A. Agrachev, B. Bonnard, M. Chyba, and I. Kupka, Sub-Riemannian sphere in Martinet flat case, ESAIM: Control, Optimisation and Calculus of Variations, vol.2, pp.377-448, 1997.
DOI : 10.1051/cocv:1997114

A. Agrachev, U. Boscain, and M. Sigalotti, A Gauss-Bonnet like formula on two-dimensional almost Riemannian manifolds, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00097173

B. Bonnard and J. Caillau, Optimality results in orbit transfer, Comptes Rendus Mathematique, vol.345, issue.6, pp.319-324, 2007.
DOI : 10.1016/j.crma.2007.07.028

URL : https://hal.archives-ouvertes.fr/hal-00540259

B. Bonnard and J. Caillau, Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.24, issue.3, pp.395-411, 2007.
DOI : 10.1016/j.anihpc.2006.03.013

URL : https://hal.archives-ouvertes.fr/hal-00540258

B. Bonnard, J. Caillau, and R. Dujol, Energy minimization of single input orbit transfer by averaging and continuation, Bulletin des Sciences Math??matiques, vol.130, issue.8, pp.707-719, 2006.
DOI : 10.1016/j.bulsci.2006.03.005

URL : https://hal.archives-ouvertes.fr/hal-00540255

B. Bonnard, J. Caillau, R. Sinclair, and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.26, issue.4, 2007.
DOI : 10.1016/j.anihpc.2008.03.010

URL : https://hal.archives-ouvertes.fr/hal-00212075

B. Bonnard, J. Caillau, and E. Trélat, Geometric optimal control of elliptic keplerian orbits, Discrete Contin. Dyn. Syst. Ser. B, vol.5, issue.4, pp.929-956, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00086345

B. Bonnard and M. Chyba, Singular trajectories and their role in control theory, Number 40 in Math. and Applications, 2003.
DOI : 10.1007/978-1-4471-5058-9_49

B. Bonnard, C. Kontz, and D. Sugny, Optimal control for physicists. Preprint, Institut math, Bourgogne, 2007.

R. Sinclair and M. Tanaka, The cut locus of a two-sphere of revolution and Toponogov's comparison theorem, Tohoku Mathematical Journal, vol.59, issue.3, 2007.
DOI : 10.2748/tmj/1192117984