solution falls below a certain threshold. Of course, since they are obtained using
Monte Carlo simulation, the robust evaluation function values are only estimates of the
true robustness measures. However, statistical theory canbe used to estimate the relia-
bility of the estimates. For a sufficiently large number of evaluations (e.g.ne > 30), the
central limit theorem states thatf ∗(x) is approximately normally distributed. From this,
it follows that an100(1 − α) confidence interval for the real average performance of a
solution is given by

f ∗(x) ± z1−α
2

√

(σ∗(x))2

ne

.
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For a more elaborate discussion, we refer to Law and Kelton [1999].

One possible extension of our method is the use ofpenalty functionsto penalize vi-
olation of constraints. For some samples of the stochastic parameters, a solution might
become infeasible. A penalty functionP may be used to express the severity of the con-
straint violations and added to the robust evaluation function value as follows:

f ∗(x) =
1

ne

ne
∑

i=1

[f(x;Si(π)) + P(x;Si(π))].

In our method, stochastic information can be expressed bothas independent probability
distributions on the parameters of the problem, or as a set ofscenarios in which each
of the parameters has a fixed value. In the latter case, the value ofne is the number of
scenarios, and the sampling functionS is used to evaluate the performance of a solution
under the different scenarios.

We believe that our approach has several advantages over traditional methods based
on stochastic programming, most importantly the fact that it is considerably more flexible,
considerably easier to implement and applicable to much larger and much more complex
problems. Moreover, it allows the decision maker to evaluate complex robustness char-
acteristics of a solution, using any type of stochastic information that is available and
incorporating his risk preference.

4 Experiments

In this section, we perform some experiments on different stochastic versions of the
CVRP. Unless otherwise indicated, our MA|PM uses a population of size 10. The pop-
ulation diversity parameter∆ is set to 20 initially and reduced by one unit for each 3
generations.∆ is set to its initial level after 60 unproductive generations. Both theswap
tabu searchand themove tabu searchprocedures use a tabu tenure of 30 and repeat until
10 -improving moves.

Data sets for the stochastic versions are derived from the Christofides et al. [1979]
instances for the deterministic CVRP, available from the OR Library1. We generally
assume that the distributions of the stochastic parametersare independent and have their
mean equal to the corresponding value in the deterministic data set. Unless otherwise
indicated, the robust evaluation function value is based onne = 1000 evaluations.

1http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/vrpinfo.html
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4.1 Vehicle routing with stochastic demand and cost

In this set of experiments, customer demandqi is assumed to be uniformly distributed
between0.75q̄i and1.25q̄i. Travel cost between customersi and j are uniformly dis-
tributed between0.8c̄ij and1.2c̄ij. q̄i and c̄ij are the averages of the demand and travel
cost distributions respectively and equal to the values found in the deterministic data set.
Note that the deterministic problem is themean value formulationof the stochastic prob-
lem, i.e. the deterministic problem can be obtained by setting all stochastic parameters to
their expected value.

We assume that the routes have to be determined before the actual values of customers
demand and travel cost are known and cannot be changed afterwards. We therefore at-
tempt to findrobustsolutions. For some samples of the stochastic demand and cost, a
solution might violate the maximum travel cost constraintsper route or the capacity con-
straints of the vehicles. We therefore introduce two penalty functions. Letcijk andqik

represent thek-th random numbers taken from the distributions ofcij andqi respectively.
The deterministic objective function value of solutionx, evaluated on thek-th sampling
of the stochastic parameters can be calculated as follows.

f(x;Sk(π)) =
∑

l

∑

eij∈El(x)

cijk,

whereEl(x) represents the set of edges included in thel-th tour of solutionx, eij the edge
between customersi andj. If the total cost in a given route is larger thanC (the maximum
cost), then a fixed penalty per unit of exceeded cost is added.

Pcost(x;Sk(π)) = α1

∑

l

max(0,
∑

eij∈El(x)

cijk − C).

Similarly, if the total demand served in a given route exceeds the maximum demandQ, a
fixed penalty cost per unit of exceeded demand is added.

Pcapacity(x;Sk(π)) = α2

∑

l

max(0,
∑

vi∈Vl(x)

qik − Q), (3)

whereVl(x) represents the set of vertices (customers) in tourl of solutionx. α1 is the
penalty cost per unit of exceeded travel cost.α2 is the penalty per unit of exceeded
capacity. We setα1 = 100 andα2 = 500.

We look for solutions that have both a good average-case and agood worst-case per-
formance. To this end, we define two robust evaluation functions: f ∗(x) andf ∗

wc. To
calculatef ∗ for solutionx, we calculate the total travel cost increased with the values
of both penalty functions forne random samples of the stochastic parameters and take
the average. Forf ∗

wc, we take the maximum value. For each solution encountered, we
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also measure the standard deviationσ∗(x) and the valuef(x), the deterministic objective
function value.

The MA|PM is applied to the 14 vehicle routing problems. Robust evaluation function
f ∗ is used in the binary tournament selection procedure to select solutions from the pop-
ulation for crossover. This guides the search towards more robust solutions. We stop the
MA |PM after 200 generations, yielding 400 solutions. Detailedresults are in appendix
(table3). Table1 is an extract from this table holding the results of a single experiment.

Data file n Criterion f f∗ σ∗ f∗

wc

vrpnc01 50 f 549.76 3211.60 2891.00 17779.56
f ∗

1 604.76 605.01 13.21 876.66
f ∗

2 629.12 629.28 10.61 661.48
Table 1: Vehicle routing with stochastic demand and costs,
example result

For each data set, three rows are presented. The first row contains the characteristics
of the solution that minimizesf , i.e. the solution that would be found by our method in the
deterministic case, if we would ignore all stochastic information. The second and third
rows contain the characteristics of the solution that minimizesf ∗ andf ∗

wc respectively. It
can be seen that the solutions in the second and third rows score considerably better with
respect to all robustness indicators (f ∗, f ∗

wc andσ∗). These two solutions are therefore
considerably more robust than the solution in the first row, proving that their is a strong
need to take the stochastic information into account.
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Figure 1: Ordinary evaluation and robust evaluation for vrpnc01
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This is further illustrated in figure1, where we plot the values of f versusf ∗ for
all 400 solutions. From this figure, it is clear that all robust solutions (lowf ∗) have a
good deterministic objective function value, but that the reverse is not necessarily true.
The decision maker can choose on of the two robust solutions presented in table3 or
alternatively one of the other non-dominated solutions (solutions for which there does
not exist a solution which scores better with respect to all robust evaluation functions)
generated by the MA|PM. These are not shown because of space restrictions.

4.2 Vehicle routing with stochastic customers and a repair function

In some situations, the vehicle dispatcher does not know in advance which customers
will require service and which not. A possible strategy is toroute all customers and
repair the solution once the list of customers that do require service becomes known. This
situation may occur when customers need to book a service in advance, but may cancel at
short notice. A solution that can be effectively repaired iscalledflexible.

In an experiment, each customer has a 50% probability of requiring service. A 100%
service level is required and the company therefore decidesto design conservative solu-
tions that are still feasible if all customers in a route require service. The repair procedure
used by the company is to remove all customers that do not require service from a given
route. If the customer ini-th position in a given route is removed, the vehicle travels
directly from the customer in positioni− 1 to the customer in positioni + 1. Total travel
cost is measured after the customers have been removed from the routes.

The MA|PM is run for 200 generations. Each of the 400 generated solutions is evalu-
ated 1000 times on a random list of customers. As in the previous experiment, we record
the averagef ∗, the maximumf ∗

wc and the standard deviationσ∗ over allne evaluations.
Results can be found in table4.

From this table, it is clear that not much profit can be gained by using the robust op-
timization approach, as the solution that has the best valueof f has approximately the
same robustness characteristics as the solution that optimizes one of the robust evalua-
tion function values. The main reason for this is the requirement that the solution should
be feasible even when all customers are present. This results in very conservative solu-
tions that—when the actual customers to serve are observed—use only a fraction of the
available resources (capacity and maximum cost). The best solution of the deterministic
problem, utilising as much of these resources as possible, is therefore likely to be a better
solution for the reduced set of customers, than other solutions that do not use the resources
as fully. As a result, this solution is very likely to be flexible.
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5 Use of the robust evaluation function and computation
times

The use of our approach for robust and flexible vehicle routing requires some design
issues to be tackled. Especially the question when to use therobust evaluation function,
should be taken with some care. Obviously, the robust evaluation function is used to
evaluate the robustness properties of a solution. However,it can also be used to guide
the search towards more robust solutions. In our MA|PM, the robust evaluation func-
tion is used to guide the search in the binary tournament selection process. However, it
is not used for the move selection of the tabu search local optimization procedures. In
both tabu search procedures, the (deterministic) objective function value is used to select
the next move. The reason for this is that the use of the robustevaluation function for
move selection in the tabu search procedures would have resulted in prohibitive comput-
ing time increases. The bulk of computing time is spent on improving solutions using
the tabu search procedures. While this is necessary to obtainhigh quality solutions, the
tabu search procedures require a large number of evaluations. Moreover, the calculation
of the cost of a move can easily be short-circuited when a deterministic objective function
is used, but this no longer holds when a robust evaluation function is used. Indeed, it can
be easily seen that that when a customerk is inserted between customersi andj, the total
cost of this route changes bycik+ckj−cij (provided that the route remains feasible). Sim-
ilar reasoning applies for removing a customer from a route or swapping two customers.
These shortcut calculations allow a move to be evaluated without re-evaluating the entire
solution, but they are no longer valid for a robust evaluation function.

By using the robust evaluation function for selection of solutions from the population,
it only has to be calculated twice for each generation (when both solutions are added to
the population). This results in relatively small computing time increases as can be seen
in table 2. This table compares the computing times for 200 generations for the MA|PM
in the deterministic and the stochastic case (experiment with stochastic demand and cost).
Computation time never increases by more than a factor of 3.08.

One of the design choices that influence the computation timewhen using our robust
optimization approach is the value ofne, the number of objective function evaluations
to perform to calculate the value of the robust evaluation function. In the experiments
performed in this paper, we put the value ofne at 1000 and still obtained relatively small
computing time increases, but this may not always be the case. Especially in situations
where the objective function is time-intensive to calculate, the value ofne must be care-
fully chosen. As we mentioned before, a confidence interval can be calculated around the
value off ∗. The value ofne should be chosen in such a way that the confidence interval
is small enough. How small exactly the confidence interval should be, depends on the
specific application, the level of confidence that is required by the decision maker and the
computing time available.
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Data file n avg. determ. (s) avg. stoch. (s) avg. stoch.
avg. determ.

vrpnc01 50 68.84 99.30 1.44
vrpnc02 75 205.59 408.59 1.99
vrpnc03 100 363.23 573.17 1.58
vrpnc04 150 932.70 1856.12 1.99
vrpnc05 199 1969.29 4266.21 2.17
vrpnc06 50 92.57 97.52 1.05
vrpnc07 75 205.43 423.80 2.06
vrpnc08 100 369.90 655.88 1.77
vrpnc09 150 967.54 2329.98 2.41
vrpnc10 199 1657.46 5102.75 3.08
vrpnc11 120 667.53 1215.21 1.82
vrpnc12 100 292.09 698.23 2.39
vrpnc13 120 772.81 1008.80 1.31
vrpnc14 100 526.89 722.35 1.37
All N/A 649.42 1389.85 2.14

Table 2: Computing times (200 generations)

6 Conclusions

In this paper, we have developed an approach to find robust andflexible solutions
of several stochastic versions of the capacitated vehicle routing problem. Our approach
combines the optimization power of metaheuristics with Monte Carlo simulation based
estimation of the robustness or flexibility of a solution. A repair procedure is introduced
when flexible solutions are needed and penalty functions maybe introduced to penalize
violation of constraints. Our approach recognizes the needfor more complex expressions
of robustness or flexibility than the often-used average performance to be entered into the
decision-making process.

We have tested our approach on vehicle routing problems withstochastic demand
and cost and with stochastic customers. We have also discussed some design issues,
specifically how the search can be guided towards robust or flexible solutions and how the
computing time increase can be kept within limits.

We believe that our approach offers considerable advantages over more traditional
methods based on stochastic programming, especially when applied to large-scale, real-
life stochastic vehicle routing applications.
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V.I. Norkin, G.Ch. Pflug, and A. Ruszczyński. A branch and bound method for stochastic
global optimization.Mathematical Programming, 83:425–450, 1998b.

C. Prins. A simple and effective evolutionary algorithm for the vehicle routing prob-
lem. Computers and Operations Research, 31(12):1985–20021, 2004. URLdoi:
10.1016/S0305-0548(03)00158-8.

B. Roy. A missing link in OR-DA: Robustness analysis.Foundations of Computing and
Decision Sciences, 23:141–160, 1998.
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Table 3: Vehicle routing with stochastic demand and costs

Data file n Criterion f f∗ σ∗ f∗

wc CPU (s)
vrpnc01 50 f 549.76 3211.60 2891.00 17779.56 101

f∗
1

604.76 605.01 13.21 876.66

f∗
2

629.12 629.28 10.61 661.48

vrpnc02 75 f 891.86 8335.36 4986.75 30836.52 349
f∗
1

956.57 1134.44 617.56 6509.91

f∗
2

956.57 1134.44 617.56 6509.91

vrpnc03 100 f 887.97 2904.39 2753.68 16150.60 541
f∗
1

971.38 977.51 72.99 2236.30

f∗
2

971.38 977.51 72.99 2236.30

vrpnc04 150 f 1149.53 5313.22 3869.58 23450.44 1893
f∗
1

1208.36 1596.03 1063.23 9598.45

f∗
2

1208.36 1596.03 1063.23 9598.45

vrpnc05 199 f 1512.77 10112.13 5737.19 33182.36 4153
f∗
1

1687.18 3040.09 2118.64 15630.12

f∗
2

1687.18 3040.09 2118.64 15630.12

vrpnc06 50 f 559.87 567.68 122.64 3350.03 98
f∗
1

559.87 567.68 122.64 3350.03

f∗
2

579.51 579.42 9.58 605.79

vrpnc07 75 f 995.55 2583.40 2285.52 11686.45 415
f∗
1

1070.72 1077.22 79.39 2512.38

f∗
2

1070.72 1077.22 79.39 2512.38

vrpnc08 100 f 945.33 946.03 38.49 2106.94 648
f∗
1

945.33 946.03 38.49 2106.94

f∗
2

965.35 965.21 11.81 999.43

vrpnc09 150 f 1352.35 1506.98 659.95 6979.06 2265
f∗
1

1404.10 1404.68 16.24 1460.92

f∗
2

1404.10 1404.68 16.24 1460.92

vrpnc10 199 f 1597.51 3683.01 2822.85 18401.49 5117
f∗
1

1697.23 1698.18 31.61 2415.77

f∗
2

1784.14 1783.08 18.10 1837.73

vrpnc11 120 f 1260.55 4775.36 3331.22 21620.35 1229
f∗
1

1492.17 1504.12 212.15 6115.15

f∗
2

1507.27 1507.52 26.71 1601.84

vrpnc12 100 f 883.55 8004.79 5372.87 30825.31 698
f∗
1

1138.66 1638.14 1359.21 9534.97

f∗
2

1138.66 1638.14 1359.21 9534.97

vrpnc13 120 f 1368.33 4629.15 3227.07 18598.48 1079
f∗
1

1565.28 1611.20 315.01 6819.88

f∗
2

1727.20 1734.02 73.03 3117.71

vrpnc14 100 f 952.46 7706.49 5126.85 29321.32 719
f∗
1

1033.58 1775.53 1707.77 13073.67

f∗
2

1125.71 2192.62 1891.78 12757.21
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Table 4: Vehicle routing with stochastic customers and repair procedure

Data file n Criterion f f∗ σ∗ f∗

wc CPU (s)
vrpnc01 50 f 527.46 424.39 28.30 494.89 99.30

f∗
1

528.22 423.92 28.85 488.88

f∗
2

528.22 423.92 28.85 488.88

vrpnc02 75 f 905.22 736.65 45.95 854.83 408.59
f∗
1

942.20 721.21 43.89 846.89

f∗
2

927.41 728.53 47.00 836.21

vrpnc03 100 f 852.05 703.72 34.09 788.00 573.17
f∗
1

852.14 696.88 32.00 776.41

f∗
2

852.14 696.88 32.00 776.41

vrpnc04 150 f 1130.42 977.25 32.34 1067.67 1856.12
f∗
1

1130.42 977.25 32.34 1067.67

f∗
2

1134.48 979.88 33.22 1065.78

vrpnc05 199 f 1466.17 1286.28 32.03 1366.59 4266.21
f∗
1

1483.99 1282.70 39.68 1384.81

f∗
2

1466.17 1286.28 32.03 1366.59

vrpnc06 50 f 567.92 457.43 32.55 533.51 97.52
f∗
1

577.01 456.09 34.14 553.61

f∗
2

569.51 459.30 32.16 528.00

vrpnc07 75 f 990.71 809.90 51.78 919.41 423.80
f∗
1

1000.02 806.21 56.00 945.15

f∗
2

990.71 809.90 51.78 919.41

vrpnc08 100 f 933.72 786.23 36.69 872.24 655.88
f∗
1

942.00 779.18 40.24 890.61

f∗
2

933.72 786.23 36.69 872.24

vrpnc09 150 f 1351.54 1152.77 40.75 1257.38 2329.98
f∗
1

1351.54 1152.77 40.75 1257.38

f∗
2

1351.54 1152.77 40.75 1257.38

vrpnc10 199 f 1574.00 1379.91 41.69 1497.29 5102.75
f∗
1

1577.60 1377.88 42.73 1483.68

f∗
2

1577.60 1377.88 42.73 1483.68

vrpnc11 120 f 1122.20 1019.96 21.55 1083.10 1215.21
f∗
1

1123.32 1019.26 22.61 1081.70

f∗
2

1125.26 1020.72 21.19 1074.73

vrpnc12 100 f 861.27 774.77 24.27 839.91 698.23
f∗
1

862.98 771.46 24.77 820.59

f∗
2

862.98 771.46 24.77 820.59

vrpnc13 120 f 1239.06 1121.11 22.49 1177.47 1008.80
f∗
1

1250.98 1117.50 23.57 1177.95

f∗
2

1239.06 1121.11 22.49 1177.47

vrpnc14 100 f 878.46 768.03 23.92 833.47 722.35
f∗
1

878.46 768.03 23.92 833.47

f∗
2

878.46 768.03 23.92 833.47
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