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~ Exact solution method to solve large scale
Integer quadratic multidimensional knapsack
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D. Quadri, E. Soutif, P. Tolla

Abstract

In this paper we develop a branch-and-bound algorithm ftwirsp a particular
integer quadratic multi-knapsack problem. The problem tudysis defined as the
maximization of a concave separable quadratic objectimetion over a convex set
of linear constraints and bounded integer variables. Oactesolution method is
based on the computation of an upper bound and also includgsracedure tech-
nigues in order to reduce the problem size before startiadptanch-and-bound pro-
cess. We lead a numerical comparison between our methodereldther existing
algorithms. The approach we propose outperforms otheepres for large-scaled
instances (up t@000 variables and constraints).

Key words : Integer programming, separable quadratic function, tization, sur-
rogate relaxation, branch-and-bound

1 Introduction

We develop in this paper an exact solution method for solaipgrticular class of non-
linear knapsack problems. The integer quadratic multidsrenal knapsack problem
(QM K P), which is known to be NP-hard [13] (Lueker, 1975), involvke thaximiza-

tion of a concave quadratic and separable function over eexaset of linear constraints

1A extended abstract of this paper appeared in LNCS 4362 3468, 2007
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B&B to solve large scal€) M K P

(called knapsack constraints) and bounded (pure) integg&ables. It can be written as:

max f(z) =35, fi(x;) = 300, ¢y — djas
Z?:l Q5 T j < bZ,Z = 1, .., m
st.| 0<xz;<w;,j=1,...,n

z;eNj=1,..,n

(QMKP)

where the coefficients;, d;, a;;, b; are nonnegative. The bounds of variablesz;
are integers such that < (53-) because of the concavity of eagh =7 < (57-), where
J J

7} is the optimal solution of the programax. o f;(;)-

Problem(QM K P) has wide applications, including financial models [4] ([Djeur
et al., 1988), [5] (Faaland, 1974) production and inventognagement [2] (Bretthauer
and Shetty, 2002). However, most of the knapsack probletasaiure has addressed
attention to specialized versions. For instance, therdaage bodies of literature fo-
cusing on knapsack problems with linear objective functma a single constraint or
m contraints (see [6] (Fayard and Plateau, 1974), [14] (Marend Toth, 1983), [7]
(Fréville and Hanafi, 2005), on knapsack problem with thedgatéc objective function
of (QM K P) over a single linear constraint and 0-1 or pure integer et (see [1]
(Billionnet and Soutif, 2004), [16] (Pisinger et al., 20012)], [15] (Mathur and Salkin,
1983)). Nevertheless several applications require thetgare integer variables and
capacity constraints, such as capital budgeting.

Even if many theoretical approaches have been proposedv® isbeger quadratic
problems (see for instance [3] (Cooper, 1981), [11, 12] (korl985 and 1990), only
few of these methods have been implemented in practice seXperimental results can
be found. There have been a limited number of papers studyiiadg K P). Djerdjour
et al. (1988) [4] proposed a branch-and-bound algorithneifpally designed to solve
(QM K P), unfortunately the computational results were limitednstances up t@0
variables and constraints. However, the real-world apfibos require effective methods
which are able to solve large scale instances of the probl&mee,(QM K P) is NP-
hard, one should not expect to find a polynomial time algorifor solving it exactly.
Hence, we are usually interested in developing branchkamnuhd algorithm. A key step
in designing an effective exact solution method for such aimiaation problem is to
establish a tight upper bound on the optimal value. In a pres/study [17] (Quadri et al.,
2007), we present an effective upper bound method basedm@eaaization and surrogate
relaxation. We have compared analytically and computatiprour upper bound to the
bound suggested by Djerdjour et al. (1988) [4], the basic&lRxation of QM K P), and
the LP-relaxation of the equivalent linearized formulatid/ K P). Simulation results,
over a set of large instances (upA@0 variables and constraints), showed that our upper
bound is of good quality and closer to the optimum than theetother. Finally, the
proposed upper bound can be computed in a very quick CPU time.
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We propose in this present study, using our tight upper b@LifildQuadri et al., 2007)
to develop an exact solution method to sol¢g\/ K P). Our algorithm also incorporate
preprocessing procedures in order to reduce the size ofiti@ problem before start-
ing the branch-and-bound and a heuristic to find a good flEasidiution given in [17]
(Quadri et al., 2007). We then compare the computationa tfrour method with three
other existing methods which include the three upper bopnelgously mentioned. Our
computational testing, presented latter in this paper av&et of large instances (up to
2000 variables and constraints) evidences the computatiomdrpeance of our branch-
and-bound and its ability to solve real-sized instances.

The paper is organized as follows. The next section is destida a description of the
existing exact solution methods tQ M K P). Section 3 summarizes the upper and lower
bounds algorithms we proposed in a previous work and we uteiproposed branch-
and-bound to solvéQ) M K P). Our branch-and-bound also incorporates pre-processing
procedures which are details in Section 3. The computdti@salts are reported in
Section 4. We finally conclude in Section 5.

In the remainder of this paper, we adopt the following notzi letting(”) be an
integer or a 0-1 program, we will denote i¥) the continuous relaxation problem of

(P). We letZ|P] be the optimal value of the problef®) andZ[P] the optimal value of
(P).

2 Existing exact solution methods

In this section we describe three existing exact solutiothows to tackleQM K P).
Each of them include an upper bound whose quality has beablis$ied in a previous
work in [17] (Quadri et al., 2007). We will compare the comgttidgnal performance of the
exact solution method we proposed with these three othechrand-bound algorithms
in Section 4.

The Djerdjour, Mathur and Salkin exact solution method (DMS) [4]. These authors
develop a branch-and-bound algorithm based on the connpuiat an upper bound of
better quality than the one provided by solving the LP-raten of (QM K P). This up-
per bound is computed solving a polynomial problem derivechfa linearization of the
initial problem and a surrogate relaxation. The authors fisge a direct expansion orig-
inally proposed by Glover [8] (Glover, 1975) of the integariables and apply a piece-
wise linear interpolation to the initial objective funatianitially used by [15] (Mathur
and Salkin, 1983).

A zero-one linearization branch-and bound (LBB). Mathur and Salkin develop in [15]
(Mathur and Salkin, 1983) an exact solution method for timglsi constraint integer
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B&B to solve large scal€) M K P

guadratic knapsack problem. These authors transform ited ojuadratic problem into a
0-1 linear equivalent formulation by applying a direct exgian on the integer variables
and a linear interpolation on each quadratic functfarirhey simply solve the equivalent
problem using a solver so as to obtain the optimal value ofotiginal problem. The
0-1 linearization branch-and-bound we suggest to testliee 2o optimality (QM K P)

is a straightforward application of [15] (Mathur and Salki®83) to the case oh ca-
pacity constraints. Following the approach of these astig conver{ QM K P) to a
0-1 multidimensional knapsack problgd/ K P) which optimal value is equal to the one
of (QM K P) (the formulation of(M K P) is given in Section 3.1). The corresponding
branch-and-bound algorithm computes at each node of tlehstae the LP-relaxation
of (M K P) which provides an upper bound of the optimal valug &f X' P). This ap-
proach has never been used to solve dirg@dy/ K P).

A standard branch-and-bound algorithm (SBB). Since the objective function ¢€) M K P)
is concave and the feasible set is convex the LP-relaxafitmsproblem can be found
and thus provides an upper bound {gfM K P). Consequently, a classical branch-and-
bound consists of computed this bound at each node of thelseae.

3 Theproposed branch-and-bound algorithm

In this section we develop a branch-and-bound algorithntlvkey step is the computa-
tion of a tight upper bound [17] (Quadri et al., 2007). Thipepbound method involves
two improvements of the algorithm proposed by Djerdjourle(E988) [4] summarized

in Section 2. We also develop a heuristic which provides aldeasible solution we use
as a starting point of the process. Before starting the isolytrocedure we implement
three pre-processing procedures to reduce the problem #eeimplemented the pro-
posed branch-and-bound algorithm using a best bound gyratkich chooses the node
with the best (the lowest) upper bound.

3.1 Upper bound computation

The proposed upper bound is computed by applying a lingarizand a surrogate relax-
ation presented in [17] (Quadri et al., 2007), which is dedifrom two improvements of
the bound suggested by Djerdjour et al. (1988) [4]. The fingt speeds up the computa-
tional time of the bound. The second improvement increasetiality of the bound. We
now summarize the main steps of our method to get a tight upmend for(QM K P).

First an equivalent formulation ¢f) M K P) is obtained by using a direct expansion
of the integer variables; and by applying a piecewise linear approximation to the ini-
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tial problem as employed in [4] (Djerdjour et al., 1988). Gequently,(QM K P) is
converted into & — 1 multidimensional knapsack problem/ K P):

(MEP) s.t. 2j—1(ai D oply Yin) S biy i=1,..,m
yir € {0,1}

whered " vk = x5, 5jk = fir — fik—1 andfj, = c;k — d;k.

The second step consists in getting the surrogate probleociased to the LP-relaxation
of (MK P) as also discussed in [4] (Djerdjour et al., 1988). The rastilproblem
(K P,w) can be written as

max 30y (s siwtin)
(KP,w) st Zj:l[Zi:l wiai] Dol Yie < D2, wibi
Yik € {0, 1}

The LP-relaxation of K P, w) provides an upper bound f¢t)M K P) (a proof is
givenin [17] (Quadri et al., 2007)). Nevertheless the gyaif this bound depends on the
surrogate vector employed to establish the surrogate gmabl

The optimal surrogate multiplier, denoted by, corresponds to the optimal solution
of the dual surrogate proble(® D) (see [9] (Glover, 1975)). The problef§ D) can be
expressed asin,>o Z[K P,w|. Since the objective function ¢fSD) is quasi-convex
Djerdjour et al. (1988) [4] solvéS D) via a local descent method which is shown in [17]
(Quadri et al., 2007) to be very time consuming. We then ssigge[17] (Quadri et al.,
2007) , an alternative way to compui€ which is assessed to be quicker than the local
descent method, using the result that the optimal solutiaiual of (A K P) provides an
optimal solution of(SD).

Experiment results assess the computational efficiendy®étternative way for com-
putingw* (see [17] (Quadri et al., 2007) ).

The second improvement proceeds from an additional stagkigh we solve K P, w*)
in 0-1 variables rather than in continuous variables asdorse by Djerdjour et al. (1988)
in [4]. Analytically the quality of the bound is increasedhé experiments quantify the
gap provides by this additional step.

3.2 Lower bound computation

In this section we sum up the main steps to get a feasibleigoltdar (QM K P). This
lower bound is used in [17] (Quadri et al., 2007) to assessqtiadity of our upper bound.
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B&B to solve large scal€) M K P

In this present work it will be used as a good starting sofuti@he main idea of the
proposed heuristic is the following. Since it is proved ii][{Quadri et al., 2007) that the
optimal value of(M K P) is closer to the optimum of@ M K P) than the optimal value
of (QM K P), we start from the optimal solution;®, of (M K P), to tackle a feasible
solution for(QM K P). Letting ), v;, = «, for each variable;; of (QM K P), we add
to (QM K P) the constrainta; | < z; < |«;]+1, where| o, | denotes the greatest integer
smaller or equal tay;,. Thus, each variable becomes bivalent, and since the olgect
function is separable, it can straightforwardly be showat the resulting problem is a O-
1 linear multidimensional knapsack problem. Obviouslyyisg this knapsack problem
yields a feasible solution fdi M/ K P) which is not necessarily optimal f¢€) M/ K P).

3.3 Pre-processing techniques

Most commercial integer programming solvers propose appoeessing phase which
simplifies the problem being solved before starting a braamadrbound procedure. This
pre-processing phase consists of reducing the number iafl@s and constraints of the
initial problem, using logical issues and variable fixatteohniques. In this section we
describe the pre-processing procedures we implementedan to speed up the solution
of (Q M K P) and discuss the utility of such procedures.

We use three pre-processing procedures: the first one sletedtdiscards some re-
dundant constraints, the second one reduces the boundiafelger variables (using [10]
(Hammer et al., 1975) ), and the third and last one fixes sofhedbiables to their optimal
values.

3.3.1 Eliminating redundant constraints

We first discard constraints which are trivially implied bgtaong one. Sincé) M K P)
only includes knapsack constraints, this strong constiasimply found by conS|der|ng
the constraint with the smallest right-hand-side, sayThen we sety;, = max; <<, —- s

Suppose that a constrainverifiesa; g L we have:
big ’

Vie{l,...,n}, ij < oy,

0]

and since for alf andj a;; > 0:

n n n
YV Vel’ifying Constrainﬁo, Zaijxj < Z O T < o Zaiojxj < aibio < b
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Consequently, when a constrainsatisfiese; < 2=, this constraint is immediately sat-

isfied when constraint, is verified. This crlterlon allows us to detect the constimin
obviously dominated by constraift

We could iterate this technique using not only the constriaiciuded the smallest
right-hand-side but also the one with the second smallghkt-hand-side (and so on).
However, this idea does not appear experimentally efficient

This simple technique, whose complexity(gmn), allowed us to significantly re-
duce the number of constraints of all the considered ins&nAs discussed in Section
4. its efficiency strongly depends of the structure of thesatgred instance. Indeed, we
randomly generate three kinds of instances: squared westaim = m), rectangular in-
stances/w = 5%n) and correlated instances. The reductions obtained arecaf guality
(between 52% and 56% of the constraints can be removed) mongehe squared and
correlated instances.

3.3.2 Reducing the bounds of the integer variables

Since the objective functiofi of problem(QM K P) is separable intaw concave sub-
functions f;, each integer variable; is naturally bounded bgi Consequently, the

boundu; of variablex; is always chosen betweérandmax (1, 5 when instances are

randomly generated. However a high value of parametenay considerably increase
the difficulty to solve the problem (for example the most diift instances generated in
Section 4 involve integer bounds up70).

Hammer et al. (1975) propose in [10] a technique called caimgtpairing to reduce
the bounds of some integer variables verifying a set of limeaqualities. The idea of
this method is to arbitrarily choose two inequalities frdme set, say 7, a;z; < ag
and 2?21 bjz; < by, and to establish a third surrogate one obtained by muitiglthe
second constraint by a positive parameétand by summing it with the first constraint.
The surrogate constraint isy 7 (a; + tb;)x; < (ag + tby). Whent is judiciously
chosen, the surrogate constraint may allow us to tighteboleding interval of variable
z;, [0,u,], for instance by noting that variable, may no more take the valugor u;
without violating the surrogate constraint. The authomvslit suffices to successively
affect onlyn + 2 values tot in order to get as many conclusions as possible about the
bounds of all the variables from the two constraints inlgighosen. The complexity of
the whole procedure i9(n?) for each couple of pairing inequalities.

This technique seems relatively useful if we consider thEegrmental results in Sec-
tion 4. These experiments show for instance that the numbpure integer variables
(those having:; > 1) decrease on average from 70% to 40% for the correlatechicessta
and from 38% to 21% for the squared instances.

Cahiers du LAMSADE 7
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3.3.3 Fixing some0-1 variablesto their optimal value

When applying the last pre-processing technique, the nuwiti@ 1 variables has prob-
ably increased. Thus, it is natural to try to fix some of the @fiables to their optimal
value in order to decrease the problem size. Let a 0-1 vaiablyz;, we first need to
guess its value in the optimal solution. We use the value af the best known feasible
solution and try to prove that; cannot have a different value in any optimal solution.
Considering a sett of variables indices that all are supposed to be equal to 0 opémal
solution, we add the following constraint to the problem:

el

then we compute an upper bound UB of the modified problem ub@gnethod pre-
sented in [17] (Quadri et al., 2007). If the computed upparmiubis strictly lower than
the value of the best known feasible solution then we canladedhat all the variables
indexed in/ can definitively be fixed t®. A similar constraint can be added for fixing
variables to 1 instead ofas explained in [1] (Billionnet and Soutif, 2004).

The size of the sef is an important parameter for the success of such a fixation
method. Choosing/| = 1 comes down to fix variables one by one, and choosiihg
too large generally fails since no fixation can be done (thalityuof the upper bound
does not allow us to simultaneously fix all the variables x&dEin 7 when/ is too large).
Experiments show that fd) M K P) and the bound used to solve it, a good compromise
consists in choosing | = 2.

This procedure allows us to fix on averagg) of the 0 — 1 variables. However
it appears much more time-consuming than the two previoes.ot can sometimes
constitute more than0% of the whole CPU-time necessary to find the exact solution
using the branch-and-bound procedure.

4 Computational results

The computational performance of the four branch-and-bdgomocedures was tested
through a set ofl00 randomly generated squared problems (ie.= m) and corre-
lated problems (i.e.c; = >, a;; andd; = cpin/2, Wherec,,;, is the minimum of
all ¢; values). The correlated problems are well-known to be mdfiewlt to solve in
practice for0 — 1 linear multidimensional knapsack problgm/ K P), which is a spe-
cial case of QM K P), than squared instances. The number of variables takewileir
ues in the sef100, 500, 1000, 1500, 2000}, with 10 replications per n-value. As in [4]
(Djerdjour et al., 1988) integer coefficienis;, c;, d; were uniformly drawn at random
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Table 1: Average computational time of the four methods &mheproblem type

n m SBB LBB DMS OurBB
Squared
100 100 1.31 0.63 2.13 1.5
500 500 120.12 16.1 - 11.5
1000 1000 346.56 283.3 - 50.5
1500 1500 1178.4 3925 - 183.7
2000 2000 2557.9 1369.4 - 305.2
Correlated

100 100 0.7 0.1 3.35 0.4
500 500 955.7 129.4 - 410.4
1000 1000 1480.24 650.13 - 1280.2
1500 1500 - - - -
2000 2000 - - - -

in the range{1..100}. Coefficientsh; andw; are integers uniformly distributed such that
50 < b < 70 aujandl < uy < (2%}, where[z]| denotes the smallest integer
greater than or equal ta '

The percentage of pure integer variables (with> 1) rises38.6% on average for
squared instances rather than it is equalt@ on average for correlated problems. The
average value of the bound for the pure integer variables reactis2 with a standard
deviation2.24 over 50 instances for squared problems and ris¢$ on average with a
standard deviatiofi over50 for correlated problems.

Our branch-and-bound as well@MSwere coded in C language whereas the optimal
solution provided bySBB andLBB were got using a commercial solver ILOG-Cplex9.0.
Simulations were run on a bi-xeon 3.4 Ghz with 4Go of main mgmo

4.1 General commentson the comparison of the computational time
of the four methods

Table 1 displays, for the four exact solution methods meetibin this paper, the average
computational time in CPU seconds over 10 replications &heproblem type and size.
We limited to10800 secondsg hours) the solution time.

The results in Table 1 indicate clearly the poor performasfd@MS which was not
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able to reach the optimum in the chosen limit time for all peots types wittb00 vari-
ables and more. Itis provedin [17] (Quadri et al.) that is e fact thaDMSemploys
a very time consuming local descent search method to olitaingtimal surrogate mul-
tiplier w* (see Sections 2 and 3).

Sguared instances. Our branch-and-bound clearly outperforms the three qilee-
dures. For large scaled instancesX 1000) our exact solution method is approximately
times quicker than the second best apprda8B and it is almost times faster thasBB.
This conforts the ability of our method to solve large sizealgems in a very competitive
time with an average df’05 minutes 805 seconds) for th@000-variables instances.

Correlated instances. As expected the correlated problems are difficult to beexbby
the four exact methods. The size of the instances only upiovariables and constraints.
Nevertheless, concernirig)0-variable problemd.B B is the most appropriate algorithm
taking 10”00 minutes on average to find the optimum. Our branch-and-bstithdolves
the same instances in a competitive CPU tiha&rfies slower thah.BB).

4.2 Analysisof the experimentsresults

The improvement capability of our branch-and-bound candipéaened by three features,
namely: (i) the feasible solution, (ii) the upper bound ain}ithe pre-processing proce-
dures.

Our feasible solution (see [17] (Quadri et al., 2007). Actually, providing to our
branch-and-bound algorithm another feasible solutiorpafrer quality) did not signif-
icantly debase its solution time. Consequently, the goaalityuof the initial feasible
solution does not clearly explain the performance of oucegalution method.

Our upper bound and pre-processing procedures. sguared instances. The impact of
both the upper bound we proposed in [17] (Quadri et al., 2@@d) the pre-procedures
used clearly appear. Indeed, our upper bound is alwaysrdiogbe optimum than the
three other utilized il M S, LBB andSBB. Moreover, this bound takes abolit sec-
onds on average to be computed. On the other hand, our metbldiés part of the
procedure of Hammer et al. (1975) [10] to reduce the boundsf the pure variables.
This actually leads to convert many pure integer variabis 0-1 variables. The av-
erage proportion of pure integer variables decreases $&jinto 21.02%. The fixation
technigue eliminates0.25% of variables which value is fixed tb Finally, the search of
redundant constraints allows to keég)t of the initial constraints. Consequently, both
the upper bound method and the pre-procedure techniquesigreffective for squared
instances.

Our upper bound and pre-processing procedures. correlated instances. The upper
bound is of poor quality in comparison with the result obtfminthe squared problems.
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Nevertheless, the relative gap is on averagg and the bound is computed 130 on
average (see [17] (Quadri et al., 2007)). On the other h&edyite-procedure techniques
are quite well effective. Indeed6.6% of constraints can be removed on averatjé;

of variables are fixed to their bound. Before starting thegrazedure process, ondp%

of variables are binaries. The impact clearly appeéés$s of variables ard) — 1 after
applying the techniques. In spite of the fact that theselteswe of good quality, our
branch-and-bound does not solM#)0-variable problems faster tharBB.

5 Conclusion

We develop in this paper a branch-and-bound algorithm teesthle integer quadratic
multidimensional knapsack problem. The upper bound angit&grocedure techniques
that we incorporate allow us to solve large-sized squarsi@ntes, up ta000 variables
and constraints. The classical branch-and-bound, whigsually used to solve such con-
vex problems is of poor quality as well as the method propbsedjerdjour et al. (1988)
[4]. Moreover, the method suggested by [15] (Mathur and i8alko83) we extended to
the case ofQQ M K P), which has never been utilized to sol\@M K P) directly, outper-
forms the three other branch-and-bound concerning theledsed problems.
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