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Abstract

A general method for the derivation of asymptotic nonlinear shallow water
and deep water models is presented. Starting from a general dimensionless
version of the water-wave equations, we reduce the problem to a system of two
equations on the surface elevation and the velocity potential at the free surface.
These equations involve a Dirichlet-Neumann operator and we show that all
the asymptotic models can be recovered by a simple asymptotic expansion of
this operator, in function of the shallowness parameter (shallow water limit)
or the steepness parameter (deep water limit). Based on this method, a
new two-dimensional fully dispersive model for small wave steepness is also
derived, which extends to uneven bottom the approach developed by Matsuno
[27] and Choi [28]. This model is still valid in shallow water but with less
precision than what can be achieved with Green-Naghdi model, when fully
nonlinear waves are considered. The combination, or the coupling, of the new
fully dispersive equations with the fully nonlinear shallow water Green-Naghdi
equations represents a relevant model for describing ocean wave propagation
from deep to shallow waters.
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1 Introduction

The propagation of surface waves through an incompressible homogenous inviscid
fluid is described by the 3D Euler equations combined with nonlinear boundary
conditions at the free-surface and at the bottom. This problem is extremely difficult
to solve, in particular because the moving surface boundary is part of the solution.
The complexity of this problem led physicists, oceanographers and mathematicians
to derive simpler sets of equations in some specific physical regimes. Equations thus
obtained may be divided into two groups, namely shallow-water models and deep-
water models. One of the goals of this paper is to clarify the range of validity of
these models and to show why at least two different asymptotic models are necessary
for a correct description of ocean waves.
In shallow water conditions, the classical approach is based on a perturbation
method with respect to a small parameter µ = (h0/L)2 (h0 the characteristic water
depth, L the characteristic horizontal scale), in order to reduce the three-dimensional
equation system to a two-dimensional one. This method, initially introduced by
Boussinesq [1], allows to derive several shallow-water equations, which are named
”Boussinesq-type equations”. A large class of such equations can be expressed in
the following 2D nondimensional form:

{
∂tζ + ∇ · (hV ) = O(µ2)
∂tV + ε(V · ∇)V + ∇ζ = µD +O(µ2)

(1)

where ǫ = a/h0 (a the order of free surface amplitude) is the nonlinearity parameter
and the dimensionless flow variables are: h the water depth, ζ the surface elevation
and V the depth-averaged velocity. D characterizes non-hydrostatic and dispersive
effects and is a function of wave variables and their derivatives. Higher-order Boussi-
nesq equations can be derived (e.g. Madsen et Schäffer [2]), but in this paper we
restrict our analysis to O(µ2), which is a good approximation for most of nearshore
wave applications (e.g. Madsen et al. [3], [4], Cienfuegos et al. [5]).
In its classical form, Boussinesq wave theory is a one-dimensional approach based
on the assumptions of weak dispersion, weak non-linearity and balance between dis-
persion and non-linearity: ǫ = O(µ) ≪ 1. The KdV [6] and BBM [7] equations
can also be derived in the case of unidirectional waves; this approach is relevant to
study fundamental wave dynamics problems, such as 1D solitary wave propagation
on flat bottom (e.g. Boussinesq [1] and Benjamin [8]). However, the classical Boussi-
nesq assumptions may severely restrict applicability to real word wave propagation
problems. Applications to coastal zone, have motivated theoretical developments
(see reviews by Dingemans [9], Madsen et Schäffer [2], Kirby [10] and Barthélemy
[11]) for extending the range of applicability of Boussinesq-type equations in term
of varying bottom, dispersive and nonlinearity effects, which play an important role
in the nearshore wave dynamics.
The 2D Boussinesq equations (ǫ = O(µ) ≪ 1) for non flat bottom were first derived
by Peregrine [12]:

D =
h

2
∇(∇ · (h∂tV )) − h2

6
∇2∂tV . (2)

For many coastal applications the weak dispersion of these equations is a critical
limitation. Witting [13] proposed a method based on Padé expansion of the exact

2



linear phase velocity to improve Boussinesq-type equations. From this method,
several equations (order O(µ2)) with improved dispersion characteristic have been
derived (e.g. Madsen et al. [14], Nwogu [15], Schäffer and Madsen [16], Bona et al.
[17, 18]).
In 1953, a breakthrough treating nonlinearity was made by Serre (see Barthélemy
[11] for a review). He derived 1D fully nonlinear (ǫ = O(1)) weakly dispersive
equations for horizontal bottom:

D =
1

3h
∂x(h

3(Vxt + V Vxx − (Vx)
2)). (3)

The same system was obtained later by Su and Gardner [19]. Seabra-Santos et al.
[20] have provided an extension of this model to non flat bottom:

D = −1

h

(
∂x(h

2(
1

3
P +

1

2
Q)) + bxh(

1

2
P +Q)

)
, (4)

with P = −h(Vxt + V Vxx − (Vx)
2) and Q = bx(Vt + V Vx + bxxV

2). Dingemans
[9] expressed mistrust for the validity of these equations for uneven topographies,
considering that the derivation required the assumption of vertical uniformity of the
horizontal velocity. Cienfuegos et al. [21] have shown that Serre equations can be
formally established without assumption on the velocity profile.
Finally, Green and Naghdi [22] derived 2D fully nonlinear weakly dispersive equa-
tions for uneven bottom which represents a two-dimensional extension of Serre equa-
tions. Except for being formulated in terms of the velocity vector at an arbitrary
z level, the equations of Wei et al. [23] are basically equivalent to the 2D Serre or
Green-Naghdi equations; this is also the case of the equations derived in [24] through
Hamilton’s principle.
The range of validity of all the models introduced above may vary as far as the
nonlinearity parameter ε is concerned, but they all require that the shallowness
parameter µ is small. In deep water (µ 6≪ 1) the Boussinesq wave theory fails but
it is yet possible to derive asymptotic expansions from the water-wave equations
under the condition that the steepness ε

√
µ = a/λ is small. Such an approach was

first made in 1D and flat bottoms by Matsuno [25] and extended to uneven bottoms
[26], 2D weakly transverse waves [27] and higher order expansions [28]. Since one
always has ε . 1, the small steepness assumption ε

√
µ ≪ 1 is also satisfied in the

shallow water regime µ ≪ 1 discussed above and this is the reason why it is often
claimed that the models derived in [25, 26, 27, 28] are valid in the whole range
µ ∈ (0,∞). However, as we show here, their precision is then far below the one of
the Green-Naghdi equations.
In this paper we propose a systematic derivation of all the models evoked in this in-
troduction (and of some new ones); to this end, we use the global method introduced
in the recent mathematical work [29]. Starting from a general nondimensionalized
version of the water-wave equations (which takes into accounts the different nondi-
mensionalizations used in deep and shallow water), following [30, 31], we reduce
the problem to a system of two equations on the surface elevation and the velocity
potential at the free surface. These equations involve a Dirichlet-Neumann operator
and we show that all the asymptotic models can be recovered by a simple asymp-
totic expansion of this operator. In the deep water setting (µ 6≪ 1) this expansion
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is made with respect to ε (which is small, as a consequence of the small steepness
assumption ε

√
µ ≪ 1 and the deep water assumption µ 6≪ 1); in the shallow-water

setting, we rather choose to expand the Dirichlet-Neumann operator in terms of µ
since ε is not always small (e.g., ε ∼ 1 for Green-Naghdi).
As said above, all the asymptotic models are obtained in a systematic way with the
present approach. In addition, we derive a new fully dispersive model for 3D waves
over uneven bottom. Our method brings clarifications about the validity domain of
the main asymptotic wave models. In particular,

• We can easily show that the shallow water limit of the Dirichlet-Neumann
expansion corresponding to the deep-water models has a very poor precision
in the fully nonlinear case ε ∼ 1; this proves that the deep-water models such
as those of [25, 26, 27, 28] are not in general suitable for nonlinear shallow-
water waves;

• We do not make any assumption on the velocity profile or on any related quan-
tity. The only assumptions we make concern the value of the parameters ε and
µ (and a third parameter β linked to the amplitude of the bottom variations
for uneven bottoms); the properties of the velocity profile (and in particular
its vertical behavior) are then rigorously established; we thus believe that this
article should clarify the discussions concerning the assumptions made on the
velocity profile, and in particular the controversy raised in [9] about the Serre
equations.

2 General nondimensionalized water-wave equa-

tions

Parameterizing the free surface by z = ζ(t, X) (with X = (x, y) ∈ R2) and the
bottom by z = −h0+b(X) (with h0 > 0 constant), one can use the incompressibility
and irrotationality conditions to write the water-wave equations under Bernouilli’s
formulation, in terms of a potential velocity φ (i.e., the velocity field is given by
v = ∇X,zφ):






∂2
xφ+ ∂2

yφ+ ∂2
zφ = 0, −h0 + b ≤ z ≤ ζ,

∂nφ = 0, z = −h0 + b,
∂tζ + ∇ζ · ∇φ = ∂zφ, z = ζ,

∂tφ+
1

2
(|∇φ|2 + (∂zφ)2) + gζ = 0, z = ζ,

(5)

where g is the gravitational acceleration, ∇ = (∂x, ∂y)
T and ∂nφ is the outward

normal derivative at the boundary of the fluid domain.
In deriving approximate equations by asymptotic methods it is necessary to intro-
duce dimensionless quantities based on characteristic scales for the wave motion.
Four main length scales are involved in this problem: h0 the characteristic water
depth, L the characteristic horizontal scale, a the order of free surface amplitude
and B the order of bottom topography variation. Three independant dimensionless

4



parameters can be formed from these four scales. We choose:

a

h0
= ǫ,

h2
0

L2
= µ,

B

h0
= β, (6)

where ǫ is often called the nonlinearity parameter, while µ is the shallowness pa-
rameter.
Commonly two distinct nondimensionalizations are used in oceanography (e.g. Dinge-
mans (1997)) depending on the value of µ: shallow water scaling (µ ≪ 1) and Stokes
wave scaling for intermediate to deep water (µ 6≪ 1). In this paper, we present a
general nondimensionalization which applies to any wave regime. The order of mag-
nitude of wave motion variables are given by the linear wave theory. In particular,
(gh0ν)

1/2 and aL
h0

(gh0

ν
)1/2 are the characteristic scales of respectively the wave celerity

and the potential velocity, with ν = tanh(µ1/2)/µ1/2.
Let us normalize all variables according to the scales anticipated on physical grounds:

x = Lx′, y = Ly′, z = h0νz
′, t = λ√

gh0ν
t′,

ζ = aζ ′, Φ = a
h0
L
√

gh0

ν
Φ′, b = Bb′.

From this general nondimensionalization we can recover the classical scalings for
shallow and deep water: ν ∼ 1 when µ ≪ 1 and ν ∼ µ−1/2 when µ≫ 1.
The equations of motion (5) then become (after dropping the primes for the sake of
clarity):






ν2µ∂2
xΦ + ν2µ∂2

yΦ + ∂2
zΦ = 0,

1

ν
(−1 + βb) ≤ z ≤ ε

ν
ζ,

−ν2µ∇(
β

ν
b) · ∇Φ + ∂zΦ = 0, z =

1

ν
(−1 + βb),

∂tζ −
1

µν2
( − ν2µ∇(

ε

ν
ζ) · ∇Φ + ∂zΦ) = 0, z =

ε

ν
ζ,

∂tΦ +
1

2
(
ε

ν
|∇Φ|2 +

ε

µν3
(∂zΦ)2) + ζ = 0, z =

ε

ν
ζ.

(7)

In order to reduce this set of equations into a system of two evolution equations, we
introduce the trace of the velocity potential at the free surface, namely ψ = Φ|z=ε/νζ

and the Dirichlet-Neumann operator Gν
µ[ ε

ν
ζ ]· as

Gν
µ[
ε

ν
ζ ]ψ = −ν2µ∇(

ε

ν
ζ) · ∇Φ|z= ε

ν ζ
+ ∂zΦ|z= ε

ν ζ
,

with Φ solving the boundary value problem





ν2µ∂2

xΦ + ν2µ∂2
yΦ + ∂2

zΦ = 0,
1

ν
(−1 + βb) ≤ z ≤ ε

ν
ζ,

Φ|z= ε
ν ζ

= ψ, ∂nΦ|
z= 1

ν (−1+βb)
= 0,

(one can check that Gν
µ[ ε

ν
ζ ]ψ =

√
1 + |∇( ε

ν
ζ)|2∂nΦ|z= ε

ν ζ
, where ∂nΦ stands for the

upwards nondimensionalized normal derivative at the surface). As remarked in
[30, 31], the equations (7) are equivalent to a set of two equations on the free surface
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parameterization ζ and the trace of the velocity potential at the surface ψ = Φ|z=ε/νζ

involving the Dirichlet-Neumann operator. Namely,






∂tζ −
1

µν2
Gν

µ[
ε

ν
ζ ]ψ = 0,

∂tψ + ζ +
ε

2ν
|∇ψ|2 − εµ

ν3

( 1
µ
Gν

µ[ ε
ν
ζ ]ψ + ν∇(εζ) · ∇ψ)2

2(1 + ε2µ|∇ζ |2) = 0.
(8)

In order to derive the system (9), let Gµ[εζ, βb]· be the Dirichlet-Neumann operator
Gν

µ[ ε
ν
ζ ]· corresponding to the case ν = 1. One will easily check that

∀ν > 0, Gµ[εζ, βb] =
1

ν
Gν

µ[
ε

ν
ζ ],

so that plugging this relation into (8) yields






∂tζ −
1

µν
Gµ[εζ, βb]ψ = 0,

∂tψ + ζ +
ε

2ν
|∇ψ|2 − εµ

ν

( 1
µ
Gµ[εζ, βb]ψ + ∇(εζ) · ∇ψ)2

2(1 + ε2µ|∇ζ |2) = 0.
(9)

The system (9) recasts the water-wave equations in terms of the free surface elevation
ζ and the velocity potential ψ at the surface; this is the formulation which will serve
as a basis for all the computations in this article.

3 Shallow water models

This section is devoted to the study of shallow water waves: µ ≪ 1. The most
general situation (when no assumption is made on ε and β) is addressed in §3.1,
where the the Green-Naghdi equations (also called Serre [32] or fully nonlinear
Boussinesq equations [23]) are derived. The key point is an asymptotical expansion
of the Dirichlet-Neumann operator Gµ[εζ ] with respect to µ.
We then briefly show how to recover simpler models under additional assumptions
on ε; the moderately nonlinear case ε = O(

√
µ) is addressed in §3.2 and the weakly

nonlinear case ε = O(µ) in §3.3. Some new models are then derived in the next
sections.

3.1 The fully nonlinear case: ǫ ∼ 1, β ∼ 1 and µ≪ 1

From the assumption µ ≪ 1, one gets ν ∼ 1 and we take ν = 1 in (9) to simplify
(this corresponds to the usual shallow-water nondimensionalization).

3.1.1 Asymptotic expansion of the Dirichlet-Neumann operator

Since µ ≪ 1, we look for an asymptotic expansion of Φ under the form

Φapp =
N∑

j=0

µjΦj . (10)
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Plugging this expression into the nondimensionalized water-wave equations one can
cancel the residual up to the order O(µN+1) provided that

∀j = 0, . . . , N, ∂2
zΦj = −∂2

xΦj−1 − ∂2
yΦj−1 (11)

(with the convention that Φ−1 = 0), together with the boundary conditions

∀j = 0, . . . , N,

{
Φj |z=εζ

= δ0,jψ,
∂zΦj = β∇b · ∇Φj−1 |z=−1+βb

(12)

(where δ0,j = 1 if j = 0 and 0 otherwise).
Solving the ODE (11) with (12) is completely straightforward, and this procedure
can be implemented on any symbolic computation software to compute the Φj at
any order. For our purposes here, we must take N = 1 and thus need to compute
Φ0 and Φ1; one finds

Φ0 = ψ, (13)

Φ1 = (z − εζ)(−1

2
(z + εζ) − 1 + βb)∆ψ + β(z − εζ)∇b · ∇ψ. (14)

Remark 3.1 This shows that at order O(µ2), and without assumption on ε, the
potential depends quadratically on z, as is well-known. When µ is not small, the
expansion (10) is not convergent and this is the reason why we use another technique
to expand the Dirichlet-Neumann operator in §4.

An approximation of order O(µN+1) of Gµ[εζ, βb]ψ is then given by

Gµ[εζ, βb]ψ = −µ∇(εζ) · ∇Φapp |z=εζ
+ ∂zΦapp |z=εζ

+O(µN+2); (15)

for N = 1, we thus obtain from (10), (13) and (14),

Gµ[εζ, βb]ψ = −µ∇ · (h∇ψ) + µ2∇ · T [h, βb] · ∇ψ +O(µ3) (16)

where h = 1 + εζ − βb and where the linear operator T [h, βb] is defined as

T [h, βb] ·W = T ∗
1 hT1 ·W + T ∗

2 hT2 ·W. (17)

with T ∗
j (j = 1, 2) denoting the adjoint of the operators Tj given by

T1 ·W :=
h√
3
∇ ·W −

√
3

2
β∇b ·W, and T2 ·W :=

1

2
β∇b ·W. (18)

3.1.2 Derivation of the Green-Naghdi equations

We use here the asymptotic expansion (16) to derive the Green-Naghdi equations
(also called Serre equations) from the full water waves equations (9).
One can equivalently write (16) under the form

Gµ[εζ, βb]ψ = −µ∇ · (hv) +O(µ3), (19)

where v = ∇ψ − µ 1
h
T [h, βb]∇ψ.
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Remark 3.2 According to formulae (13)-(14), the horizontal component of the ve-
locity in the fluid domain is given by V (z) = ∇Φ0 + ∇Φ1(z) + O(µ2), and one can

check that v = 1
h

∫ εζ

−1+βb
V (z)dz + O(µ2), so that, in accordance with the classical

derivations of the Green-Naghdi equations, v is the vertically averaged horizontal
component of the velocity (up to O(µ2) terms).

Recalling that ν = 1 here, it follows from (19) that the first equation of (9) can be
written ∂tζ + ∇ · (hv) = O(µ2).
From the definition of v given in (19), one gets easily

∇ψ = v + µ
1

h
T [h, βb]v +O(µ2);

taking the gradient of the second equation of (9), replacing ∇ψ in the resulting
equation by the above formula, using (19), and neglecting the O(µ2) quantities
gives the Green-Naghdi equations (recall that h = 1 + εζ − βb):






∂tζ + ∇ · (hv) = 0,

(1 +
µ

h
T [h, βb])∂tv + ∇ζ + ε(v · ∇)v

+ µε
{
− 1

3h
∇[h3((v · ∇)(∇ · v) − (∇ · v)2)] + Q[h, βb](v)

}
= 0,

(20)

where

T [h, βb] ·W = T ∗
1 hT1 ·W + T ∗

2 hT2 ·W (21)

= −1

3
∇(h3∇ ·W ) + β

1

2
[∇(h2∇b ·W ) − h2∇b∇ ·W ] + β2h∇b∇b ·W

and the purely topographical term Q[h, βb](v) (which is quadratic in v) is defined
as

Q[h, βb](v) =
β

2h
[∇(h2(v · ∇)2b) − h2((v · ∇)(∇ · v) − (∇ · v)2)∇b]

+β2((v · ∇)2b)∇b. (22)

Remark 3.3 The formulation (20) of the Green-Naghdi equation is not at first sight
the same as usual (see [24] and [23]). A closer look shows however that they are
exactly the same, as expected. The interest of the present form is that the second
equation gives a straightforward control of the quantities (hv,v), (hT1v, T1v) and
(hT2v, T2v) (with Tj given by (18)). This control yields regularizing effects of the
same kind as those of the BBM equation compared to KdV, and is thus expected to
ease numerical computations (work in progress).

In [23], Wei et al. derived some Green-Naghdi equations (fully nonlinear Boussi-
nesq models in that reference) with improved frequency dispersion by replacing the
vertically averaged horizontal velocity v by the velocity vα taken at some intermedi-
ate depth zα(x, y) (thus following the approach of Nwogu [15] for weakly nonlinear
Boussinesq systems). Such systems could of course be derived similarly from (20).
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3.2 The moderately nonlinear case: µ≪ 1 and ε = O(
√
µ)

The simplifications that can be made on the Green-Naghdi equations (20) under the
assumption ε = O(

√
µ) depend on the topography. As for the surface variations, we

distinguish three different regimes:
(a) Fully nonlinear topography: β = O(1). In this case, no significative simplification
can be made, and the full equations must be kept.
(b) Moderately nonlinear topography: β = O(

√
µ). In this regime, the last term of

the second equation of (20) can be written

−µε
3
∇[((v · ∇)(∇ · v) − (∇ · v)2)] +O(µ2),

so that one can replace (20) by

{
∂tζ + ∇ · (hv) = 0,

(1 +
µ

h
T [h, βb])∂tv + ∇ζ + ε(v · ∇)v − µε

3
∇[((v · ∇)(∇ · v) − (∇ · v)2)] = 0,

(note that some simplifications could also be made in the term µ
h
T [h, βb]∂tv but

they are not interesting because they would partially destroy the regularizing effects
evoked in Remark 3.3).
(c) Weakly nonlinear topography: β = O(ε). This stronger assumption allows a
simplification of the term µ

h
T [h, βb]∂tv, and one gets

{
∂tζ + ∇ · (hv) = 0,

(1 − µ

3h
∇(h3∇·))∂tv + ∇ζ + ε(v · ∇)v − µε

3
∇[((v · ∇)(∇ · v) − (∇ · v)2)] = 0;

the main interest of this model is that in the case of flat bottoms (b = 0), its
unidirectional limit gives the Cammassa-Holm equation ([33, 34, 35, 36]).

3.3 The weakly nonlinear case: µ≪ 1 and ε = O(µ)

The assumption ε = O(µ) is the classical long waves assumption which yields the
usual Boussinesq models. Here again, we briefly show how to recover these models
in different topographic regimes:
(a) Fully nonlinear topography: β = O(1). Neglecting in (20) the terms which are
of order O(µ2) under the assumption ε = O(µ) yields the equations

{
∂tζ + ∇ · (hv) = 0,

(1 +
µ

h
T [h, βb])∂tv + ∇ζ + ε(v · ∇)v = 0,

equivalent to equations (1) and (2) and which correspond to the Boussinesq model
for nonflat bottoms derived by Peregrine [12].
For many coastal applications the weak dispersion of these equations is a critical
limitation. Several alternative equations, with the same approximations µ≪ 1 and
ε = O(µ), have been developed to improve dispersion properties (e.g. Madsen et al.
[14], Nwogu [15], Schäffer and Madsen [16] or Bona et al. [17, 18]).
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(b) Weakly nonlinear topography: β = O(µ). In this case, the equations simplify
further into {

∂tζ + ∇ · (hv) = 0,

(1 − µ

3
∆)∂tv + ∇ζ + ε(v · ∇)v = 0,

(23)

for which topographic effects play a role only through the presence of h = 1+εζ−βb
in the first equation.

Remark 3.4 This latter Boussinesq system corresponds to the following approxi-
mation of the Dirichlet-Neumann operator:

Gµ[εζ, βb]ψ = −µ∇ · (h∇ψ) − µ3

3
∇ · ∆∇ψ +O(µ3),

which is deduced from (19) by neglecting the terms which are O(µ3) in the present
scaling.

4 Fully dispersive models: ε
√
µ≪ 1 and ǫ≪ 1

Small steepness asymptotics (ε
√
µ ≪ 1) have been introduced by Matsuno [25]

and generalized in [26, 27, 28]. It is often claimed that the derived equations are
valid under the condition ε

√
µ ≪ 1 only, and that the other asymptotic models

(which satsify this condition) can be deduced from them. We show here that this is
not always the case. The unified framework used in this article allows us to check
for instance that the Matsuno equations do not degenerate into the Green-Naghdi
equations in shallow-water and that their precision is much smaller.
After making a new asymptotic expansion of the Dirichlet-Neumann operator in this
physical regime, we also derive a new generalization of the Matsuno equations for
3D flows with uneven bottom.

4.1 Asymptotic expansion of the Dirichlet-Neumann oper-

ator

When ε and β are small, it is possible to make a Taylor expansion of Gµ[εζ, βb]ψ
with respect to ε and β; such an expansion has been derived for one dimensional
surfaces in [37]; this method could be generalized to two dimensional surfaces, but
we chose here to use another technique based on the following formulas

lim
ε→0

1

ε
(Gµ[εζ, βb]ψ − Gµ[0, βb]ψ) = −Gµ[0, βb](ζGµ[0, βb]ψ) − µ∇ · (ζ(∇ψ))

lim
β→0

1

β
(Gµ[0, βb]ψ − Gµ[0, 0]ψ) = µsech(

√
µ|D|)[∇ · (b(sech(

√
µ|D|)∇ψ))],

where we used the Fourier multiplier notation: given two functions f and u, and
denoting bŷ the Fourier transform, f(D)u is defined as:

∀ξ ∈ R
2, f̂(D)u(ξ) := f(ξ)û(ξ).

We only prove the second of these formulas because the first one can be established
with the same techniques and can also be found in the literature (e.g. [38], and also
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Th. 3.20 of [39] and Th. 3.1 of [29] where a similar formula is established for non
necessarily flat surfaces).
First recall that by definition, Gµ[0, βb]ψ = ∂zΦ[βb]|z=0

, where Φ[βb] solves

{
µ∆Φ[βb] + ∂2

zΦ[βb] = 0, in − 1 + βb < z < 0,
Φ[βb]|z=0 = ψ, (∂zΦ[βb] − µβ∇Φ[βb] · ∇b)|z=−1+βb

= 0
(24)

(we denoted Φ[βb] instead of Φ to enhance the dependance on the bottom topog-
raphy). We thus have, for all smooth function ϕ compactly supported in Ω (with
Ω = {(X, z),−1 + βb(X) ≤ z ≤ 0}),

∫

Ω

(µ∆Φ[βb] + ∂2
zΦ[βb])ϕdXdz +

∫

z=0

(Φ[βb] − ψ)ϕdX

+

∫

z=−1+βb

(∂zΦ[βb] − βµ∇b · Φ[βb])ϕdX = 0.

Denoting χ = limβ→0
1
β
(Φ[βb] − Φ[0]), one can differentiate the above identity to

obtain
∫

Ω

(µ∆χ+ ∂2
zχ)ϕdXdz +

∫

z=0

χϕdX

+

∫

z=−1

(∂zχ− µ∇b · ∇Φ[0] + b∂2
zΦ[0])ϕdX = 0.

Since this identity holds for all test function ϕ, and since ∂2
zΦ[0] = −µ∆Φ[0], we

deduce that χ solves the boundary value problem

{
µ∆χ+ ∂2

zχ = 0, in − 1 < z < 0
χ|z=0 = 0, ∂zχ|z=−1 = µ∇ · (b∇Φ[0]|z=−1).

This problem can be solved explicitly:

χ(·, z) =
√
µ

sinh(
√
µz|D|)

cosh(
√
µ|D|)

∇
|D| · (b∇Φ[0]|z=−1);

since moreover one has limβ→0
1
β
(Gµ[0, βb]ψ−Gµ[0, 0]ψ) = ∂zχ|z=0

and that Φ[0](·, z) =
cosh(

√
µ(z+1)|D|)

cosh(
√

µ|D|) ψ, we get the formula.

A first order Taylor expansion of Gµ[εζ, βb]ψ with respect to ε, together with the
first formula, shows therefore that

Gµ[εζ, βb]ψ = Gµ[0, βb]ψ − εGµ[0, βb](ζGµ[0, βb]ψ) − εµ∇ · (ζ∇ψ) +O(
√
µ(ε

√
µ)2);
(25)

a first order Taylor expansion of Gµ[0, βb]ψ with respect to b, together with the
second formula, gives also

Gµ[0, βb]ψ = Gµ[0, 0]ψ + µβsech(
√
µ|D|)[∇ · (b(sech(

√
µ|D|)∇ψ))] +O(

√
µ(β

√
µ)2).
(26)

11



Let us now define the operator Tµ and Bµ as

Tµ = −tanh(
√
µ|D|)

|D| ∇ and Bµ = sech(
√
µ|D|)[b(sech(

√
µ|D|)·)] (27)

We thus have Gµ[0, 0]ψ =
√
µTµ · ∇ψ, and (25) and (26) show that

Gµ[εζ, βb]ψ =
√
µTµ · ∇ψ + µβ∇ · (Bµ∇ψ) − εµTµ · ∇(ζTµ · ∇ψ)

−εµ∇ · (ζ∇ψ) +O(
√
µ(ε

√
µ)2,

√
µ(β

√
µ)2). (28)

Remark 4.1 In the shallow water, weakly nonlinear regime, and with a weakly non-
linear topography (that is, µ ≪ 1, ε = O(µ), β = O(µ)), one can deduce from (28)
that

Gµ[εζ, βb]ψ = −µ∇ · (h∇ψ) − µ2

3
∇ · ∆∇ψ +O(µ3),

and we thus recover the approximation derived with another technique in §3.3 (see
Remark 3.4).

4.2 Derivation of a fully dispersive model for 3D flows over

uneven bottoms

We derive here a new system of fully dispersive equations which generalizes to the
case of 2D surfaces and nonflat bottoms the systems derived by Matsuno (1D sur-
faces, flat [25] and uneven [26] bottoms), Choi [28] and Smith [40] (2D surfaces, flat
bottoms).
We first define the horizontal velocity at the surface as vS = (∇Φ)|z=εζ

, where Φ is
the velocity potential given by (24). By definition of ψ and Gµ[εζ, βb]ψ, we get

∇ψ = vS + ε∇ζ(∂zΦ)|z=εζ

= vS + ε
Gµ[εζ, βb]ψ + εµ∇ζ · ∇ψ

1 + εµ|∇ζ |2 ∇ζ

= vS + ε
√
µ(Tµ · vS)∇ζ +O((ε

√
µ)2),

where we used (28) and ∇ψ = vS + O(ε
√
µ) for the last relation. Plugging this

relation into (28), one gets similarly

1√
µ
Gµ[εζ, βb]ψ = Tµ · vS +

√
µβ∇ · (BµvS) − ε

√
µTµ · (ζ∇Tµ · vS)

−ε√µ∇ · (ζvS) +O(
√
µ(ε

√
µ)2,

√
µ(β

√
µ)2). (29)

Taking the gradient of the second equation of (9) and using the above two identities
gives therefore the following set of deep-water equations:






∂tζ −
1√
µν

Tµ · vS +
ε
√
µ

√
µν

(Tµ · (ζ∇Tµ · vs) + ∇ · (ζvS))

=
β
√
µ

√
µν

∇ · (BµvS)

∂tvS + ∇ζ + ε
√
µ(

1

2
√
µν

∇|vS|2 −∇ζTµ · ∇ζ) = 0,

(30)
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where we recall that Tµ and Bµ are defined in (27), and that ν = tanh(
√
µ)/

√
µ (so

that one can replace
√
µν by 1 in (30) in deep water).

Remark 4.2 If we remove the topography term Bµ from these equations, we recover
the two-dimensional equations (3.25)-(3.26) derived by Choi [28]. If we take the one
dimensional version of (30) we recover the equations derived by Matsuno (Eqs (19)-
(20) of [25] for flat bottoms and (4.28)-(4.29) of [27] for nonflat bottoms).

Remark 4.3 The equations (30) are precise up to order O(ε
√
µ, ε

√
β) in deep water

(since ν ∼ µ−1/2); one could also use them in shallow water, but they are then precise
up to order O(ε, β) only (since ν ∼ 1 in shallow water). This is the same accuracy
as the one provided by the weakly nonlinear shallow water models (with a weakly
nonlinear topography) of Section 3.3; it is therefore not surprising to check that one
recovers the Boussinesq system (23) from (30) by a simple Taylor expansion of the
operators Tµ and Bµ and by observing that v = (1 + µ1

3
∆)vs +O(µ2).

In the fully nonlinear regime (with fully nonlinear topography) studied in Section
3.1, the equations (30) are precise up to order O(ε, β) = O(1) while we saw that
the Green-Naghdi equations (20) are precise up to order O(µ). It is therefore not
surprising to check that the shallow water limit of (30) does NOT give the Green-
Naghdi equations (20).

Remark 4.4 The system (30) is “fully dispersive” in the sense that its disper-
sion relation is the same as for the full water-wave equations. This is the case
because the expansion (29) keeps the nonlocal effects of the Dirichlet-Neumann op-
erator Gµ[εζ, βb]ψ. In [41, 42, 43], the authors make a differential approximation of
shallow water type based on Padé approximants; they show that the dispersive prop-
erties remain good far beyond the shallow water regime when bathymetric changes
are not too strong (in this latter case, the model is more complex and its range of
validity much narrower [44]).
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5 Conclusion

In this paper we have presented a systematic derivation of the main 2D asymptotic
models for shallow and deep water waves, which allows to clarify their validity
domain. We have also derived a new 2D fully dispersive model, system (30), for
small wave steepness which extends to uneven bottom the approach developed by
Matsuno [27] and Choi [28]. We have shown that even though these models remain
valid in shallow water, their precision is then far below what can be achieved with
the Green-Naghdi or Serre model when fully nonlinear waves are considered (ε ∼ 1).
Hence, contrary to what it is generally thought [25, 26, 27, 28] this approach cannot
in practical be considered as a unified theory of nonlinear waves because it is not
accurate enough for nonlinear shallow water waves (ǫ ∼ 1, µ≪ 1). In particular, we
have shown that system (30) in the shallow water limit (µ≪ 1) does not correspond
to the correct fully nonlinear equations, namely the Green-Naghdi or Serre equations.
Another reason why these fully dispersive water models are not likely to furnish
interesting models in shallow water is that there is no obvious shoreline boundary
condition for them.
The Green-Naghdi equations represent the appropriate model to describe nonlinear
shallow water wave propagation and wave oscillations at the shoreline. For coastal
applications, the Green-Naghdi equations can be easily extended to include accurate
linear dispersive effects, which allow to describe shoaling processes in intermediate
water depth (see Wei et al. [23] and Cienfuegos et al. [21, 5]). Another interest of
these equations is that there is a natural shoreline boundary condition given by the
flux conservation equation (the flux hv vanishes at the shoreline in the first equation
of 20). However, for deep water wave propagation the Green-Naghdi model is no
more valid and the fully dispersive model (30) must therefore be used.
It follows from these considerations that the asymptotic description of coastal flows
requires at least the use of 2 different models: one for shallow-water (e.g. the Green-
Naghdi equations (20)) and another one for deep water (e.g. (30)). The numerical
coupling of these two models is therefore a natural perspective for further works.
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[16] Schäffer, H.A., Madsen, P.A. 1995 Further enhancements of Boussinesq-type
equations. Coastal Engineering, 26, 1-14.

15



[17] Bona, J. L., Chen, M. and Saut, J.-C. 2002 Boussinesq Equations and Other
Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I:
Derivation and Linear Theory, J. Nonlinear Sci., 12, 283-318.

[18] Bona, J.L., Colin, T. and Lannes, D. 2005 Long Waves Approximations for
Water Waves, Arch. Rational Mech. Anal. 178, 373-410.

[19] Su, C.H. and Gardner, C.S. 1969 Korteweg-de Vries equation and generaliza-
tions III. Derivation of the Korteweg-de Vries equation and Burgers equation. J.
Math. Phys. 10 (3), 536-539.

[20] Seabra-Santos, F.J., Renouard, D.P., Temperville, A.M. 1987 Numerical and
experimental study of the transformation of a solitary wave over a shelf or isolated
obstacle. Journal of Fluid Mechanics, 176, 117-134.

[21] Cienfuegos, R., Barthelemy, E. and Bonneton, P. 2006 A fourth-order compact
finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type
equations. Part I: Model development and analysis. Int. J. Numer. Meth. Fluids,
56, 1217-1253.

[22] Green, A.E. and Naghdi, P.M. 1976 A derivation of equations for wave propa-
gation in water of variable depth. Journal of Fluid Mechanics, 78(2), 237-246.

[23] Wei, G., Kirby, J.T, Grilli, S.T. and Subramanya, R. 1995 A fully nonlinear
Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves.
Journal of Fluid Mechanics, 294, 71-92.

[24] Miles, J. and Salmon, R. 1985 Weakly dispersive nonlinear gravity waves. Jour-
nal of Fluid Mechanics, 157, 519-531.

[25] Matsuno, Y. 1992 Nonlinear evolutions of surface gravity waves on fluid of finite
depth, Phys. Rev. Lett., 69, 609-611.

[26] Matsuno, Y. 1993 Nonlinear evolution of surface gravity waves over an uneven
bottom, J. Fluid Mech. 249, 121–133.

[27] Matsuno, Y. 1993 Two-dimensional evolution of surface gravity waves on a fluid
of arbitrary depth, Phys. Rev. E, 47, 4593-4596.

[28] Choi, W. 1995 Nonlinear evolution equations for two-dimensional surface waves
in a fluid of finite depth, J. Fluid Mech., 295, 381–394.

[29] Alvarez-Sameniego, B. and Lannes, D. 2007, Large time existence for 3D water
waves and asymptotics, preprint.

[30] Zakharov, V. E. (1968) Stability of periodic waves of finite amplituse on the
surface of a deep fluid (1968) J. Appl. Mech. Tech. Phys., 2, 190-194.

[31] Craig, W. and Sulem, C. and Sulem, P.-L. 1992 Nonlinear modulation of gravity
waves: a rigorous approach, Nonlinearity 5(2), 497-522.

16
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