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Preprint – September 2007. Revised – August 2009, October 2009.

Abstract

We equip the polytope of n × n Markov matrices with the normalized
trace of the Lebesgue measure of R

n2

. This probability space provides random
Markov matrices, with i.i.d. rows following the Dirichlet distribution of mean
(1/n, . . . , 1/n). We show that if M is such a random matrix, then the empirical
distribution built from the singular values of

√
nM tends as n → ∞ to a

Wigner quarter–circle distribution. Some computer simulations reveal striking
asymptotic spectral properties of such random matrices, still waiting for a
rigorous mathematical analysis. In particular, we believe that with probability
one, the empirical distribution of the complex spectrum of

√
nM tends as

n → ∞ to the uniform distribution on the unit disc of the complex plane, and
that moreover, the spectral gap of M is of order 1 − 1/

√
n when n is large.

AMS 2000 Mathematical Subject Classification: 15A52; 15A51; 15A42; 60F15; 62H99.

Keywords: Random matrices; Markov matrices; Dirichlet laws; Spectral gap.

1 Introduction

Markov chains constitute an essential tool for the modelling of stochastic phenomena
in Biology, Computer Science, Engineering, and Physics. It is nowadays well known
that the trend to the equilibrium of ergodic Markov chains is related to the spectral
decomposition of their Markov transition matrix, see for instance [Sen06, SC97,
CSC08]. The corresponding literature is very rich, and many statisticians including
for instance the famous Persi Diaconis contributed to this subject, by providing
quantitative bounds for various concrete specific Markov chains. But how a Markov
chain behaves when its Markov transition matrix is taken arbitrarily in the set
of Markov matrices? The present paper aims to provide some partial answers to
this natural concrete question. From the statistical point of view, one can think
about considering random Markov matrices following the “uniform law” over the
set of Markov matrices, which corresponds to a maximum entropy distribution or
Bayesian prior, see for example [DR06]. Recall that a n × n square real matrix M
is Markov if and only if its entries are non–negative and each row sums up to 1, i.e.
if and only if each row of M belongs to the simplex

Λn = {(x1, . . . , xn) ∈ [0, 1]n such that x1 + · · · + xn = 1} (1)
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which is the portion of the unit ‖·‖1-sphere of Rn with non–negative coordinates.
The spectrum of a Markov matrix lies in the unit disc {z ∈ C; |z| 6 1}, contains 1,
and is symmetric with respect to the real axis in the complex plane.

Uniform distribution on Markov matrices

Let Mn be the set of n× n Markov matrices. We need to give a precise meaning to
the notion of uniform distribution on Mn. This set is a convex compact polytope
with n(n − 1) degrees of freedom if n > 1. It has zero Lebesgue measure in Rn2

.
Since Mn is a polytope of Rn2

(i.e. intersection of half spaces), the trace of the
Lebesgue measure on it makes sense and coincides with a cone measure1, despite its
zero Lebesgue measure in Rn2

. Since Mn is additionally compact, the trace of the
Lebesgue measure can be normalized into a probability distribution. We thus define
the uniform distribution U(Mn) on Mn as the normalized trace of the Lebesgue
measure of R

n2

. The following theorem relates U(Mn) to the Dirichlet distribution.

Theorem 1.1 (Dirichlet Markov Ensemble). We have M ∼ U(Mn) if and only

if the rows of M are i.i.d. and follow the Dirichlet law of mean ( 1
n
, . . . , 1

n
). The

probability distribution U(Mn) is invariant by permutations of rows and columns.

Corollary 1.2. If M ∼ U(Mn) then for every 1 6 i, j 6 n, Mi,j ∼ Beta(1, n − 1)
and for every 1 6 i, i′, j, j′ 6 n,

Cov(Mi,j,Mi′,j′) =











0 if i 6= i′

n−1
n2(n+1)

if i = i′ and j = j′

− 1
n2(n+1)

if i = i′ and j 6= j′.

Moreover Mi,j and Mi′,j′ are independent if and only if i 6= i′.

The set Mn is also a compact semi–group for the matrix product. The following
two theorems concern the translation invariance of U(Mn) and the question of the
existence of an idempotent probability distribution on Mn.

Theorem 1.3 (Translation invariance). For every T ∈ Mn, the law U(Mn) is

invariant by the left translation M 7→ TM if and only if T is a permutation matrix.

The same holds true for the right translation M 7→ MT.

Theorem 1.4 (Idempotent distributions). There is no probability distribution on

Mn, absolutely continuous with respect to U(Mn), with full support, and which is

invariant by every left translations M 7→ TM where T runs over Mn. The same

holds true for right translations.

The proofs of theorems 1.1, 1.3, 1.4 and corollary 1.2 are given in section 2.

1Actually, one can define the trace of the Lebesgue measure and then the uniform distribution
on many compact subsets of the Euclidean space, by using the notion of Hausdorff measure [Fal03].
See also [CPSV09] for an approximate simulation method based on billiards and random reflections.
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Asymptotic behavior of singular values and eigenvalues

The spectral properties of large dimensional random matrices are connected to many
areas of mathematics, see for instance the books [Meh04, HP00, BS06, AGZ09,
For09, ER05] and the survey [Bai99]. If M ∼ U(Mn), then almost surely, the real
matrix M is invertible, non–normal, with neither independent nor centered entries.
The singular values of certain large dimensional centered random matrices with
independent rows is considered for instance in [Aub06] and [MP06, PP07].

For any square n × n matrix A with real or complex entries, let the complex
eigenvalues λ1(A), . . . , λn(A) of A be labeled so that |λ1(A)| > · · · > |λn(A)|. The
spectral radius of A is thus given by |λ1(A)| = max16k6n |λk(A)|. The empirical

spectral distribution (ESD) of A is the discrete probability distribution on C with
at most n atoms defined by

1

n

n
∑

k=1

δλk(A).

The singular values s1(A) > · · · > sn(A) > 0 of A are the eigenvalues of the positive
semi–definite Hermitian matrix (AA∗)1/2 where

A∗ = A
⊤

denotes the conjugate transpose of A. Namely, for every 1 6 k 6 n,

sk(A) = λk(
√

AA∗) =
√

λk(AA∗).

Note that AA∗ and A∗A share the same spectrum. The atoms of the ESD of√
AA∗ are s1(A), . . . , sn(A). The singular values of A have a clear geometrical

interpretation: the linear operator A maps the unit ball to an ellipsoid, and the
singular values of A are exactly the half–lengths of its principal axes. In particular,
s1(A) = max‖x‖

2
=1 ‖Ax‖2 = ‖A‖2→2 while sn(A) = min‖x‖

2
=1 ‖Ax‖2 = ‖A−1‖−1

2→2.
Moreover, A has exactly rank(A) non zero singular values. The relationship between
the eigenvalues and the singular values are captured by the Weyl–Horn inequalities

∀k ∈ {1, . . . , n},
k
∏

i=1

|λi(A)| 6

k
∏

i=1

si(A) with equality when k = n,

see [Hor54, Wey49]. If A is normal, i.e. AA∗ = A∗A, then sk(A) = |λk(A)| for
every 1 6 k 6 n. Back to our Dirichlet Markov Ensemble, if M ∼ U(Mn) then M is
almost surely a non–normal matrix, and thus one cannot express the singular values
of M in terms of the eigenvalues of M. The following theorem gives the asymptotic
behavior of the empirical distribution built from the singular values of M.

Theorem 1.5 (Singular values for Dirichlet Markov Ensemble). Let (Xi,j)16i,j<∞
be an infinite array of i.i.d. exponential random variables of unit mean. For every

n, let M be the n × n random matrix defined for every 1 6 i, j 6 n by

Mi,j =
Xi,j

∑n
k=1 Xi,k

.
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Probability distribution name Support Lebesgue density

Circle or circular law Cσ {z ∈ C; |z| 6 σ} ⊂ C z 7→ (πσ2)−1

Wigner semi–circle distribution Wσ [−2σ, +2σ] ⊂ R x 7→ (2πσ2)−1
√

4σ2 − x2

Wigner quarter–circle distribution Qσ [0, 2σ] ⊂ R x 7→ (πσ2)−1
√

4σ2 − x2

Marchenko–Pastur distribution Pσ [0, 4σ2] ⊂ R x 7→ (2πσ2x)−1
√

x(4σ2 − x)

Table 1: Some of the remarkable probability distributions in random matrices.

Then M ∼ U(Mn) and

P

(

1

n

n
∑

k=1

δλk(nMM⊤)
w−→

n→∞
P1

)

= 1

where
w→ denotes the weak convergence of probability distributions and P1 the Marchenko–

Pastur distribution defined in table 1. In other words,

P

(

1

n

n
∑

k=1

δsk(
√

nM)
w−→

n→∞
Q1

)

= 1

where Q1 denotes the Wigner quarter–circle distribution defined in table 1.

Following the notations of table 1, for every real fixed parameter σ > 0, every
real random variable W , and every complex random variable Z = U +

√
−1V with

U = RealPart(Z) and V = ImaginaryPart(Z), we have, by a change of variables,
(

W 2 ∼ Pσ ⇔ |W | ∼ Qσ

)

and
(

W ∼ Wσ ⇒ W 2 ∼ Pσ and |W | ∼ Qσ

)

.

Moreover, we have, simply by using the Cramér-Wold theorem,

Z ∼ C2σ ⇔
(

RealPart(e
√
−1θZ) ∼ Wσ for every θ ∈ [0, 2π)

)

.

In particular, we have

Z ∼ C2σ ⇒ U ∼ Wσ and V ∼ Wσ.

Beware however that U and V are not independent random variables! Furthermore,
if P(|Z| = σ; V > 0) = 1 then Z follows the uniform distribution over the upper
half circle of radius σ if and only if U follows the so–called arc–sine distribution on
[−σ, +σ] ⊂ R with Lebesgue density x 7→ (π

√
σ2 − x2)−1.

The proof of theorem 1.5 is given in section 3. Since |λ1(A)| 6 s1(A) for any
square matrix A, and since λ1(M) = 1, we have for every n > 1

s1(M) > |λ1(M)| = 1.

However, theorem 1.5 implies in particular that almost surely

1

n
Card

{

1 6 k 6 n such that sk(M) >
2√
n

}

−→
n→∞

0.

4



Random Q-matrices

Bryc, Dembo, and Jiang studied in [BDJ06] the limiting spectral distribution of ran-

dom Hankel, Markov, and Toeplitz matrices. Let us explain briefly what they mean
by “random Markov matrices”. They proved the following theorem (see [BDJ06, th.
1.3] and also [BS08]) : let (Xi,j)1<i<j<∞ be an infinite triangular array of i.i.d. real
random variables of mean 0 and variance 1. Let Q be the symmetric n× n random
matrix defined for every 1 6 i 6 j 6 n by Qi,j = Qj,i = Xi,j if i < j, and

Qi,i = −
∑

16k6n
k 6=i

Qi,k for every 1 6 i 6 n.

Then, almost surely, the ESD of n−1/2 Q converges as n → ∞ to the free convolution2

of a semi–circle law and a standard Gaussian law.
This result gives an answer to a precise question raised by Bai in his 1999 review

article [Bai99, sec. 6.1.1]. The matrix Q is not Markov. However, it looks like
a Markov generator, i.e. a Q-matrix, since its rows sum up to 0. Unfortunately,
the assumptions do not allow the off–diagonal entries of Q to have non–negative
support, and thus Q cannot be almost surely a Markov generator. In particular, if
I stands for the identity matrix of size n × n, the symmetric matrix M = Q + I
cannot be almost surely Markov.

Eigenvalues and the circular law

If M is as in theorem 1.5, then λ1(
√

nM) =
√

n goes to +∞ as n → ∞ while its
weight in the ESD is 1/n. Thus, it does not contribute to the limiting spectral dis-
tribution of

√
nM. Numerical simulations (see figure 1) suggest that the empirical

distribution of the rest of the spectrum tends as n → ∞ to the uniform distribution
on the unit disc. One can formulate this conjecture as follows.

Conjecture 1.6 (Circle law for the Dirichlet Markov Ensemble). If M is as in

theorem 1.5, then

P

(

1

n

n
∑

k=1

δλk(
√

nM)
w−→

n→∞
C1

)

= 1

where
w→ denotes the weak convergence of probability distributions and C1 the uniform

distribution over the unit disc {z ∈ C; |z| 6 1} as defined in table 1.

The main difficulty in conjecture 1.6 lies in the fact that M is non–normal
with non i.i.d. entries. The limiting spectral distributions of non–normal random
matrices is a notoriously difficult subject, see for instance [TVK08]. The method
used for the singular values for the proof of theorem 1.5 fails for the eigenvalues,
due to the lack of variational formulas for the eigenvalues. In contrast to singular
values, the eigenvalues of non–normal matrices are very sensitive to perturbations,
a phenomenon captured by the notion of pseudo–spectrum [TE05]. The reader
may find in [Cha08] a more general version of theorem 3.1 which goes beyond the
exponential case, and some partial answers to conjecture 1.6.

2This limiting spectral distribution is a symmetric law on R with smooth bounded density of
unbounded support. See [HP00] or [Bia97] for Voiculescu’s free convolution.
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Sub–dominant eigenvalue

The fact that non–centered entries produce an explosive extremal eigenvalue was
already noticed in various situations, see for instance [And90], [Sil94], [BDJ06, th.
1.4], [BS07], and [Cha07]. It is natural to ask about the asymptotic behavior (conver-
gence and fluctuations) of the sub–dominant eigenvalue λ2(M) when M ∼ U(Mn).
The reader may find some answers in [GN03, GONS00], and may forge new conjec-
tures from our simulations (see figures 2 and 3). For instance, by analogy with the
Complex Ginibre Ensemble [Kos92, Rid03], one can state the following:

Conjecture 1.7 (Behavior of sub–dominant eigenvalue and spectral gap). If M is

as in theorem 1.5, then λ1(M) = 1 while

P

(

lim
n→∞

√
n |λ2(M)| = 1

)

= 1.

In particular, the spectral gap 1 − |λ2(M)| of M is of order 1 − 1/
√

n for large

n. Moreover, there exist deterministic sequences (an) and (bn) and a probability

distribution G on R such that

bn(|λ2(M)| − an)
d−→

n→∞
G

where
d→ denotes the convergence in law.

There is not clear indication that G is a Gumbel distribution as for the Com-
plex Ginibre Ensemble. Moreover, our simulations suggest that the sub–dominant
eigenvalue is real with positive probability (depends on n), which is not surprising
knowing [Ede97, EKS94]. Note that Goldberg and Neumann have shown [GN03]
that if X is an n×n random matrix with i.i.d. rows such that for every 1 6 i, j, j′ 6 n,

E[Xi,j] =
1

n
, and Var(Xi,j) = O

(

1

n2

)

, and |Cov(Xi,j,Xi,j′)| = O

(

1

n3

)

then P(|λ2(X)| 6 r) > p for any p ∈ (0, 1), any 0 < r < 1, and large enough n. This
is the case if we set X = M.

Other distributions

The Dirichlet distribution of dimension n and mean ( 1
n
, . . . , 1

n
) is the uniform distri-

bution on the simplex Λn defined by (1). One can replace the uniform distribution
by a Dirichlet distribution of dimension n and arbitrary mean. The argument used
in the proof of theorem 1.5 remains the same due to the very similar construction of
Dirichlet distributions by projection from i.i.d. Gamma random variables. One can
also replace the ‖·‖1-norm by any other ‖·‖p-norm, and investigate the limiting spec-
tral distribution of the corresponding random matrices. This case can be handled
with the construction of the uniform distribution by projection proposed in [SZ90].
Replacing the non–negative portion of spheres by the non–negative portion of balls
is also possible by using [BGMN05]. More generally, one can consider random ma-
trices with independent rows. The case of the uniform distribution on the whole
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unit ‖·‖p–ball of Rn is considered for instance by in [Aub06] by using [BGMN05]
together with random matrices results for i.i.d. centered entries. It is crucial here
to have an explicit construction of the distribution from an i.i.d. array. For the link
with the sampling of convex bodies, see [Aub07]. The case of matrices with i.i.d.
rows following a log-concave isotropic distribution is considered in the recent work
[PP07], by using recently developed results on log-concave measures. The reader
may find a universal version of theorem 3.1 in [Cha08], where the exponential law
is replaced by an arbitrary law.

Doubly Stochastic matrices

The Birkhoff or transportation polytope is the set of n×n doubly stochastic matrices,
i.e. matrices which are Markov and have a Markov transpose. Each n × n doubly
stochastic matrix corresponds to a transportation map of n unit masses into n boxes
of unit mass (matching), and conversely, each transportation map of this kind is a
n × n doubly stochastic matrix. Geometrically, the Birkhoff polytope is a convex
compact subset of Mn of zero Lebesgue measure in R

n2

and (n − 1)2 degrees of
freedom if n > 1. As for Mn, one can define the uniform distribution as the
normalized trace of the Lebesgue measure. However, we ignore if this distribution
has a probabilistic representation that allows exact simulation as for U(Mn). The
spectral behavior of random doubly stochastic matrices was considered in the Physics
literature, see for instance [Ber01]. On the purely discrete side, the Birkhoff polytope
is also related to magic squares, transportation polytopes and contingency tables,
see [DE87, DE85] and [DG95]. Note also that if M is Markov, then MM⊤ and
1
2
(M+M⊤) are not Markov in general. However, this is the case when M is doubly

stochastic. The Birkhoff-von Neumann theorem states that the extremal points of
the Birkhoff polytope are exactly the permutation matrices. The reader may find
nice spectral results on random uniform permutation matrices in [HKOS00, Wie00]
and references therein.

Another interesting polytope of matrices is the set of symmetric n × n Markov
matrices, which is a convex compact polytope of zero Lebesgue measure in Rn2

with
1
2
n(n − 1) degrees of freedom if n > 1. As for Mn, one can define the uniform

distribution as the normalized trace of the Lebesgue measure. However, we ignore
if this distribution has a probabilistic representation that allows simulation as for
U(Mn). One can ask about the spectral properties of the corresponding random
symmetric Markov matrices. Note that these matrices are doubly stochastic, but the
converse is false except when n = 1 or n = 2. Our construction of U(Mn) in theorem
1.5 corresponds in the Markovian probabilistic jargon to a random conductance
model on the complete oriented graph. The study of the spectral properties of
random reversible Markov conductance models on the complete non–oriented graph
can be found in [Cha09, BCC08, BCC09]. For other graphs, the reader may find
some clues in [BDPX05].

Let M be as in theorem 1.5. Numerical simulations suggest that almost surely,
the ESD of the symmetric matrix 1

2
(M + M⊤) tends, as n → ∞, to a semi–circle

Wigner distribution.
If U is an n × n unitary matrix, then (|Ui,j|2)16i,j6n is a doubly stochastic

matrix. These doubly stochastic matrices are called uni–stochastic or unitary-
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stochastic. There exists doubly stochastic matrices which are not uni–stochastic,
see [BEK+05] and [Tan01]. However, every permutation matrix is orthogonal and
thus uni–stochastic. The Haar measure on the unitary group induces a probabil-
ity distribution on the set of uni–stochastic matrices. How about the asymptotic
spectral properties of the corresponding random matrices?

Perron–Frobenius eigenvector (invariant vector)

If M ∼ U(Mn), then almost surely, all the entries of M are non-zero, and in
particular, M is almost surely recurrent irreducible and aperiodic. By a theorem
of Perron and Frobenius [Sen06], it follows that almost surely, the eigenspace of
M⊤ associated to the eigenvalue 1 is of dimension 1 and contains a unique vector
with non–negative entries and unit ‖·‖1-norm. One can ask about the asymptotic
behavior of this vector as n → ∞. For a fixed n, the distribution of this vector is
the distribution of the rows of the infinite product of random matrices limk→∞ Mk.

2 Structure of the Dirichlet Markov Ensemble

Let Λn be as in (1). For any a ∈ (0,∞)n, the Dirichlet distribution Dn(a1, . . . , an),
supported by Λn, is defined as the distribution of

1

‖G‖1

G =

(

G1

G1 + · · ·+ Gn
, . . . ,

Gn

G1 + · · ·+ Gn

)

where G is a random vector of R
n with independent entries with Gi ∼ Gamma(1, ai)

for every 1 6 i 6 n. Here Gamma(λ, a) has density

t 7→ λa

Γ(a)
ta−1e−λt I(0,∞)(t),

where Γ(a) =
∫∞
0

ta−1e−t dt is the Euler Gamma function. Let P ∼ Dn(a1, . . . , an).
For every partition I1, . . . , Ik of {1, . . . , n} into k non empty subsets, we have

(

∑

i∈I1

Pi, . . . ,
∑

i∈Ik

Pi

)

∼ Dk

(

∑

i∈I1

ai, . . . ,
∑

i∈Ik

ai

)

.

The mean and covariance matrix of Dn(a1, . . . , an) are given by

1

‖a‖1

a and
1

‖a‖2
1(1 + ‖a‖1)

(‖a‖1diag(a) − aa⊤)

where a = (a1, . . . , an)⊤ and diag(a) is the diagonal matrix with diagonal given by
a. For any non-empty subset I of {1, . . . , n}, we have

∑

i∈I

Pi ∼ Beta

(

∑

i∈I

ai,
∑

i6∈I

ai

)

,
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where Beta(α, β) denotes the Euler Beta distribution on [0, 1] of Lebesgue density

t 7→ Γ(α + β)

Γ(α)Γ(β)
tα−1(1 − t)β−1 I[0,1](t).

If PI = (Pi)i∈I , PIc = (Pi)i6∈I , aI = (ai)i∈I , and |I| = card(I), then

1
∑

i∈I Pi
PI and PIc are independent and

1
∑

i∈I Pi
PI ∼ D|I|(aI),

For any α > 0, the Dirichlet distribution Dn(α, . . . , α) is exchangeable, with nega-
tively correlated components. More generally, if P ∼ µ where µ is an exchangeable
probability distribution on the simplex Λn with n > 1, then

0 = Var(1) = Var(P1 + · · ·+ Pn) = nVar(P1) + n(n − 1)Cov(P1, P2).

Consequently, Cov(P1, P2) = −(n − 1)−1Var(P1) and in particular Cov(P1, P2) 6 0.
We refer for instance to [Wil62] for other properties of Dirichlet distributions.

Corollary 1.2 follows immediately from theorem 1.1 together with the basic proper-
ties of the Dirichlet distributions mentioned above.

Proof of theorem 1.1. As a subset of Rn, the simplex Λn defined by (1) is of zero
Lebesgue measure. However, by considering Λn as a convex subset of the hyper-plane
of equation x1+· · ·+xn = 1 or by using the general notion of Hausdorff measure, one
can see that in fact, the Dirichlet distribution Dn(1, . . . , 1) is the normalized trace
of the Lebesgue measure of Rn on the simplex Λn. In other words, Dn(1, . . . , 1) can
be seen as the uniform distribution on Λn, see [SZ90].

We identify Mn with (Λn)
n = Λn × · · · ×Λn where Λn is repeated n times. The

trace of the Lebesgue measure of Rn2

= (Rn)n on (Λn)
n is the n-tensor product of

the trace of the Lebesgue measure of Rn on Λn, i.e. the n-tensor product measure
Dn(1, . . . , 1)⊗n. Consequently, for every positive integer n,

(Mn,U(Mn)) = ((Λn)n,Dn(1, . . . , 1)⊗n).

This gives the invariance of U(Mn) by permutation of rows. If M ∼ U(Mn), then
the rows of M are i.i.d. and follow the Dirichlet distribution Dn(1, . . . , 1). Finally,
the invariance of U(Mn) by permutation of columns comes from the exchangeability
of the Dirichlet distribution Dn(1, . . . , 1).

Recursive simulation

The simulation of U(Mn) follows from the simulation of n i.i.d. realizations of
Dn(1, . . . , 1) by using n2 i.i.d. exponential random variables. The elements of Dyson’s
classical Gaussian ensembles GUE and GOE can be simulated recursively by adding
a new independent line/column. It is natural to ask about a recursive method for
the Dirichlet Markov Ensemble. If

X ∼ Dn−1(a2, . . . , an) and Y ∼ Beta(a1, a2 + · · · + an)
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are independent, then

(Y, (1 − Y )X) ∼ Dn(a1, . . . , an).

This recursive simulation of Dirichlet distributions is known as the stick–breaking

algorithm [Set94]. It allows to simulate U(Mn) recursively on n. Namely, if M is
such that M ∼ U(Mn), then

(

Y (1 − Y ) · M
Z1 Z2 · · · Zn

)

∼ U(Mn+1)

where Z is a random row vector of R
n+1 with Z ∼ Dn+1(1, . . . , 1) and Y is a random

column vector of Rn with i.i.d. entries of law Beta(1, n), with M, Y, Z independent.
Here ((1 − Y ) · M)i,j := (1 − Y )iMi,j for every 1 6 i, j 6 n.

Asymptotic behavior of the rows

Let M and (Xi,j)16i,j<∞ be as in theorem 1.5. Let us fix k > 1 and n > i > 1. The
kth moment mn,i,k of the discrete probability distribution 1

n

∑n
j=1 δnMi,j

is given by

mn,i,k =
1

n

n
∑

j=1

(nMi,j)
k

=

n
∑

j=1

nk

n

Xk
i,j

(Xi,1 + · · · + Xi,n)
k

=
nk

(Xi,1 + · · · + Xi,n)
k

Xk
i,1 + · · ·+ Xk

i,n

n
.

Therefore, by using twice the strong law of large numbers, we get that almost surely,

lim
n→∞

mn,i,k =
E[Xk

1,1]

E[X1,1]k
= E[Xk

1,1].

As a consequence, almost surely, for any fixed i > 1 and every k > 1,

lim
n→∞

Wk

(

1

n

n
∑

j=1

δnMi,j
; E1

)

= 0,

where E1 = L(X1,1) is the exponential law on unit mean and where Wk(· ; ·) is the
so called Wasserstein–Mallows coupling distance of order k (see for instance [Vil03]
or [Rac91]). This result is a special case of a more general well known phenomenon
(sometimes referred as the Poincaré observation) concerning the coordinates of a
uniformly distributed random point on the unit ‖·‖p–sphere of R

n with 1 6 p < ∞
when n → ∞, see for instance [NR03], [Jia09], and references therein.
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Semi–group structure and translation invariance

The set Mn is a semi–group for the usual matrix product. In particular, for every
T ∈ Mn, the set Mn is stable by the left translation M 7→ TM and the right
translation M 7→ MT. When T is a permutation matrix, then these translations are
bijective maps, and the left translation (respectively right) translation corresponds
to rows (respectively columns) permutations.

For some fixed T ∈ Mn, let us consider the left translation M 7→ TM, where
M ∼ U(Mn). By linearity, we have

E[TM] = TE[M] = T
1

n
1 =

1

n
1

where 1 is the n × n matrix full of ones. Thus, the left translation by T leaves the
mean invariant.

Proof of theorem 1.3. First of all, the case n = 1 is trivial and one can assume that
n > 1 in the rest of the proof. A probability distribution µ on Mn is invariant
by the left translation M 7→ PM for every permutation matrix P of size n × n if
and only if µ is row exchangeable. Similarly, µ is invariant by the right translation
M 7→ MP for every permutation matrix P of size n × n if and only if µ is column
exchangeable. Theorem 1.1 gives then the invariance of U(Mn) by left and right
translations with respect to permutation matrices3.

Conversely, let us assume that the law U(Mn) is invariant by the left translation
M 7→ TM for some T ∈ Mn. If M ∼ U(Mn), and since the components of the
first column M·,1 of M are i.i.d. we have

Var((TM)1,1) = Var

(

n
∑

k=1

T1,kMk,1

)

=
n
∑

k=1

(T1,k)
2Var(Mk,1)

= Var(M1,1)

n
∑

k=1

(T1,k)
2.

The invariance hypothesis implies in particular that Var(M1,1) = Var((TM)1,1).
Since Var(M1,1) = (n − 1)/(n2(n + 1)) > 0, we get 1 =

∑n
k=1(T1,k)

2. Now, T is
Markov and thus

∑n
k=1 T1,k = 1, which gives

n
∑

k=1

(T1,k − (T1,k)
2) = 0.

Since T is Markov, its entries are in [0, 1] and hence T1,k ∈ {0, 1} for every 1 6 k 6 n.
The condition

∑n
k=1 T1,k = 1 gives then that the first line of T is an element of the

canonical basis of Rn. The same argument used for (TM)k,1 for every 1 6 k 6 n

3However that as a law over Rn
2

, U(Mn) is not exchangeable. The permutation of rows and
columns correspond to a proper subset of the group of permutations of the n2 entries.
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shows that every line of T is an element of the canonical basis, and thus T is a
binary matrix with exactly a unique 1 on each row. Since TM ∼ U(Mn), it has
independent rows, and thus the position of the 1’s on the rows of T are pairwise
different, which means that T is a permutation matrix as expected.

Let us consider now the case where the law U(Mn) is invariant by the right
translation M 7→ MT for some T ∈ Mn. If M ∼ U(Mn), we can first take a look
at the mean. Namely, E[MT] = E[M]T = 1

n
S where S is defined by

Si,j =
n
∑

k=1

Tk,j

for every 1 6 i, j 6 n. Now, the invariance hypothesis gives on the other hand

E[MT] = E[M] =
1

n
1

and thus S = 1, which means that T is doubly stochastic, i.e. both T and T⊤ are
Markov. The invariance hypothesis implies also that

Var((MT)1,1) = Var(M1,1) =
n − 1

n2(n + 1)
.

But since the first line M1,· of M is Dn(1, . . . , 1) distributed,

Var((MT)1,1) =
∑

16i,j6n

Ti,1Tj,1Cov(M1,i;M1,j)

=
n − 1

n2(1 + n)

n
∑

i=1

(Ti,1)
2 − 2

n2(n + 1)

∑

16i<j6n

Ti,1Tj,1.

Since T is doubly stochastic, we have 1 =
∑n

i=1 Ti,1 and thus

(n − 1)
n
∑

i=1

(Ti,1 − (Ti,1)
2) = −2

∑

16i<j6n

Ti,1Tj,1.

The terms of the left and right hand side have opposite signs, which gives that
Ti,1 ∈ {0, 1} for every 1 6 i 6 n. The same method used for (MT)1,k for every
1 6 k 6 n shows that T is a binary matrix. Since T is doubly stochastic, it follows
that T is actually a permutation matrix, as expected.

The set of n × n permutation matrices is a discrete subgroup of the orthogonal
group of Rn, isomorphic to the symmetric group Σn. The group of permutation
matrices plays for the Dirichlet Markov Ensemble the role played by the orthogonal
group for Dyson’s GOE or COE, and the role played by the unitary group for
Dyson’s GUE or CUE. In some sense, we replaced an L2 Gaussian structure by an
L1 Dirichlet structure while maintaining the permutation invariance.

A very natural question is to ask about the existence of a convolution idempotent
probability distribution on the compact semi–group Mn. Recall that a probability
distribution µ on a semi–group S is idempotent if and only if µ ∗ µ = µ. Here the

12



convolution µ ∗ ν of two probability distributions µ and ν on S is defined, for every
bounded continuous f : S → R, by

∫

S

f(s)d(µ ∗ ν)(s) =

∫

S

(
∫

S

f(slsr) dµ(sl)

)

dν(sr).

Actually, the structure of compact semi–groups and their idempotent measures was
deeply investigated in the 1960’s, see [Ros71, p. 158-160] for a historical account.
In particular, one can find in [Ros71, lem. 3] the following result.

Lemma 2.1. Let µ be a regular probability distribution over a compact Hausdorff

semi–group S such that the support of µ generates S. Then the mass of the con-

volution sequence µ∗n concentrates on the kernel K(S) of S. More precisely, for

every open set O containing K and every ε > 0, there exists a positive integer nε

such that µ∗n(O) > 1 − ε for every n > nε.

Here µ∗n denotes the convolution product µ∗ · · ·∗µ of n copies of µ. If µ∗n tends
to µ as n → ∞ then µ is convolution idempotent, that is µ ∗ µ = µ. The kernel
K(S) of S is the sub–semi–group of S obtained by taking the intersection of the
family of two sided ideals of S, see [Ros71, th. 1]. A direct consequence of lemma
2.1 is the absence of a translation invariant probability measure µ on S with full
support such that the kernel of S is a µ–proper sub–semi–group of S. By µ–proper
sub–semi–group here we mean that its µ-measure is < 1. This result can be easily
understood intuitively since the translation associated to a non invertible element
of S gives a strict contraction of the support.

Proof of theorem 1.4. The kernel of the semi–group Mn is constituted by the n×n
Markov matrices with equal rows, which are the n×n idempotent Markov matrices
(i.e. M2 = M). The reader may find more details in [Ros71, p. 146]. Since the
kernel of Mn is a U(Mn)–proper sub–semi–group of Mn, lemma 2.1 implies the
absence of any convolution idempotent probability distribution on Mn, absolutely
continuous with respect to U(Mn) and with full support. The proof is finished by
noticing that if a probability distribution on Mn is invariant by every left (or right)
translation, then it is convolution idempotent. Note by the way that the Wedder-
burn matrix 1

n
1 belongs to the kernel of Mn, and also that this kernel is equal to

{limk→∞ Mk;M ∈ An} where An is the collection of irreducible aperiodic elements
of Mn. The reader may find in [Ros71, ch. 5] the structure of non fully supported
idempotent probability distributions on compact semi–groups and in particular on
Mn.

3 Proofs of theorem 1.5

The following theorem can be found for instance in [BS06, th. 3.6].

Theorem 3.1 (Singular values of large dimensional non–centered random arrays).
Let (Xi,j)16i,j<∞ be an infinite array of i.i.d. real random variables with mean m
and variance σ2 ∈ (0,∞). If X = (Xi,j)16i,j6n, then

P

(

1

n

n
∑

k=1

δsk(n−1/2X)
w−→

n→∞
Qσ

)

= 1
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where
w→ denotes the weak converge of probability distributions and Qσ is the Wigner

quarter–circle distribution defined in table 1. Moreover,

P

(

lim
n→∞

s1(n
−1/2 X) = 2σ2

)

= 1 if and only if E[X1,1] = 0 and E[|X1,1|4] < ∞.

The following lemma is a consequence of [BY93, le. 2] (see also [BS06, le. 5.13]).

Lemma 3.2 (Uniform law of large numbers). If (Xi,j)16i,j<∞ is an infinite array of

i.i.d. random variables of mean m, then by denoting Si,n =
∑n

j=1 Xi,j,

max
16i6n

∣

∣

∣

∣

Si,n

n
− m

∣

∣

∣

∣

a.s.−→
n→∞

0

and in the case where m 6= 0, we have also

max
16i6n

∣

∣

∣

∣

n

Si,n

− 1

m

∣

∣

∣

∣

a.s.−→
n→∞

0.

The following lemma is a consequence of the Courant–Fischer variational formu-
las for singular values, see [HJ90]. Also, we leave the proof to the reader.

Lemma 3.3 (Singular values of diagonal multiplicative perturbations). For every

n × n matrix A, every n × n diagonal matrix D, and every 1 6 k 6 n,

sn(D)sk(A) 6 sk(DA) 6 s1(D)sk(A).

We are now able to prove theorem 1.5.

Proof of theorem 1.5. We have M = DE where E = (Xi,j)16i,j6n and D is the n×n
diagonal matrix given for every 1 6 i 6 n by

Di,i =
1

∑n
j=1 Xi,j

.

The fact that M ∼ U(Mn) follows immediately from theorem 1.1 combined with the
construction of the Dirichlet distribution Dn(1, . . . , 1) from i.i.d. exponential random

variables. It remains to prove the convergence of the ESD of
√

nMM⊤ as n → ∞ to
the Wigner quarter–circle distribution Q1. For such, we use the method of Aubrun
[Aub06], by replacing the unit ‖·‖1–ball by the portion of the unit ‖·‖1–sphere with
non–negative coordinates. If suffices to show that almost surely, the discrete measure
1
n

∑n
k=2 δsk(

√
nM) tends weakly to the Wigner quarter–circle distribution Q1.

We first observe that E is a rank one additive perturbation of the centered
random matrix E − EE. Also, a standard interlacing inequality gives

s2(E) 6 s1(E − EM).

Now by the second part of theorem 3.1 we have s1(E−EE) = O(
√

n) almost surely.
Consequently, s2(n

−1/2 E) = O(1) almost surely. In particular, almost surely, the
sequence ( 1

n

∑n
k=2 δsk(n−1/2 E))n>1 remains in a compact set. The desired result follows

then from the combination of the first part of theorem 3.1 with lemmas 3.3 and 3.2.
This proof does not rely on the exponential nature of the Xi,j’s and remains actually
valid for more general laws, see [Cha08].
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There is no equivalent of lemma 3.3 for the eigenvalues instead of the singular
values, and thus the method used to prove theorem 1.5 fails for conjecture 1.6. Note
that by lemma 3.2 used with the exponential distribution of mean m = 1,

‖nD − I‖2→2 = max
16i6n

∣

∣

∣

∣

∣

n
∑n

j=1 Xi,j
− 1

∣

∣

∣

∣

∣

−→
n→∞

0 a.s.

If A is diagonal, then we simply have ‖A‖2→2 = s1(A) = max16k6n |Ak,k|, and when

A is diagonal and invertible, ‖A−1‖−1
2→2 = sn(A) = min16k6n |Ak,k|. Now, by the

circular law theorem for non–central random matrices [Cha07], we get that almost
surely, the ESD of n−1/2 E converges, as n → ∞, to the uniform distribution C1 (see
table 1). It is then natural to decompose

√
nM as

√
nM = nDn−1/2 E = (nD − I)n−1/2 E + n−1/2 E.

Unfortunately, since m = 1 6= 0, we have almost surely (see [Cha07])

∥

∥n−1/2 E
∥

∥

2→2
= s1(n

−1/2 E) −→
n→∞

+∞.

This suggests that
√

nM cannot be seen as a perturbation of n−1/2 E with a matrix
of small norm. Actually, even if it was the case, the relation between the two spectra
is unknown since E is not normal. One can think about using logarithmic potentials
to circumvent the problem. The strength of the logarithmic potential approach is
that it allows to study the asymptotic behavior of the ESD (i.e. eigenvalues) of non–
normal matrices via the singular values of a family of matrices indexed by z ∈ C.
The details are given in [Cha07] for instance. The logarithmic potential of the ESD
of

√
nM at point z is

Un(z) = −1

n
log
∣

∣det(
√

nM − zI)
∣

∣

= −1

n
log |det(nD)| − 1

n
log
∣

∣det(n−1/2 E − z(nD)−1)
∣

∣.

Now, by lemma 3.2,
1

n
log |det(nD)| −→

n→∞
0 a.s.

By the circular law theorem for non–central random matrices [Cha07] and the lower
envelope theorem [ST97], almost surely, for quasi-every4 z ∈ C, the quantity

lim inf
n→∞

−1

n
log
∣

∣det(n−1/2 E − zI)
∣

∣

is equal to the logarithmic potential at point z of the uniform distribution C1 on the
unit disc {z ∈ C; |z| 6 1}. It is thus enough to show that almost surely, for every
z ∈ C,

1

n
log
∣

∣det(n−1/2 E− z(nD)−1)
∣

∣− 1

n
log
∣

∣det(n−1/2 E− zI)
∣

∣ −→
n→∞

0.

4This means “except on a subset of zero capacity”, in the sense of potential theory, see [ST97].

15



Unfortunately, we ignore how to prove that. A possible alternative beyond potential
theoretic tools is to adapt the method developed in [TVK08] by Tao and Vu involving
a “replacement principle”. The reader may find some progresses in [Cha08].
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Figure 1: Plot of the spectrum of a single realization of
√

nM where M ∼ U(Mn)
with n = 81. We see one isolated eigenvalue λ1(

√
nM) =

√
n = 9 while the rest

of the spectrum remains near the unit disc and seems uniformly distributed, in
accordance with conjecture 1.6.
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Figure 2: Here 1000 i.i.d. realizations of
√

nM where simulated where M ∼ U(Mn)
with n = 300. The first plot is the histogram of |λ2(

√
nM)|, i.e. the module

of the sub–dominant eigenvalue λ2(
√

nM). The second plot is the histogram of
|Phase(λ2(

√
nM))|. Recall that the spectrum is symmetric with respect to the real

axis since the matrices are real.
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Figure 3: Here we reused the sample used for figure 2. The graphic is a plot of
the 1000 i.i.d. realizations of the sub–dominant eigenvalue λ2(

√
nM). Since we deal

with real matrices, the spectrum is symmetric with respect to the real axis, and we
plotted (RealPart(λ2), |ImaginaryPart(λ2)|) in the complex plane.
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