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Abstract

This paper concesns the characterization of elastic
targets immersed in a fluid and submitted to an acoustc
impulse. Time-frequency methods have already been used
in the case of scatterers of simple geometric shape. We
have chosen the wavelet transform for its particular
properties, such as-linearity and focal analysis at Af/f=c5t,
‘We have developped an algorithm based on the behavior of
the phase of the transform, which enables us to extract
modufation laws (related to the dispersion law of the phase
velocity), even for close echoes. In the case of spherical
elastic shells, we have applied this method on both
experimental and computer-generated signals and have
pointed out the good relation between theoretical and
experimental results, .

1- Introduction

We are interested in the characterization of targets of
simple geometric shape froi the analysis of their acoustic
response. This problem requires -on the one hand the
knowledge of the mechanisms of the surface waves
generation and on the other hand, the choice of relevant
parameters for the identification [1-11].

In this paper, we will limit ourselves to the study of
signals back-scattered by spherical elastic shells in water
submitted to an acoustic impulse. The parameters usually
estimated are: kind of waves, arrival time of waves
packets, group velocity, resonance frequencies and maxima
of encrgy.

From a general point of view, the back-scattered
pressure ficld can be decomposed inw a geometric pressure
{geomelric wave} and surface pressure (surface wave and iHs
successive echos-around the target). '

I the surface or packets waves are the same for targets
of the same shape, the dispersion law of their phase
velocity changes with respect to their thickness and their
chemical composition. Targets characterization (ie:
detection and identification of surface waves), requires
time-frequency methods, We will focus on the estimation
of frequency modulation laws of the waves packets by the
use of the wavelet transform. The use of this method is
Justified by its lincarity and localization propertics.

2- Description of the physical problem.

This problem has been mainly approached bty the
works of Uberall, Flax, Derem {1,12,13].

In particular, Uberall has proved the relation between
the winding of the surface waves around the scatterer and
the resgnance phenomenon {12]. For instance, we have a
resonance for n+1/2 wave length for a spherical shell, and
i wave length for a cylinder one,

The surface waves can be separated in two classes: the
waves having a support in the fluid media (Stoneley,
Franz waves called creeping waves), and the ones where
the support is on the elastic scatterer (Rayleigh and
whispering waves). Franz and whispering waves ate related
to the geometry of the target.

For an incident plane wave, the pressure scattered by a
spherical elastic shell iy given by:

Pd(r.t>=Pofei€°t i“@ft*'l)g"l%hﬂ(l)(kr)Pn(cgse}dhdm,
48 : "

Fp represents the amplitide of the incident wave:

Ny and Dy are functions depending of the target
geomeay. They are written as (6x6) determinant taking
into account the boundary conditions {3,8]. The
resonances coming from the interfaces (shell) corresponds
to the singularities of these functons [3,12]: .

byy{1) represents the spherical Hankel functions of the
first kind;

P are the Legendre functions.

The extraction of the resonance position of the targst
is done classically, in the case of harmoenic source, by
spectral aralysis, from the modulus of the farfield form
function [3):

(F oo ks, 8)! :% | 720 +1) An(kn) Palcoso)]

n=0
_ 1| Bain)
kr o Pie(r)

The integral of the expression (1) on & path [ can be
decomposed into 2 sum of integrals due to the different
branch-points [14). Each integration arcund these points
corresponds to a surface wave. These waves have their
Gwn time and frequency behavior,
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3- Continuous time-scale transform:
Continuous wavelet transform.

3-1: recalls and definitions{15,16]

The continuous wavelet transform of an arbitrary
signal s is obtained by the scalar product between this
signal and elementary functions, called wavelets, These
functions are translated [b] and dilated copies [a] of a basic
finction g (named analyzing wavelet) in the time and scale
half-plane (b,a). The wavelet transform is given by :

S(ba)=<gpal = J.r;"b,a s(r) dt =a® J. g(-t-'f)s(od:

be R, a0

£ denotes the complex conjuga}e of g; & depends of the
choice of the normalization {a=22. with the normalization

Lo
The transform is inversible if we can define a constant
¢g depending only on the wavelet:
Ar a2
cg= ZJ'I:J‘ I'g‘(*g)—;"dco oo, § represents the Fouder
transform of g.

This necessary condition on the wavelet is called the
admissibility one. In practice, it means that g is of finite
energy, g is of zero mean.

The inversion formulais: . :

59 = ;‘-g—- Js02 g2 o

c_ihzzgg is the invariant measure under translation and

dilation in the half-plane,

The frequency localization of gp 4(f) depends linearly
of a, so the decomposition induced will. be performed at

A
E@- = Constant.,

3-2; i i
modulation laws [17-19].

We present here, a method essentially based on the
stationary phase approximation. The particularity of this
method lives in the asymptotic conditions of the signal
with respect to the analyzing wavelet, coming from the
local properties of the wavelet. '

One may define the asymptotism in the following

way:

Let s(t)=Ag(t)cos(Pg(t)) an asymptotic signal, then the
analytic associated signal is: s5{t)=Ag(t) exp(i®g(®).
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In this part, we will focus on this class of signals,
Let:

sO=As(t) exp(i®s(t)

A

8= Agl) exp(ivd)
Then:
@ stary [Asoag e By

The stationary phase criteria at a point (a) leading to
an approximation of the integral (2) is:

<D
%9- = 2:;9- en t=t(a)

If we suppose the signal to be asympiotic with respect
to the wavelet at t(a), ie: Ag(t) varies slowly in front of

Ag(%), we have:

@)

S0) = ghse@) | AgDexplic@s(0- oDt +

With a second order limited expansion of the phase of
the integral (3} at the same point t{a), we gbtaine: ’

S0.2) = “ghs(r@)erpli(@s(ee)-ao e x

x j AgDexplicrea)? g-@dg@naz rep+en

Suppose Ag(t)mxp(-% t2) (case of the Morlet
wavelet), then S(b,a) is a gaussian integral. We note:

o' EBED ) 2 Mba) expiorcoa
Then:
O1(h2) = D(r(@) 000 + Larctanca2e’y +

1 ¢"
+ (b))t
2 () 1+a4¢ Sz

Meb Y 2 As(E@) rp(-l ato'? (b-«;(a))z)

= " } €. "
A(1+ad " O T 214040 R

db a 20=t@
M(b,a) is maximum

S(t(a),a)=C" 5(1)



a-[ntepretation

We will call 'ridge’ the curve b=t(a} and the reswiction
of the wavelet ransform along the ridge will be call

'skeleton’.
The ridge detection consists on the search of the points

over the half-plane (b2} such as: ——- 2 %Q . This set

of points defines a curve where the modulus is maximum.
The ridge and the skeleton have the following

properties:

-S(t(a),a) is equal to 5(t) up to one known coefficient.

-The ridge gives an estimation of the frequency

modulation law.
-The modulus of the skeleton gives an estimation of

the amplitude modulation law,

b-E I
The error majoration is:

£1 < K1. 2 JA s(t(2)loo
g2 < Kz .83 JAs(@)] . [0 (@)l

Remark: One of the conditions required for this
approximation is the asymptotism of the signal with
respect to the wavelet. In practice, this condition is
controlled since we can choose the wavelet. A few
asymptotic signal will require a wavelet well localised in
time, This method compared to the one used in [11] can
be applied to wave packets containing few oscillations.

This method can bhe applied to impulse signals scatered .

by elastic targets of simple geometric shape.

4- Time-scale analysis of echoes scattered
by a spherical elastic shell.

We consider spherical scatterers immersed in water,
The thickness of the shells is small with ratio of radii r;fr,
of 0.9 (Fig. 1,3) , 0.67 (Fig.2) and 0.96 (Fig. 4}, (ti. Ie
intzrnal, external radius re=3cm). They are made in
duralumin (ie: alloying of 95% aluminium and 3,5%
copper), except for the last one which is made in nickel-
molybdene. The transducers used for experiments have
either a central frequency of S00kHz with a band-width af -
3dB of 400kkz (Fig. 1,2) or a central frequency of 250kHz
(Fig 3,4) with a band-width of 150ktHz.

- We . have .applied a wavelet analyzis both on
experimental and simulated signals, but we present hére
experimental results. For each andlyzis we dispose of two
complementary informations on the wavelet transform:
the phase (b) and the modulus {c}, The impulse response
of shells is displayed in (a).

The modulus of the transform is shown in linear scale
with a density of points. The moduelus is maximum

(minimum) when it is black (white). The phase
representation is between (0, 2x). The ridge is represented
by black dots over the phase diagram. The abscissa
represents the translation parameter (time), The ordinate
represents the dilation parameter in hyperbolic scale (inear
in frequency), decomposed in 150 voices. The analyzing
wavelet {standard Morlet wavelet) has been defined with
the following caracteristcs: ®g=>5.336, and g(t)=0, for
a=1, when [g(Ots 1075,

The sampling rate of the time signal is respectively

107Hz, 1.810%Hz, 107Hz, 107Hz. The analysis is
performed with a frequency range of [833.33kHZ to
208.33kHz], [J00kHz to 56,25] [625kHz to 156kHz] and
[500kHz to 78kHz]

Roughly speaking, the dispersion of the shell increases
the inclination and the attenuation of waves packets during
time, The dispersion law of the phase velocity can be
obtained either from the modulus or from the phase of the
wavelet transform:

- by extraction of the maxima of energy of the waves
packets (whispering echoes) for each scale (analysis of the
modulus);

- by extraction of the ndge (fig. 1-4.1) (analyss of the
phase).

The analysis of two successive waves packets of the
same type allows us to define the dispersion law of the
group velocity. The problem is sometimes the measure
error generated by the ambient noise during the
experiment. In this case, even the wavelet transform has
shown a good efficacy [17-19], it is necessary to combine
filtering methods with the wavelet ransform.

We can see on the figures ¢ in accordance with the
theoretical study of the scattering, the specular echo or
geometric contribution (Fig: 2, 4) (1%° waves packet) and
the surface coniribution (Fig: 1~ 4). This contribution for
the shell of ratio of radii 0.9 (fig.1.c) is the whispering

wave after one travel around the target (15 waves dpacket)
and after a 219 travel (3t waves packet). The 21 waves
packet is not dispersive, For each echo, the ridge gives an
estimation of the dispersion law of the phase velocity (fig
1.b). The horizontal ridges are characteristics of the non-

-dispersive echo.

The figure 2 represents the wavelet transform of a
signal scattered by a duralumin shell of ry/re=0.67. The
echos structure ig similar to the figure 1. The modulation
law is representative of the thickness of the shell. The
frequency of the ridge is over 366kHz to 669kHz,

The figure 3 displays the analysis of the response of
the same shell than figure 1, but with a different
transducer. The modulation law varies with respect to the
frequency of the excitation, The frequency of the nc[ge is
here, over 275kHz to 500kHz. .

The figure 4 represents’ the wavelet transform of a
signal backscattered by a nickel-molybdene shell of
I/re=0.96. Again, the echos structure is similar to fig 1.
The analysis of this figure shows the rclation between the
modulation law and the shell chemical composition,
Ridge frequency is 223k3Hz to 398kHz.
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5- Conclusion

The dispersive behavior of the surface waves has led us
to choose a time and scale method, By an another way the
separation of close echoes requires a linear method.

The ridge associated to the continuous wavelet
transform seems 1o be a promising tool for the systematic
study of this type of waves. We may considered the
response of the target as an acoustic signature with respect
to the analyzing wavelet,
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Fig. 1: Impulse response of a thin spherical shell of
duralumin with an external radius ry= 0.03m. rifr,= 09
(ri is the internal radius}. (whispering waves: I and 2.
: Ceniral frequency=S500kHz
Ridge frequency is 366kHz to 609kH
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Fig, 2: Impulse response of a thin spherical shell of
duralwmin with an external radius rg= 0.03m. rijrg=0.67
(r; is the internal radius).Central frequency=500kHz
Ridge frequency is 275kH?z to 500kHz
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Fig. 3: Impulse response of a thin spherical shell of

duralumin with an external radius rp= 0.03m, rifr,= 09

{r; is the internal radius). Central frequency=250kHz
Ridge frequency is 223kHz to 398kHz
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© Fig.4: Impulse response of a thin spherical shell of
nickel-molybdene with an external radius ro= 0.03m.
rifrg=0.96
(r is the internal radius).Central frequency=250kHz
Ridge frequency is 136kHz lo 401kHz
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