
HAL Id: hal-00180513
https://hal.science/hal-00180513

Submitted on 19 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Constraint-Based Testing with Dynamic
Linear Relaxations

Tristan Denmat, Arnaud Gotlieb, Mireille Ducassé

To cite this version:
Tristan Denmat, Arnaud Gotlieb, Mireille Ducassé. Improving Constraint-Based Testing with Dy-
namic Linear Relaxations. the 18th IEEE International Symposium on Software Reliability Engineer-
ing (ISSRE’07), Nov 2007, France. pp.00-00. �hal-00180513�

https://hal.science/hal-00180513
https://hal.archives-ouvertes.fr

Improving Constraint-Based Testing with Dynamic Linear Relaxations

Tristan Denmat Arnaud Gotlieb Mireille Ducassé
IRISA / INSA / INRIA

35042 Rennes Cedex, France
Tristan.Denmat,Arnaud.Gotlieb,Mireille.Ducasse @irisa.fr

Abstract

Constraint-Based Testing (CBT) is the process of gen-
erating test cases against a testing objective by using con-
straint solving techniques. In CBT, testing objectives are
given under the form of properties to be satisfied by pro-
gram’s input/output. Whenever the program or the proper-
ties contain disjunctions or multiplications between vari-
ables, CBT faces the problem of solving non-linear con-
straint systems. Currently, existing CBT tools tackle this
problem by exploiting a finite-domains constraint solver.
But, solving a non-linear constraint system over finite do-
mains is NP hard and CBT tools fail to handle properly
most properties to be tested. In this paper, we present a
CBT approachwhere a finite domain constraint solver is en-
hanced by Dynamic Linear Relaxations (DLRs). DLRs are
based on linear abstractions derived during the constraint
solving process. They dramatically increase the solving ca-
pabilities of the solver in the presence of non-linear con-
straints without compromising the completeness or sound-
ness of the overall CBT process. We implemented DLRs
within the CBT tool TAUPO that generates test data for
programs written in C. The approach has been validated
on difficult non-linear properties over a few (academic) C
programs.

1 Introduction

A trend in program testing is to combine static and dy-
namic analysis through the usage of the constraints technol-
ogy. Constraint-Based Testing (CBT) was introduced fif-
teen years ago, in the context of mutation testing [9], to
generate test cases by using constraint solving techniques.
Since then it has been continuously developed to cover sev-
eral application areas including hardware verification [16],
test data generation [13, 10, 19, 22, 21], counter-example
generation [15, 3], or software verification [6]. In many

works, the need for improving constraint propagation capa-
bilities of current constraint solvers was early recognized.
Indeed, it appeared that most interesting properties could
not be easily checked without enumerating a large portion
of the search space which was unreasonable in the presence
of large-sized integers or floats. Typically, one cannot enu-
merate all triplets of 32-bit integers in a reasonable amount
of time. Among the tools that implement the CBT approach,
InKa [10], ATGen [18] and PathCrawler [19] are automated
test data generators based on constraint propagation over
finite domains. These tools extract a constraint program
from the source code to be tested and then exploit constraint
propagation and backtracking to find test data that cover a
selected element (path, branch or statement) within the pro-
gram. CBT faces a number of technical difficulties, includ-
ing iterative constructs [10], pointers and dynamically al-
located structures [24, 19], floating-point computations [2],
and so on. Among them, dealing efficiently with nonlinear
expressions (disjunctions, multiplication over variables, ...)
is particularly challenging as these constructs are ubiquitous
in programs and properties.
In this paper we focus on the problem of nonlinear ex-

pressions over integers in CBT. Though the general the-
ory of nonlinear integer constraint solving is undecideable,
CBT tools based on finite domains constraint solvers han-
dle nonlinear computations by bounding the variation do-
main of program variables. Note that in imperative lan-
guages such as C or Java, variables of primitive types are
intrinsically bounded. When they are used to refute prop-
erties, CBT tools fall very easily into the worst case and
computation times become prohibitive. Indeed, in that case,
CBT tools try to show that a constraint system formed of
the negation of a property and a set of constraints extracted
from the program (called verification constraints) is unsat-
isfiable, which is a NP-hard problem over finite domains.
The main contribution of the article is to gather existing

techniques from various research fields (Constraint-Based
Testing, Linear Programming and Abstract Interpretation)

to design a hybrid constraint solver for solving verification
constraints. On-demand abstraction, or relaxation, is used
during the constraint solving process. We call this on-the-
fly relaxation a Dynamic Linear Relaxation (DLR). The re-
laxations are linear and then the simplex algorithm can be
used to reason on the abstraction. In this sense, the lin-
ear relaxations we use have much to do with the Abstract
Interpretation on polyhedra [7]. Using DLRs does not com-
promise the completeness or soundness of the overall CBT
process. Information computed thanks to the abstraction
is seen as extra-information communicated to the initial
non-linear constraint system, which remains the problem
to solve. DLRs have been implemented within TAUPO, a
constraint-based automatic test data generation for C pro-
grams and our first experimental results of checking diffi-
cult non-linear properties are presented.
Section 2 illustrates our approach over a small-sized (but

non trivial) C program and three non-linear properties to be
checked. Section 3 gives some background on Verification
Constraints generation and constraint solving. Section 4 ex-
plains how to relax non-linear constructs that can be found
in imperative programs and details the notion of Dynamic
Linear Relaxations. Section 5 describes our implementation
called TAUPO and first experimental results. We conclude
in Section 6.

2 Motivating example

int divide(long n) {
int r,i = 0; int j = 0;
int A1, S1 = 0; int A2, S2 = 0;
while(i++ < n && 2*S1 < n*n) {

A1 = S1;
S1 = A1 + 2*n - 2*i + 1; }

r = i - 1;
while(j++ < n && 2*S2 < n*n) {

A2 = S2;
S2 = A2 + 2*j - 1; }

printf(‘‘r: %d, A1: %d, A2: %d’’,r,A1,A2);
return r; }

Figure 1. The program divide

Nonlinear properties of interest include numerical prop-
erties extracted from the specifications of the programunder
test. As an example, consider the C program of Fig.1 that
solve the following ancient mathematical problem:
A farmer owns a field that is a rectangular isosceles tri-
angle. He wants to divide it into two fields of equal area,
following a line that is parallel to a side of the triangle. The
division can only be performed by whole numbers of feet
and there must be a free strip of width at least one between
the two new fields to plant some trees.

Figure 2. Dividing the farmer’s field

P1
P2
P3

Figure 3. Three properties for divide
Fig.2 explains the notations used in the program. Note

that areas A1 and A2 correspond to twice the actual areas,
in order to avoid non-integer variables.
Three properties (given in Fig.3) describe quite naturally

the intended behaviour of the program: (P1) each area must
be less than or equal to half the area of the original triangle ;
(P2) the splitting error (the overall area minus the sum of the
two field areas) is not bigger than a strip of width 1 ; (P3) the
theoretical line of splitting is located in the free area. This
latter property is stated as follows: the area on the right is
less than or equal to half the whole area and this area plus
the free zone is bigger than half the whole area.
Such properties and programs, although simple, are in

fact representative of more industrial C code and speci-
fications, which typically employ multiplication, division,
modulo, polynomial expressions, disjunction, negation, and
bit-to-bit operations to form non-linear expressions.
Constraint-Based Testing of the divide program may

consist in showing that the constraint systems built upon the
negation of the properties and any path of the program, is
unsatisfiable. Our CBT method first inserts assertions cor-
responding to the three properties at the end of the divide
program. Then, the program and the assertions are trans-
lated into a set of constraints by using the verification con-
straints generation process (see Sec.3). Finally, the resulting
constraint system is solved with the hybrid constraint solver
based onDynamic Linear Relaxations (see Sec.4.2). On this
example, our system automatically shows that no solution
exist to the verification constraints1 in 10.2s of CPU time
on an Intel Pentium M 2Ghz with 1Gb of RAM. Whilst
by using classical finite domain constraint solving, as im-
plemented within the TAUPO test data generator, checking
these nonlinear properties requires 53.3s of CPU time. This
corresponds to a speedup of more than 5.

1in the example, each loop is unwound at most 4 times

3 Background on Verification Constraints

For the sake of clarity, in the rest of the paper, we will as-
sume programs only contain basic statements: integer dec-
larations (T x), integer expressions and assignments (x := e),
statement sequences (), and conditional statements
(if(b) else). We suppose that loops have been elim-
inated by replacing them with a given number of condition-
als. Dealing with general loops in CBT is possible and has
been described elsewhere [10]. We will also assume that
properties to check appear in the source code as assertions
(assert e). This facilitates our presentation without compro-
mising its generality. Programs satisfying these restrictions,
although quite simple, suffice to encounter difficulties re-
lated to non-linear expressions. Note however that our CBT
tool also handles complex C programs that include pointer
variables and dynamic structures [12, 5], function calls and
floating-point variables [2] but this is outside the scope of
the paper.

This section briefly describes how to generate Verifica-
tion Constraints (VCs) that are constraints to be solved in
order to get a test case that violates an assertion. When one
shows that VCs have no solution then the corresponding as-
sertion is satisfied. Note that this process is inspired from
the Verification Conditions generation of the weakest pre-
condition calculus of E. Diksjtra.
The first step of VCs generation consists in building the

static single assignment form [8] of a program. In this
equivalent form, each variable is assigned exactly once in
the source code. For example, the piece of code

is translated into . A program
under static single assignment is free of destructive assign-
ments.
The second step consists in generating two sets:

and . is a constraints set whose solutions cor-
respond to program inputs on which statement either ter-
minates normally or violates an assertion. In other words,
solutions of correspond to possible executions (nor-
mal and erroneous) of the program. is a constraints
set whose solutions correspond to program inputs on which
execution of violates an assertion. Some of these solu-
tions might also not satisfy constraints of and, thus,
do not correspond to possible executions of the program.
Hence, erroneous executions of a program are those de-
scribed by both and . Consequently, a program
will be free of assertion violations iff

where denotes the set of integer solutions of a constraint
set. On the contrary, any integer solution of

S E(S) V(S)
false
false

Figure 4. Verification Constraint Generation

will be interpreted as a counter-example of an assertion of
the program.

Fig.4 shows how to generate both sets and
for the statements of our language. Program variables un-
der static single assignment form are translated into math-
ematical variables. To distinguish them, we capitalize the
mathematical variables on which constraints can be added.
A variable declaration is translated into a domain constraint
by using its type. For example, the declaration of a signed
short integer leads to the constraint

, where denotes all the integers in be-
tween and . The generation of and for ex-
pressions () and conditions () is trivial so it is left
apart to save space. Note that variable declaration and as-
signment statements cannot violate any assertion. Hence,

and . A se-
quence of statements leads to generate a conjunction of con-
straints in while it leads to generate a disjunction in

. Indeed, an assertion is violated in iff it is vi-
olated in OR in . For generating and on
conditionals and assertions, we use the notion of constraint
reification. This process consists in associating a boolean
variable to the truth value of a constraint. This is noted

where denotes any basic constraint. This process
is interesting as it avoids computing explicitly the negation
of constraint which can be complex in the presence of
non-elementary constraints. Reification deduces informa-
tion on both sides: if the reification variable is equal to
(resp.) then is true (resp. false) and then is added to
the constraint set while if constraint is shown to be true
(resp. false) then (resp.) is added to the con-
straint set. This process helps reasoning on the control flow
of the program and on the violation of assertions.

In our approach, we build a hybrid solver based on
Finite Domains constraint solving together with Dynamic
Linear Relaxations that exploits Linear Programming tech-
niques. The following gives a brief overview of these two
paradigms.

3.2.1 Local filtering

The fundamental idea in finite domains constraint solving
is to prune the domain of the variables by using each con-
straint in turn as a filter. By considering a single constraint
and its associated variables, one can infer that some values
of the domains of these variables cannot be part of a solu-
tion. For example, consider the constraint with

, and , where denotes
the domain of . As all variables are positive, the following
inference rules apply :

(1)
(2)
(3)

Note that inference rules depend on constraint and domains.
If variables were not positive, inference rules would be
more complicated. Using rule 1, a finite domains solver
infers that and, thus, remove values 7
and 8 from . With rule 2 the solver removes from .
Rule 3 leads to and thus domains is pruned
to , is pruned to , while is pruned to .
At this point, the process has reached a fixpoint which is a
state where no more value can be removed. Note that local
filtering is incomplete in the sense that some values that are
not part of a solution are not necessarily removed. In the
example, there are no values for and such that .

3.2.2 Constraint propagation

Constraint propagation is the process that permits to deal
with conjunction of constraints by propagating domain
pruning information through the constraint store. Fig.5
shows a simplified version of the constraint propagation al-
gorithm that is used in many finite domains solvers. The
algorithm takes as inputs a constraint store and an ini-
tial set of domains . Then, it iteratively applies the infer-
ence rules associated to each constraint of until a fixpoint
is reached. As a result, the algorithm produces a new set
of tighter domains such that no more pruning is possi-
ble. Note that contains all the solutions of the initial
constraint problem. By adding a constraint to the previous
example, we get the constraint store

. Domains are unchanged:
. As previously seen, the first constraint

leads to . Then, second
constraint leads to . Applying the first constraint
again leads to which
corresponds to the single solution .
Actually, the set of domains that is returned by the

propagation algorithm is not necessarily reduced to a single

Input: , a constraint store and a set of domains
Output: such that and

propagation(C,D)
repeat
forall do

until
return

Figure 5. Constraint propagation algorithm

point. During the propagation, if a domain becomes empty,
the constraint store is shown to be unsatisfiable: there is no
solution. If the domains are neither empty nor reduced to
a single point, one must resort to enumerate all the remain-
ing possible values of the domains to find a solution. This
process, called labelling, is used to guide the search toward
a solution. A variable is arbitrarily labelled to a value
from its domain and the constraint is added to the
constraint store. Constraint propagation is then restarted. If
the constraint store is shown to be unsatisfiable under the
hypothesis then is removed from the domain of
and another value is tried. This process is repeated until

either all the variables are labelled (a solution is found) or
the domain of one variable becomes empty which shows the
unsatisfiability of the constraint store.

Linear Programming encompasses a set of techniques
aiming at finding the optimal value of a linear expression in-
volving variables constrained by linear inequations [23]. A
linear program is as follows : under the con-
straints where is a (m,n)-matrix of values over
. is a vector of (rational) variables and is a vector of
rational values. is a linear expression with coefficients

in . Though it has an exponential worst case complexity,
the simplex algorithm is commonly used to solve linear pro-
grams as it performswell in practice. Note that satisfiability
of a set of linear constraints can also be decided using the
simplex as its first step aims at finding a solution to the
linear inequations [23].

4 Solving the Verification Constraints

In this section, we focus on how to efficiently solve veri-
fication constraints generated from a program and a prop-
erty to be checked. It is worth noticing that even if fi-
nite domains constraint propagation handles non-linear con-
straints, it behaves poorly on some trivial linear problems.

We start by giving such an example. Consider the following
program:

VC generation for program gives:

Solving leads to solve
with . Unfortunately, in this

example, constraint propagation without labelling does not
remove any value from the domains. Thus, one must resort
to enumerate all values from the domain of one variable
before concluding that the constraint system is unsatisfiable
and the assertion is verified.

In CBT problems, variable domains are potentially very
large and constraint systems often have a few solutions only.
This means that labelling has to be avoided as much as pos-
sible. Consequently, we suggest enriching constraint prop-
agation with more precise deduction rules, by propagating
also linear relationships among the variables.

The principle of Linear Relaxation is to generate a lin-
ear program over rationals that encapsulates all the solu-
tions of a nonlinear problem over integers [17]. In this tech-
nique, each nonlinear constraint is decomposed in binary
or ternary constraints by introducing additional temporary
variables. Then, each basic constraint over integers is over-
approximated with linear inequalities over rationals by tak-
ing the variation domain of variables into account. As a
result, the unsatisfiability of the linear program over ratio-
nals implies the unsatisfiability of the nonlinear constraints
over integers.

In our framework, we tuned the Linear Relaxation tech-
nique to deal with the Verification Constraints. Fig.6 de-
scribes the Linear relaxation of some basic constraints that
are encountered in the VCs. In the Figure, denotes the
lowest integer value of while denotes its greatest
integer value. Constraints on the left column of the array
hold over integers while constraints on the right column
hold over .

Constraint Linear-Relaxation reformulation

Figure 6. Linear Relaxation reformulation

Figure 7. Relaxation of multiplication

4.1.1 Handling multiplication

The formula of Fig.6 for multiplication directly follows
from the four following trivial inequalities:

In [1], it is proved that these inequalities are the smallest
linear relaxation of . Fig.7 shows a slice of the
relaxation where . Here, the rectangle corresponds to
the bounding box of variables and , the dashed curve
represents exactly , while the four solid lines
correspond to the inequalities of the relaxation.

4.1.2 Handling division, modulo and logical operators

Expressions built on division and modulo that are found in
the VCs can be treated with the Linear Relaxation reformu-
lation of the multiplication. The constraint
where denotes the Euclidian division rewrites to

Similarly, where denotes the Euclidian
remainder rewrites to

We applied the same principle for logical operators by
studying the semantics of operators of the C programming
language. The constraint where denotes
the “logical and” operator rewrites to

The constraint where denotes “logical or”
rewrites to

while ˜ where ˜denotes “logical not” rewrites2 to

4.1.3 Handling reification

As said previously, reified constraint associates
a boolean variable to the truth value of a constraint .
Without any loss of generality, let suppose that is of the
form and the function is bounded3, meaning
that there exist and such that
. Then rewrites to the conjunction

For example, consider the constraint , then
, , , and the

reified constraint rewrites to

Note that these inequations are interpreted over . As a
consequence, the boolean variable is interpreted as a ra-
tional over the continuous set . Hence, as already said,
the set of solutions of these constraints (over-) approximates
only the solutions over integers.

4.1.4 Handling disjunctions

We use a special constraint for disjunctions that was first
introduced in [10]. The principle of this constraint is to
prove that one of the two disjuncts is unsatisfiable with the
rest of the constraints and, thus, replace the overall disjunc-
tion by the other disjunct. When this case-based reason-
ing fails, the union of domains is computed. For example,

2In C, any non-null integer value is understood as true
3We consider finite domains and continuous functions only

from the disjunctive constraint with
domains , if one cannot
prove that one of the disjunct is implied by current infor-
mation in the constraint store then it is easy to deduce that

.
In our framework, we propose to extend the union prin-

ciple with linear relations. For example, considering
with domains we

deduce that while the above reason-
ing over domains would not have deduce anything new on
the domains. The smallest linear relaxation of the disjunc-
tion of two linear inequations subsets is the convex hull of
the corresponding polyhedra. Unfortunately, computing the
convex hull of two polyhedra when they are given under the
form of inequations is exponential in the number of dimen-
sions of the polydra. Consequently, as originally proposed
in the Abstract Interpretation community [20], we compute
only an (over-)approximation of the convex hull by using
a special operator called the weak-join operator. Roughly
speaking, the weak-join of two sets of inequations consists
in 1) enlarging the first polyhedron without changing the
slope of the lines until it encloses the second polyhedron ;
2) enlarging the second polyhedron in the same way ; 3)
returning the intersection of these two new sets of inequa-
tions. Fig.8 shows the difference between the convex hull
and the weak join of two polyhedra and . Formally, let

be the set of inequations that appear in or
in . Let suppose that each inequation in is of the form

where is a vector of coefficients, is a
vector of variables and is a rational number. For each
inequation in do

denotes a call to the simplex algo-
rithm that computes the maximum value of expression

under the linear constraints . Then,
. Based on the simplex, this algorithm

performs well in practice.

Previous section presented the notion of linear relaxation
within a bounding box. Here, we describe how to integrate
these linear relaxations within the constraint propagation
process through Dynamic Linear Relaxations (DLRs). The
term “dynamic” is justified by the fact that linear relaxations
depend on domains that are refined during the constraint
solving process.

Figure 8. Weak Join vs Convex Hull

4.2.1 Constraint propagation with DLRs

As shown previously, the linear relaxations we consider are
over-approximations of binary or ternary constraints com-
puted with the current domains of variables. These linear
relaxations are then considered by a dedicated linear solver
based on the simplex. As a first result, the linear solver can
sometimes report on the detection of inconsistency of the
original nonlinear problem. Unlike constraint propagation,
the linear solver is complete with respect to inconsistency
detection, meaning that if the relaxed linear program is in-
consistent then this will be discovered. In this case, the non-
linear constraint system is shown to have no solution mean-
ing that the corresponding assertion is verified. Recall that
our primary goal is to avoid as much as possible the costly
enumeration step to prove inconsistency.
Fig.9 shows the fixpoint algorithm that combines con-

straint propagation and DLRs. Function DLR(C,D’) calls
the dedicated linear solver and tests the satisfiability of the
relaxed linear problem. When the relaxed linear problem
contains solutions, one can still benefit from the simplex-
based linear solver to prune the variation domains of vari-
ables. This process, called enclose, projects the current
polyhedron over each variable and compares the resulting
domain with the current domain of variable, as explained
below.

4.2.2 The enclose process

The enclose process computes an integer bounding box that
includes all the integer solutions of the linear relaxed prob-
lem. The box can also include integer points that are no part
of the polyhedron, as shown in Fig.10.
Fig.11 details the algorithm of the process. This

algorithm performs two calls to the simplex algorithm per
variable appearing in the linear relaxation, one call for each
bound. Then, it prunes the current domain of variable by

Input: a constraint store and a set of domains
Output: such that and

propagation DLR(C,D)
repeat

until
return

Figure 9. Constraint propagation with DLRs

Figure 10. The process: the grey
box contains all the integer points inside the
polyhedron

updating its (rational) bounds. Finally, integer rounding
shaves the domain to fit with integer solutions only. For ex-
ample, if a call to the simplex returns as an upper bound
for , then variable has to be lower or equal to . The al-
gorithm of Fig.9 computes a fixpoint by successively apply-
ing constraint propagation and domain pruning via DLRs.
We describe this process on the following example.

VC generation for gives:

For the sake of simplicity, suppose that the domains of
variables , and have been pruned to . The
same reasoning applies if one keeps the original domains.
When solving , constraint propagation leads to

and by using
and . Using DLRs on this resulting constraint system

Input:
, a set of linear inequalities

Output:
A set of integer intervals defining an hypercube that
contains all the integer solutions of

enclose()
forall do

;

Figure 11. Algorithm for the process

leads to:

The enclose process prunes the domains of and to
while keeping . Then, con-

straint propagation is restarted and leads to
. A more precise linear relaxation is built, taking into

account these new domains and the process de-
duces . Then, constraint propagation is
restarted and leads to . Finally, the linear
relaxation is built on these domains and detects inconsis-
tency of the linear relaxation problem. On this example, this
is only the combination of constraint propagation and DLRs
that shows the inconsistency of the constraint system. As a
result, the assertion is shown to be satisfied.

5 Experimental results

We implemented DLRs within the test data generator
TAUPO. This tool implements a technique originating from
the INKA test data generator [10]. TAUPO handles a non-
trivial subset of the C programming language, including
floating point numbers [2], pointer variables [11], function
calls, dynamic structures. But, the tool does not currently
handle unconstrained pointer arithmetic, function pointers,
and non-trivial type casting.
Firstly, TAUPO translates a C program into static sin-

gle assignment form. In addition, this process normalizes
the expressions in 3-addresses code and associates boolean
variables to the truth value of conditions (reification). Sec-
ondly, the tool generates the Verification Conditions from

the code annotated with the assertions that come from prop-
erties, as described in Sec. 3.1. TAUPO exploits the follow-
ing constraint libraries:

1. the clpfd library of Sicstus Prolog [4] which imple-
ments a finite domains constraint solver ;

2. the clpq library [14] that implements a linear program-
ming solver based on simplex.

We made the two solvers cooperate by implementing our
own constraint propagation queue and by building a dedi-
cated constraint propagation solver.
For our experiments, we selected several programs from

the literature and compared our implementation with and
without DLRs. All the results have been computed using an
Intel Pentium M 2Ghz with 1Gb of RAM.

Tritype

The first program is the Tritype program, which
comes from the Software Testing folklore. An implementa-
tion of this program can be found in [6]. The program takes
three unsigned short integers as input and checks whether
these three numbers can be interpreted as the lengths of the
sides of an isoscele, an equilateral or a scalene triangle. Al-
though quite simple, this program is considered as difficult
to analyze as it contains many non-feasible paths (more than
forty over fifty-seven). Moreover, it contains many nested
conditionals and disjunctions that both introduce non-linear
constraints. We evaluated our approach based on DLRs by
checking several assertions extracted from [6]. We describe
our results for the following:

((i+j <= k)||(j+k<=i)||(i+k<=j))
==> result == 4

!((i+j <= k)||(j+k<=i)||(i+k<=j)) &&
(i==j) && (j==k) ==> result == 3

The first property states that when the three inputs , and
verify the condition, the corresponding figure is not a tri-

angle while the second states that the triangle is equilat-
eral. Checking these properties with TAUPO (with DLRs)
requires 5sec of CPU time for the first and 0.5s of CPU
time for the second while it requires more than 10 min of
CPU time if one disconnects the DLRs in TAUPO. Thanks
to the DLRs, the properties are checked without launching
any enumeration step, which explains this remarkable re-
sult.

product

The second program implements the function:
and contains disjunctions

and non-linear expressions (multiplication over variables).
We exploited TAUPO to show that the program returns only
non-negative values. Using DLRs, this check requires less
than 0.3sec of CPU time. Indeed, DLRs infer that each ab-
solute value is positive and, thus, that the product is also
positive. Without DLR no such information are deduced
during constraint propagation and a costly enumeration step
is required. For domains restricted to , the enumer-
ation step takes 192 sec. Note that the enumeration pro-
cess requires a time proportional to the size of the domain
whereas the deductions performed with DLRs are indepen-
dent from this size. Thus, on this example, the benefits of
DLRs can be made as important as desired and we limited
our experience to a small domain for . Although quite sim-
ple, this experience validates the idea presented in this pa-
per: relaxing non-linear constraints can drastically speed up
the constraint solving process in the context of Constraint-
Based Testing.

divide

Our third example is the divide program shown in
Fig. 1. Fig. 12 presents the total CPU time required for
checking the three properties given in the first section of
the paper (see Fig. 3) in function of the maximum number
of loop unfolding. Recall that this parameter corresponds
to the conversion of while loops into conditionals. In both

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7

CP
U t

ime
 (in

 se
c)

maximum unfolding of each loop

with DLRs

default

Figure 12. CPU time required for the divide
program

cases of this example, the CPU time required to detect in-
consistency is exponential w.r.t. the number of loop unfold-
ing. From the value , the overhead introduced by the com-
putations of DLRs makes the approach less interesting. But,
for smallest values of this parameter, the tight overhead is
undoubtly rewarded by the gain it makes on deductions dur-
ing constraint propagation.

with DLRs with enumeration
0.15s 0.05s
0.81s 1.39s
1.91s 5.53s
24.8s 138s

Table 1. Execution time of the solving pro-
cess in presence of a slow convergence

The algorithm presented on Figure 9 implements a fix
point computation that interleaves calls to the simplex algo-
rithm with classic propagation. On some examples, a slow
convergence phenomenon appears. For example, consider
the code

and the
following Verification Constraints are

. Suppose that variables and are
in the domain and that and have domains corre-
sponding to the int type. With these domains, constraint
propagation does not prune the domain of and . On the
contrary, when we compute the linear relaxations of these
constraints and call function , and are re-
duced to . If we recomputed the approxima-
tion and recall function , domains are reduced to

. And this phenomenon continues until domains
become empty. This examples exhibits a slow convergence
phenomenon that can compromise the interest of DLRs on
some specific cases. However, without the DLRs a full enu-
meration of the domain of is required to detect the in-
consistency of the system. Table 1 shows the CPU time re-
quired to detect the inconsistency in function of the interval

in both cases.

6 Conclusion

In this paper, we introduced Dynamic Linear Relax-
ations (DLRs) as an improvement of constraint propaga-
tion in Constraint-Based Testing techniques. We showed
that DLRs boost our current implementation called TAUPO
on several programs extracted from the literature. We also
pointed out that our approach could be responsible of a slow
convergence phenomenon. DLRs are general and could be
integrated within other Constraint-Based Testing tools. The
price to pay is a tight overhead that is rewarded by more
precise deductions during constraint propagation.

References

[1] F. A. Al-Khayyal and J. E. Falk. Jointly constrained bi-
convex programming. Mathematics if Operations Research,

8(2):273–286, 1983.
[2] B. Botella, A. Gotlieb, and C. Michel. Symbolic execution

of floating-point computations. The Software Testing, Verifi-
cation and Reliability journal, 16(2):pp 97–121, June 2006.

[3] M. D. C. Pasareanu and W. Visser. Finding feasible abstract
counter-examples. International Journal on Software Tools
for Technology Transfer, 5(1), 2003.

[4] M. Carlsson, G. Ottosson, and B. Carlson. An open–ended
finite domain constraint solver. In Proc. of Programming
Languages: Implementations, Logics, and Programs, 1997.

[5] F. Charreteur, B. Botella, and A. Gotlieb. Modelling dy-
namic memory management in constraint-based testing. In
AIC-PART (Testing: Academic and Industrial Conference),
Windsor, UK, Sep. 2007.

[6] H. Collavizza and M. Rueher. Exploration of the capabili-
ties of constraint programming for software verification. In
Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’06), pages 182–196, 2006.

[7] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Proceedings of
Symp. on Principles of Programming Languages, pages 84–
96. ACM, 1978.

[8] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
F. Zadeck. Efficently computing static single assignment
form and the control dependence graph. ACM Transac-
tions on Programming Language and Systems, 13(4):451–
490, Oct. 1991.

[9] R. DeMillo and J. Offut. Constraint-based automatic test
data generation. IEEE Transactions on Software Engineer-
ing, 17(9):900–910, September 1991.

[10] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data
generation using constraint solving techniques. In Proc. of
ISSTA’98, pages 53–62, Clearwater Beach, FL, USA, March
1998.

[11] A. Gotlieb, T. Denmat, and B. Botella. Constraint-based
test data generation in the presence of stack-directed point-
ers. In 20th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE’05), Long Beach, CA,
USA, Nov. 2005. 4 pages.

[12] A. Gotlieb, T. Denmat, and B. Botella. Goal-oriented test
data generation for pointer programs. Information and Soft-
ware Technology, 49(9-10):1030–1044, Sep. 2007.

[13] N. Gupta, A. Mathur, and M. Soffa. Automated Test Data
Generation Using An Iterative Relaxation Method. In Foun-
dations on Software Engineering, Orlando, FL, Nov. 1998.
ACM.

[14] C. Holzbaur. OFAI clp(q,r) Manual. Austrian Research In-
stitutefor Artificial Intelligence, Vienna, 1.3.3 edition.

[15] D. Jackson and M. Vaziri. Finding bugs with a constraint
solver. In Proc. of ISSTA’00, pages 14–25, 2000.

[16] D. Lewin, L. Fournier, M. Levinger, E. Roytman, and
G. Shurek. Constraint satisfaction for test program gener-
ation. In IEEE International Phoenix Conference on Com-
munication and Computers, 1995, 1995.

[17] G. P. McCormick. Computability of global solutions to fac-
torable nonconvex programs: Part 1 - convex underestimat-
ing problems. Mathematical Programming, 10:147–175,
1976.

[18] C. Meudec. ATGen: automatic test data generation using
constraint logic programming and symbolic execution. Soft-
ware Testing, Verification and Reliability, 11(2):81–96, June
2001.

[19] P. M. N. Williams, B. Marre and M. Roger. Pathcrawler:
Automatic generation of path tests by combining static and
dynamic analysis. In In Proc. Dependable Computing -
EDCC’05, pages 281–292, 2005.

[20] S. Sankaranarayanan, M. A. Colòn, H. Sipma, and
Z. Manna. Efficient strongly relational polyhedral analysis.
In Proc. of VMCAI’06, pages 115–125, 2006.

[21] B. Seljimi and I. Parissis. Using clp to automatically gener-
ate test sequences for synchronous programs with numeric
inputs and outputs. In Proc. of ISSRE’06, pages 105–116,
2006.

[22] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit
testing engine for c. In Proc. of ESEC/FSE-13, pages 263–
272. ACM Press, 2005.

[23] G. Sierksma. Linear and Integer Programming. Dekker,
1996.

[24] S. Visvanathan and N. Gupta. Generating test data for func-
tions with pointer inputs. In Proceedings of the 17th IEEE
Int. Conf. on Automated Software Engineering (ASE’02),
Edinburgh, UK, September 2002.

