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Abstract: Techniques to reduce LCD motion blur are
extensively used in industry and they depend on an
inherent LCD parameter: response time. However,
normative response time is not a sufficient refeeeto
improve LCD performance and all the gray-to-gray
response time quantities are required to obtairoed g
improvement quality. However, measuring and
gathering all the gray-to-gray transitions takes an
excessive time measurement. Consequently, we pgopos
a novel LCD model to simulate as well as compuss/gr
to-gray transitions (response time and behaviannfia
reduced measurement set in order to decrease the
response time measurement.

Keywords: Liquid crystal display, response time model,
curve fitting,

1 Introduction

Recently, active matrix liquid crystal display
acceptance has considerably increased for PC msnito
and TVs. TFT-LCDs carry the advantage of flatness,
weight, low power consumption and high resolutioih b
also, share an inherent weakness, motion bluralae t
hold type driving method and response time of tqui
crystal cells. This previous defect produces tgilin
phenomena and motion blur, easily detected asualvis
artefact [1].

For many years, reducing LCD response time and
motion blur has been an industry focus to improve
display image quality. Many solutions were proposed
such as black insertion [2], blinking backlight ,[3]
double frame-rate [4], motion compensated inverse
filtering [5] and the widely used technique intreéd in
1992, called overdrive [6].

However, speeding-up the LC pixels response time
with current overdrive methods needs a Look-Up-&abl
(L.U.T.) which contains correction data. These ealu
are obtained with measurements of original liquigstal
cell response time with a specific measurementesyst
[7]. Figure 1 shows an example of gray-to-gray oese
time for rising transitions (from gray levels tatiter
ones), obtained from a 19-inch Twisted Nematic LCD
monitor.

A classical approach with basic process to cdgrect
fill a L.U.T. takes an excessive time. However, som
promising efforts recently appeared [8-9] to desecthe
computation time.

For instance, 82x32 Look-up-Table needs at least

496 response time measurements for rising transitio
be correctly filled. Furthermore, it is necessarynake
several measurements for each desired responseértime
order to obtain an accurate mean value.

Response Time

Figure 1: Discrete gray to gray response time of the 19-
inch monitor panel for rising transitions.

However, this amount of measurements can be
drastically reduced. Therefore, we introduce a new
approach to radically simplify the gathering ofpesse
time data by modelling the behaviour of LC cells
transition and by estimating gray to gray respdimes.

In this paper, we first define some mathematiesd s
and functions used for the model of response time
estimation. Then, we split our model in two parts:
transitions with zero initial gray level and norrae
initial gray level. Finally, we compute the assteth
response time for both models and we evaluate their
relevancy compared to actual data acquired from9-a 1
inch Twisted-Nematic LCD monitor with a response
time measurement system.

2 Response time definition

In this section, we define some sets and subsets f
mathematically describing the gray level transisi@nd
the associated response time.

Let L, ={Li /0<i<n, L =i} be a set containing
integers representing initial and final gray levalues of
transitions. For example, with 8 bit coded colour
components,L 54 :[ 0..25ﬂ and the total of gray level

equals 256.
Define T as another set generated Hy,and



representing gray level transitions frdm, to L ,; T is

a set of integer pairs as described in equation 1:
T={(x,y)/xOL,,y0OL, ,x#y} 1)
where X and Yy represent respectively the initial and
the final gray level of the transition. The numbégray
level transitions equals to? —n with n the number of
different gray level. Actually we do not considext (X)

as a transition. Moreover, the order of the elemént
primordial: (X, Y ) is different from (y, X), and stand
for two opposite transitions.

Define two subsets T and + T from the setT:
the first subset represents the falling transitiffrem a
gray level to an inferior one) and the other oreerihing
transitions (from a gray level to a superior ong)the
Eq. (2) and Eq. (3):

LT={(x,y)/(x,y)OT, x>y} 2)

TT:{(x,y)/(x,y)DT,x<y} ®3)

We notice the two subset have the same size

2
n“-n . .
) and the union oft T andt T entirely covers

(

the setT : each transition is either a rising transitioraor
falling transition. Moreover, if (x,y) is inl T, then its
opposite (y,x) isint T .
Concerning our model presented in this articldy on
rising transitions (elements of T ) will be estimated.
Split + T into two subsets:t Ty the subset of
rising transitions with a fixed initial value equal X and
1 TV, the subset of rising transitions with a fixedafin
value equal to Y. So, we have the Eq. (4) and (5):
1 Ty :{(x,y)/(x,y)DTT,x:X} (4)
TTY:{(x,y)/(x,y)DTT,y:Y} ®)
The number of elements af Ty equals(n—l— X)

elements while the t TY subset only contains Y
elements.
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Figure 2: Matrix representationof T, + T, 1 T, and
1 T® generated by , (8 gray levels).

We define two particular subsetsT, and t T.:
t Ty represents the zero initial gray level transitions

while 1t T. represents the non-zero initial gray level

transitions.

Figure 2 depicts a matrix representation of the
different sets and subsets presented in this sewtitn 8
gray levels.

Define L; and L; respectively as the values of an

initial gray level and a final gray level. Finallgefine
L tf as the transition from initial gray levél, to final

gray levell; .

Let C(t) be a bounded and strictly monotonic
function from [ty;] to [L;;Ls]. C(t) represents the
behaviour of the response time. Defihg and ty, as
the time instant wherC(t) reaches 10% and 90% of the
final value, as we can see on Eq. (6) and (7):

C(tlo) = le (Lf - Li )+ Li (6)
Cltgo) = 09x(L; —L; )+ L, @)

The response time of the cur@t), denoted? , is
then computed in compliance with the VESA FPDM
standard [9]:

Figure 3 depicts the relationship between the
transition curveC(t) and the associated response time

T , shown on Eq. (6), (7) and (8).
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Figure 3: VESA response time computation.

3 Mode of transition with zeroinitial value
In this section, we begin to construct our modihw

the subsetr T, of rising transitions of which initial gray

level is zero, by estimating the response time tech
the LC behaviour.

3.1Responsetime



As shown in Figure 1, the response timetof, is a

decreasing function of the final gray level. To @vo
taking too many measurements on a display panel, we
estimate on Eq. (9) the behaviour of the response &s

an n™ order polynomial function of the final gray level.
n
r=> a. (L) ©)
k=0

where (ak) o<k<n are denoted as unknown constants to
be found, 7 the measured response time dnd the

value of the final gray level of the tramsitid.ngf .

A polynomial function was chosen because of its
possibility to correctly fit with any type of respse time
behaviour. To find the paramete(la() o<k<n W€ create

a system ofm polynomial functions (Eq. 10) which
needs at least n+1l different measurements

(consequently, we haven=n+1); the I" measurement
represents the final gray levél; (i) and its associated

response timeg (i) .

(10)

Define T'= ( ()) 1<i<m. & vector of the measured
response time andA=( f(i))lsism a vector of

associated final gray level. The size bf and A equals

to m. Therefore, the previous system can be written as
the vector equation.

rziak.(A)"

If m=n+1, Eq. (11) describes a theoretical solution

of our problem with no possible error: since weéav
equations with m unknown constants, the model
correctly fits the measured values and not necidstae
others. Consequently, there will be errors on the
estimated response times.

With m>n+1, we have m equations with n

unknown constants. Consequently, these additional
values fit all the response time but add a slight
systematic error(i) on each equation.

Therefore, we introduce the vectét = ( ())1<,<m

(11)

the set of systematic errors which must be minichize
and thereby Eq. (11) becomes Eq. (12).

(12)

r+R=>"a.(A)f
k=0

The more the amount of measurements increases, the
more systematic errons(i) decrease. In order to find the

unknown constants(ak) 0<k<n s We must minimize the
quadratic error, denoted .

E=RIR (13)
E=[iak (A) —r][ﬁiak (A) —rj (14)

E reaches its minimum value when all its partial
derivative reaches 0. Therefore, by deriving E¢)(ve
obtain n partial equations as Eq. (15).

——2><A XZak

Define a matrix M=

) —2xA'xT (15)

(M )geijen  With the
coefficient my =A'R!, the vectorB:(bi)Osisn with
b = A'xT

(ai)ogign the unknown constants to be found. The

and the vectorA:(ai)OSisn with

previous problem of minimization of the equationals
to solve the matrix equatioM =AxB . Finally, we
obtain the parameters with=M ! xB .

Figure 4 shows an estimation of response time avith
third order polynomial function initialized with 7
measurements on a Twisted Nematic LCD monitor.
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Figure 4: Estimation of response time for rising
transitions int T, with polynomial approach (blue)
initialized by 7 measurements (red).

3.2 LC behaviour
The next step is to model the transition as a teaip
evolution of the gray level. We can see an exanople

the behaviour oL £° illustrated in Figure 5.

With a general approach to keep the two horizontal
asymptotes and the general behaviour of the cuave,
hyperbolic tangent model is proposed. Physicalys t



model aims at representing the switching on ofLt6®
cell.
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Figure5: Example of transitionL 3°.

To correctly fit the model to the actual behaviofir
all LC transitions, our function needs three paranse
the response time I() which lets the transition’s
velocity evolve, the final gray levell(; ) for setting the

final vertical asymptotic value and a temporal lshtf| )

which centres the model in the correct temporadain.
Until the end of the article, the simulated resgotise
(presented in the previous subsection) will be used
this function instead of measured values.

Therefore, the LC’s behaviour can be described by
the functionC(t) with equation 16:

C(t):[1+ tanl{ 2.atan{0.8)(t -t )Di

- > (16)

We notice that this function, that represents a
transition between 0 ant; , is bounded between these

two values. Eq (17) and (18) show the theoretiaald(
above mathematical) computation of the limitsGif) .

Jim ()= lim (1+tanr(t))><L7f=O (17)

L
lim C(t)= lim (1+tanh{t))x— =L, (18)
t -+ t -+ 2

Moreover, the response time computation formula
(Eq. (6) and (7)), presented in section 2, apptiadhe
curve C(t) allows extracting the simulated response

time value. We first comput@(tlo) and C(tgo) .

C(tm):(l + tanh( 2.atanh(08) ot )ni

r 2

19

C(t )= 1+tanh(Z'ata”h(0'8)-(tgo‘t| )] L (19)
) T "2

Furthermore, with the definition of the response
time, Eq. (6) and (7) and the fact thbf=0, we also
have:

Cltyo)=0.1xL;
{c(tgo)zo.gxl_f
Consequently, by combining Eq. (19) and (20), we

(20)

can easily compute the differentg —t,,by:

tan 2'atam(o;_8)-(t10 -t )j =-08

tanr(z.atanl(O.S).(tgo—h )j= - (1)
T
2. atanl(O.S).(t10 -t )= -TX atank(0.8)
2. atanI(O.S).(t90 -t )= X atanI(O.S) (22)
2(to -ty )=-1
23
{ 2(teo-t,)=1 23)

Finally, with the difference of the two formulag o
Eq. (23), we find the expected resutyy—t;o=7.

Therefore, the LC behaviour model is in compliance
with the VESA response time definition.

4. Model extension to other transitions

After modelling the transitions of T, (in section
3), we extend the model to T.. Figure 6 shows the
superposition of the actual measurements: oneiti@ms

from 1 T, (L$®) and three transitions from T.
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Figure 6: Superposition of measured transitiongs’,
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According to this relationship, we can deducelie
behaviour of any transitions of T" (with Y #0), from

the curve of the transitioh § .
Define C(t) the curve ofL '5* (in 1 Ty) and D(t)

the curve ofL tif (in 1t T ). Definet;, andtg, as the

time instant whenC(t) reaches 10% and 90% of the
final value. Definet';; and t'g, as the time instant
when D(t) reaches 10% and 90% of the final value.
Consistent with Figure 6D(t",) and D(t'y,) are
not in the constant part ob(t) (i.e. the part equals to
L;) and these two points are part of the cuG).
Consequently, we can write the following relatiopsh



(24)

{D(tllo)zc(tllo)
D(t' 90)=C(t' g0)

Thanks to these formulas, we can now compute the
new response time of the transiti(tntf denoted 7'

from the value of the response timelof;f denoted? .
Based on Eq. (16), we first comput€(t';,) and
C(t'90)-

C(t'10)= (1+ tanh[ 2.atanh(0.8).(t'10 -t )BL_]«

T 2
o (25)
chy)- (“ tanh[ 2.atanh(0.5i).(t 00 -1, )j] L Zf

Furthermore, with the definition of the resporiseet
of D(t) and Eq. (6) and Eq. (7), we have also the

relationship:
D(t'o)=01x(L, —L )+L, =C(t',)
{D(t' %)= 0,9><(Lf -L )+ L =C(t' o)
Consequently, we can easily compute the difference
t'9o—t'10=7" by combining Eq. (25) and Eq. (26) in
Eq. (27).

. ’E 2atan(10.8).(t‘

(26)

—t
10™4) =-08+18p

T

. (27)
2.atanh08)\t' . —t
tanPE (] )( 90 1 ]: 08+02p

T

. L . _—
with p:L—', the ratio between the initial level and the
f

final level of the transition. We apply the invers
hyperbolic tangent function to Eq. (27) and compbte
relationship on Eq (6).

2 atanf0g)(t',,—t,)=r xatanf- 08+18 p)
2 atanf08)(t' 5, —t, ) =7 xatanf08+ 02 p) )

(29
)

Finally, we simplify the previous equation witheth
following equivalence (with-1<x<1):

atant{x) =% In{%}

o, [atan 0.8+ 02p)-atanlf- 08+1.8p)
' 2.atani0.38)

(30)

We obtain the next equation that linkg " the

response time of. ::_f to T the response time df gf :

(31)

, T 16
r'= Inf1+——
4.Ini3i 18p+02

That can also be written as:

r'=K(p)xr (32)
Figure 7 shows the evolution of the functiét( p)
with 0< p<1. As we can notice it in this figure and in
Eqg. 31, whenp=0, L; =0and K(p)=1and we get back

the expected value=r .

K(p)

o4 S S N S S S S
0 0.1 02 03 0.4 0.5 06 07 08 0.9 1

Figure 7: Evolution of K(p) with 0< p<1.

With respect to Eq. (1) and Eq. (3); cannot be

equal toL; . Nevertheless, wheh; converges ta_; ,
p converges to 1 and the new response tirhevill

T .
converge towardsé instead of the commonly expected

value 0.

This result is due to our hyperbolic tangent model
which never reaches its asymptote (the transitifina
level). So, when p is close to 1, we have to carsibde
response time estimation as a theoretical valueadsof
an actual result.

5. Results

Tests were carried out on a 19-inch TN LCD monitor
without any enhancement algorithm such as overdrive
The model of the response time fromT, transitions

has been initialized with 7 measurements performed
with a measurement system based on a high speed
camera.

Figure 8 compares the LC behaviour on the

transition L 3° with our hyperbolic tangent model(t)
and a measured transition cuiet) .

The main parameter of the model (i.e. the response
time T) has been simulated with a third order
polynomial  function initialized with the 7

measurements. The relative error between the siatlla
response time and the real measure is close to 5%.
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Figure 8: Comparison between an actual measurement
of L 3° and the simulated transition (with estimated
response time)

First, with the estimated response timelof®, we
compute the absolute errdt, between our model and
the real behaviour of the transition.
E, = mtax(]C(t) -M@) (33)

We obtain a maximum absolute error close to 3 gray
levels, located in small gray level. Then, we coteghe
mean relative errotE, between our model and the real

behaviour of the transition by:
t
1 Flem-M@)

= tgg —1; " M ()] (34)
with t; andtyg defined as:

C(t;)= 001x (L -L; )+ L (35)
Clteg) = 099x (L - L; )+ L, (36)

In spite of the presence of an error on simulated
response time due to our polynomial estimation, we
obtain a mean relative errdg, close to 4%: for these

transitions, our model correctly fits the actuah&eour
of the transition.

Furthermore, due to the analogue noise in theasign
computed from the measurement system, this relative
error can be reduced to 3% with a more accurate
measurement system.

With the response time estimation presented in
section 3.1, the LC behaviour in section 3.2, amgl t

response time computation ofT. in section 4, we can

estimate the response time for the whole risingsitan
set. This theoretical response time estimationyvshim

256x% 256- 256
S—

figure 9, represent values (or 32640)

for a display panel with 8 bit per colour comporsent
Our response time estimation is well-correlatethwi

the measurements Whesz—i

f

is not close to 1 or

when L; =0. Actually, we obtain a mean response time

L L
estimation error around 5% Wheﬁ'—< 08 or L; =0,
f
which represents more than 80% of the possiblagisi
transitions.

100 o
150 "
Final Gray (g, 200

285

Figure 9: Response time estimation results for 32640
rising transitions.

The casell:—' close to 1 represents very small rising
f
transitions with a short response time. The obthine
results differ slightly from the measurements with
mean relative error close to 10%. In fact, in tése, a
slight absolute error on response time estimatigulies
a high relative error on the final results.

Nevertheless, these relative errors can be dadigtic
decreased by a more accurate measurement systbm wit
less analogue noise on the signal.

Step description Mean relative
error
Simulated response time <5%
Curve fitting for transition from <4 %
the set T,
Curve fitting for very small 7-10 %
transitions from the set T.
Curve fitting for other transitions 3-5%
from 1 T.
Final L CD responsetime 7%
estimation
Tablel: Summary of the mean relative error on each
model step.

Finally, Table | sums up all the different steps
presented in this article and associates their mean
relative error. We can notice that the mean regagirror
of the final LCD response time estimation for rgsin
transitions is around 7% with only 7 mesaurements.

In our model description, relative errors are
cumulative: a slight error on simulated responseeti

implies errors on the curve fitting for transitioos 1 T,

and 1 T.. Consequently, the more the amount of



measurementsm increases, the more the simulated
response time is accurate and the more the meativeel
error of the final response time estimation de@sas

The main purpose of our model is to speed up the
generation of L.U.T. overdrive data. In fact, fij-up
half of the 32x32 overdrive L.U.T. (corresponding to

rising transition correction values) needs 496 poase
time measurements while with our model, only 7
measurements are required. Indeed, we save mane tha
95% of the time to take measurements.

Conclusion

In this paper, we proposed a general model to
describe LCD response time behaviour. This novel
approach permits to determine the LCD response time
through a simplified set of parameters and all ghaey-
to-gray response times can be easily obtained faom
reduced measurement set.

Finally, this model can help all the applicatichat
need to gather all the response times (like ovesdlin
order to reduce the computation time for filling-ap
Look-Up-Table.

In the future, we will conduct a more detailed
investigation on generalized response time estonati
that will be applicable to the most LC Display tgpnd
we will develop a process to extract from our matiel
accurate overshoot values for the overdrive apidica
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