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We study the work fluctuations of two types of finite quantum spin chains under the application
of a time-dependent magnetic field in the context of the fluctuation relation and Jarzynski equal-
ity. The two types of quantum chains correspond to the integrable Ising quantum chain and the
non-integrable XX quantum chain in a longitudinal magnetic field. For several magnetic field pro-
tocols, the quantum Crooks and Jarzynski relations are numerically tested and fulfilled. As a more
interesting situation, we consider the forcing regime where a periodic magnetic field is applied. In
the Ising case we give an exact solution in terms of double confluent Heun functions. We show that
the fluctuations of the work performed by the external periodic drift are maximum at a frequency
proportional to the amplitude of the field. In the non-integrable case, we show that depending on
the field frequency a sharp transition is observed between a Poisson limit work distribution at high
frequencies toward a normal work distribution at low frequencies.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

The study of fluctuations in non-equilibrium small sys-
tems has become an active field of research during the last
years. The reasons are twofold: on one hand, nanoscaled
systems are nowadays quite easily manufactured, opening
the door to the emergence of various nano-technologies.
On the other hand in the field of non-equilibrium statis-
tical mechanics, where exact results are very few, the dis-
covery of fluctuation symmetries [1, 2] expressed by the
Gallavotti-Cohen fluctuation theorem [3, 4, 5, 6, 7, 8] and
Jarzynski equality [9] have opened new theoretical per-
spectives. The fluctuation theorem is a statement on the
time-reversal symmetry of the fluctuations of the entropy
production along a non-equilibrium path [4]. Whereas
this theorem is an asymptotic statement, Crooks derived
an interesting identity reading [10, 11]

PF (∆S)

PB(−∆S)
= e∆S . (1)

∆S is the entropy production for a system driven during
a time τ within a forward protocol λF (t), PF is the dis-
tribution of entropy production in the forward process
and PB is the distribution associated to the backward
process, that is when the system is driven in a time-
reversed manner. The celebrated Jarzynski equality [9]
is easily derived from the Crooks relation. Indeed, uti-
lizing for a thermalised system ∆S = β(W − ∆F ), with
∆F = [F (λF (τ)) − F (λ(0))] and integrating over W we
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have

〈e−βW 〉 = e−β∆F (2)

which is Jarzynski relation. These relations, initially de-
rived for classical systems, have been extended to the
quantal world as well [12, 13, 14, 15, 16, 17] within var-
ious setup and prescriptions for the actual measurement
of work performed on a quantum system [18].

As it is clear from the extensivity of the entropy pro-
duction, the probability to observe a decrease of entropy
in a given non-equilibrium trajectory is exponentially
small for a macroscopic system. However, for micro-
scopic or mesoscopic systems these untypical trajectories
arise with a significant probability and consequently can
be observed and measured in actual experimental setup.
One may mention in particular experimental tests on the
stretching of RNA molecules [19, 20], experiments on tor-
sional pendulum [21], on colloidal particles [22, 23], on
photochromic defect center in diamonds [24]. See Ref.
[25] for an excellent review of the experimental related
investigations. It is then interesting to calculate or pre-
dict the shape of these fluctuations in some explicit mod-
els for small system size [26, 27]. In this contribution
we focus our attention to the work fluctuations of two
time-dependent quantum spin chains where the time de-
pendence is due to an externally applied magnetic field.
The two models considered are the integrable quantum
Ising chain in a time-dependent transverse field and the
XX-quantum chain with a longitudinal magnetic field
that breaks its integrability. We consider these two cases
as archetypical of the integrable and non-integrable sit-
uations and we expect that the work distributions will
reflect somehow these differences. We check Jarzynski
and Crooks relations and compute explicitly the non-
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equilibrium work distributions associated to several mag-
netic field protocols. In particular, we study the limiting
steady distributions in the important case of periodically
driven system.

The paper is organized as follows: in the next section
we define the models and protocols for studying work
fluctuations. We insist in particular on the definition of
work we are using in our study, pointing explicitly as
it was done in [18, 28] the discrepancies between this
definition and the use of a work operator. We present
then the numerical results corroborating Jarzynski and
Crooks relations before turning to the main part which
is the study of work fluctuations within a periodic drift.
An exact solution, in terms of double confluent Heun
functions is given in the Ising case. The study of the
XX-chain is only numerical, but nevertheless evidences
are drown out to show clearly the appearance of a sharp
transition between an exponential work distribution at
high field frequencies toward a gaussian work distribu-
tion at lower frequencies. We summarize and discuss our
results in the last section.

II. QUANTUM SPIN CHAINS IN A TIME
DEPENDENT FIELD

A. Definition of the model and protocol

We study quantum chains with a time-dependent field,
in the context of fluctuations of the work performed on
them by the time-dependent force, defined through the
following Hamiltonian:

H = −
1

2

N−1
∑

i=1

σx
i σx

i+1−
∆

2

N−1
∑

i=1

σz
i σz

i+1−
1

2
h(t)

N
∑

i=1

σz
i (3)

in particular in the two cases ∆ = 0 and ∆ = 1. The
σ’s are Pauli’s matrices and h(t) is a time-dependend
magnetic field applied in the z-direction and leading to
the Zeeman term −h(t)Mz where Mz is the total z-
component of the magnetization.

At ∆ = 0, it corresponds to the Ising quantum chain.
In a static transverse field the Ising chain can be mapped
after a Jordan-Wigner transformation onto a fermionic
problem which can be diagonalised after a suitable canon-
ical (Bogoliubov) transformation. In the thermodynamic
limit N → ∞, this model presents a quantum phase
transition at h = hc = 1 which is in the 2d classi-
cal Ising model universality class. The integrability and
non-triviality (in the sense of physical properties) of the
model is at the origin of its wide use in many fundamen-
tal studies concerning in particular the testing grounds
of non-equilibrium quantum statistical mechanics. One
may mention for example relaxation properties from an
inhomogeneous initial state [29, 30, 31, 32, 33, 34], en-
tropy production after a local quench [35, 36], entropy
production in the unique NESS (non-equilibrium steady
state) generated from a two temperature initial state

[37], or even relaxation properties after a quench through
the critical point (basically h is varied from hi > hc to
hf < hc) [38, 39].

The case ∆ = 1 corresponds to the isotropic XX-
quantum chain in a time-dependent magnetic field, which
breaks the integrability of the model. With a periodic de-
pendence of the field, this model has to be compared to
the quantum kicked Heisenberg chain:

H(t) = −
1

2

L−1
∑

j=0

(

σx
i σx

i+1 + σz
i σz

i+1 + δ(t)V σy
i σy

i+1

)

(4)

where the time-dependent perturbation is periodically
switched on. This model was studied in the context of the
transition from integrability to ergodicity in the thermo-
dynamic limit [40, 41, 42]. Here instead of the two-body
interaction (in the fermionic picture) σy

i σy
i+1 we apply a

magnetic field in the z-direction which leads to a many-
body fermionic term.

In the following, we consider the distribution of the
work performed by the time-dependent field h(t) from
the initial time ti to the final time tf . The varying field
will lead to transitions between the initial state of the
system to a new state at the final time. Here we use as a
definition for the work the difference of energies in the fi-
nal state and initial state, Wif = ∆Eif = Ef −Ei, which
assumes that we have measurements performed at ti and
tf . The work distribution P (W ) is a weighted sum over
all initial and final states of the quantum transition prob-
ability |(φf , Uφi)|

2, where U is the unitary time-evolution
operator associated to the time-dependent Hamiltonian
H(t), and is given by

P (W ) =
∑

i,f

δ(∆Eif − W )|(φf , Uφi)|
2 ωφi (5)

where φi and φf are respectively initial and final eigen-
states of the initial and final Hamiltonian and ωφi =
(φi, ρ0φi) where ρ0 ∝ e−βH(0) is the initial (which is sup-
posed to be canonical here) density matrix. It is clear
that this definition differs from the introduction of a work
operator defined such that its expectation in the state ρ
would give the actual performed work:

W =

∫ tf

ti

ds T r{ρ(s)
dH

ds
} (6)

which can be shown to be given by

W = Tr{ρ(ti)δH} =

Tr{ρ(ti)[U
+(tf , ti)H(tf )U(tf , ti) − H(ti)]} (7)

after a short algebra. One is then tempted to define
as a work operator δH = H̃(tf ) − H(ti), with Ã the
Heisenberg picture of A. However, it is clear that in gen-
eral the moments 〈(δH)n〉 would differ from the moments
〈Wn〉 =

∫

dW WnP (W ) with P (W ) defined in (5) and

consequently the expectation of the operator e−βδH

〈e−βδH〉 = Tr{ρ(ti)e
−βδH} (8)
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will not necessarily give the Jarzynski result e−β∆F . Nev-
ertheless, one can show that the moments so defined will
differ only for n > 2, so that for the average and average
square work one can use the work operator δH since then

〈δH〉 = Tr{ρ(ti)δH} =

∫

dW WP (W )

〈(δH)2〉 = Tr{ρ(ti)(δH)2} =

∫

dW W 2P (W ) (9)

with P (W ) =
∑

i,f δ(∆Eif − W )|(φf , Uφi)|
2 ωφi . The

equality of the first moments is trivial. To prove the
equality for the second moments, one may notices that
for [ρ(ti), H(ti)] = 0 using the cyclicality property of the

trace one has Tr{ρ(ti)[H̃(tf ), H(ti)]} = 0, which then
leads trivially to the equality of the second moments:
∫

dWW 2P (W ) =
∑

i,f (Ef − Ei)
2|(φf , Uφi)|

2 ωφi =

Tr{ρ(ti)(H̃(tf ) − H(ti))
2} − Tr{ρ(ti)[H̃(tf ), H(ti)]} =

Tr{ρ(ti)(H̃(tf )−H(ti))
2}. In short, the second moments

agree whatever the commutator [H̃(tf ), H(ti)] is. At the
level of the third moments, n = 3, one may show that a
non-vanishing term Tr{ρ(ti)[H̃(tf ), H(ti)]H̃(tf )} comes
into play leading to a difference between the moments
associated to the two preceding definitions of the work.

In order to compute the work distribution one needs
to know the unitary time-evolution operator U for the
given field protocol, which is a difficult task in general.
The numerical study assumes that the true dynamics is
well approximated by the step like unitary evolution

U(t, t0) =
M−1
∏

n=0

U(tn+1, tn) (10)

with

U(tn, tn−1) = eiH(tn)∆t (11)

where ∆t is an elementary time increment, meaning that
the real function h(t) is approximated by a step func-
tion. The true dynamics is obtained by taking the limit
∆t → 0, and M → ∞. In the present study we use
typically values of ∆t of order 10−2 (time is measured in
units where ~ = 1 and the spin-spin coupling Jx in the x-
direction of the spin chains is set to one). The transition
probabilities wi→f = |(φi, U(t, t0), φf )|2, where φi (φf )
are eigenstates of the initial(final) Hamiltonian, are com-
puted numerically using (10) and (11) on small chains
of typically less than 10 spins and with open boundary
conditions.

B. Jarzynski and Crooks relations

In order to test our numerical procedure we compare
first the free energy differences obtained from the Jarzyn-
ski equality (2) in a linear varying field protocol with
the equilibrium free energy differences calculated directly

from the partition function

F (h(t)) = −
1

β
lnTr{e−βH(t)} . (12)
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FIG. 1: Free energy difference obtained from the Jarzynski
equality compared to the exact value for the Ising chain with
N = 7 as a function of the terminal field value at β = 1 and
h(t) = t.

In figure 1 we have plotted the free energy differences
obtained from the Jarzynski equality and from a direct
equilibrium calculation as a function of the final field
value h at inverse temperature β = 1. The agreement
is excellent with a relative deviation which is less than
10−6.

We have also considered the ratio PF (W )/PB(−W ) =
P (W )/P (−W ) for the symmetric protocol h(t) =
ho sin(πt/τ) for t ∈ [0, τ ]. In figure 2 we see explicitly
the exponential dependence eβW for ho = 1/2 and 2 for
a chain of size N = 8. Again, the agreement of the
numerics with the analytical Crooks and Jarzynski re-
lations is fulfilled with a relative deviation which is less
than 10−6. We have tested also the Crooks relation in
the non-symmetrical protocol whose results are presented
in figure 3. Again, the exponential dependence eβW is
clearly seen on the graph.

C. Stationary distributions in the driven regime

1. Ising quantum chain

a. Numerical study We consider now the case where
the system is forced with a periodic external field with
period τ , maximum value ho and minimum value 0. We
are interested in the limiting stationary work distribu-
tion (if any) obtained after many periods of the external
driving field.

Before going on the driven situation, we concentrate
on the fluctuations of the work after one period. In fig-
ure 4 we show the distributions obtained on the Ising



4

-10 -5 0 5 10
W

10
-4

10
-2

10
0

10
2

10
4

P(
W

)/
P(

-W
)

FIG. 2: Crooks fluctuation ratio in the symmetrical case for
the XX chain at ∆ = 1 with N = 8 at β = 1 and τ = 1.
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FIG. 3: Crooks fluctuation ratio in the asymmetrical case for
the XX chain at ∆ = 1 with N = 8 at β = 1.

chain with N = 7 spins for ho = 1/2 and for differ-
ent periods τ of the forcing field for an initial infinite
temperature state β = 0 (equidistribution of the initial
eigenstates). In that case, obviously, the average work is
vanishing, which is reflected in the symmetry of the work
distribution P (W ) = P (−W ). On figure 4 we see clearly
that the evolution of the distribution is not monotonic
with the forcing period τ . The width of the distribution
first increases with τ , reaching a maximum and then de-
creases with τ . This behavior is clearly seen on the sec-
ond moment 〈W 2〉 in figure 5 where we show the variance
〈W 2〉β=0 as a function of τ for different maximum field
values ho for a N = 7 spin chain. We see that the width of
the distribution increases with the amplitude of the per-
turbation, since then the time-dependent perturbation is
more effectively coupled with the spin chain. Moreover,
the period τmax associated to the maximum width de-
creases as the amplitude is increased with, as seen from
the numerics, a law τmax ∼ 1/h for large fields enough
(ho > 1). Moreover we have seen numerically that τmax

is almost independent of the system size. As the field
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W
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10
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10
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)

τ=0.4
τ=0.6
τ = 1.8
τ =2.0
τ =2.2
τ = 5
τ = 10.

FIG. 4: Work probability distribution for the Ising model at
with N = 7 spins at β = 0 for ho = 1/2.

is increased, the maximum value of the variance reaches
an asymptotic finite value which is linearly depending
on the size N of the chain. One has from the numerics
〈W 2〉β=0,max = (N − 1)/2.

0 2 4 6 8
τ

0

0.5

1

1.5

2
<

W
2 >

h = 0.5
h = 1.0
h = 1.5

FIG. 5: 〈W 2〉 for the Ising model with N = 7 spins at β = 0
as a function of the period τ .

We have also computed the first and second moments
of the distribution as a function of τ for different inverse
temperatures β. The initial state temperature acts as a
scale factor for the moments:

〈W 〉β = tanh(β/2)〈δW 〉 (13)

where 〈δW 〉, defined by this equation, is the temperature
independent part of the average work. As seen on figure
6 one has for the variance

〈W 2〉β − 〈W 〉2β ≃ 〈W 2〉0 (14)

meaning that the width of the distribution has a very
small dependence on the initial state temperature, at
least in the considered range of β.

We turn now to the driven situation with many peri-
ods. In figure 7 we present the time evolution of the aver-
age work for different periods τ at a field value ho = 1/2
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FIG. 6: Variance of the work distribution for the Ising model
with N = 7 spins at ho = 1 as a function of the period τ for
β = 0, β = 1/2 and β = 1.

and inverse temperature β = 1. As expected, for large
periods the system follows almost adiabatically the vari-
ation of the associated equilibrium free energy (the re-
versible work). Moreover, it is seen as expected from the
second principle that the actual average work is always
greater than the free energy difference (see the inset).
As the period of the external transverse field is lowered,
we see that the deviation from the free energy difference
becomes larger and one is no more able to recognize the
underlying oscillatory external field. The largest vari-
ations and most ”chaotic” behavior is obtained at the
value τmax previously identified for one period. At higher
frequencies the fluctuations of the average work decrease
again.
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FIG. 7: Time evolution of the average work for the Ising
chain with a triangular periodic transverse field at β = 1 and
maximal amplitude ho = 1/2 with periods τ = 1 (circles),
τ = 3 (squares) and τ = 5 (triangles). The inset shows the
free energy difference (lower curve) and the average work (top
curve) for a large period τ = 50 of the field. In this case the
transformation is nearly adiabatic.

b. Exact solution for the driven Ising model With a
sinusoidal forcing field h(t) ∝ sin(ωt) it is in fact possible
to solve exactly the dynamics of the Ising quantum chain.
Indeed, following the lines of Ref.[43], we can put the
periodic boundary conditions Hamiltonian (3), after a
Jordan Wigner transformation followed by a Bogoliubov
one, into a sum of commuting operators:

H =

N/2
∑

p=1

H̃p (15)

with

H̃p = (cosφp − h(t))[a+
p ap + a+

−pa−p] (16)

−i
1

2
sin φp[a

+
p a+

−p + apa−p] + h(t) (17)

where [H̃p, H̃q] = 0 and where φp = 2πp/N . The a+, a
are Fermi operators in momentum space. Using the fol-
lowing basis (|0〉, a+

p a+
−p|0〉, a

+
p |0〉, a

+
−p|0〉), where |0〉 is

the vacuum of the a fermions, we have the 4 × 4 rep-
resentation

H̃p =







h(t) −i sinφp 0 0
i sinφp 2 cosφp − h(t) 0 0

0 0 cosφp 0
0 0 0 cosφp






(18)

In the Heisenberg picture, the time evolution matrix
Up(t) in the subset p is governed by the equation (~ = 1)

i
d

dt
Up(t) = Up(t)H̃p(t) (19)

with the boundary condition Up(0) = I. Using (18) and
(19), it is easy to obtain for the non vanishing elements
of the 4 × 4 matrix Up(t) the differential equation

i
d

dt

(

U11
p (t) U12

p (t)
U21

p (t) U22
p (t)

)

=

(

U11
p (t) U12

p (t)
U21

p (t) U22
p (t)

) (

h(t) −i sinφp

i sinφp 2 cosφp − h(t)

)

(20)

and U33
p (t) = U44

p (t) = e−it cos φp . From the two-coupled
first order differential equations, it is easy to obtain the
decoupled second order ones. For example, one has for
the 11-component

iu′′−2 cosφu′−(h′− i sin2 φ+ ih[2 cosφ−h])u = 0 (21)

with u(0) = 1, u′(0) = −ih(0) and similar equations
for the other components. Taking for the field the form
h(t) = h1 + h2 cos(ωt) and putting it in the differential
equation (21) one gets solutions in terms of double con-
fluent Heun function HD, namely for U11

p (t) and U12
p one

has

U11
p (t) =

1

2h2

[

(cosφp − h1)e
iAtHD(α, β, γ, δ,−iz)

−(cosφp − 2h2 − h1)e
−iAtHD(−α, β, γ, δ, iz)

]

, (22)
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U12
p (t) =

i sinφp

2h2

[

eiAtHD(α, β,−γ, δ,−iz)

−e−iAtHD(−α, β,−γ, δ, iz)
]

, (23)

with z = tan(ωt/2), At = h2

ω sin(ωt) − t cosφp, α =

γ/2 = 4h2/ω, β = 4
ω2

[

h2
2 − |h2 − h1 + eiφp |2

]

and δ =

− 4
ω2

[

h2
2 − |h2 + h1 + eiφp |2

]

, and similar expressions for
the other components.

The equilibrium initial state is factorized as ρ(0) ∝
∏N/2

p=1 e−βH̃p(0) and its time-evolution is given by the ten-
sor product

ρ(t) = ρ1(t)ρ2(t)...ρN/2(t) (24)

with

ρp(t) = Up(t)ρp(0)U+
p (t) . (25)

The average work performed on the system during the
time t with the periodic forcing is given by the integral
of the magnetization:

〈W 〉(t) = −

∫ t

0

ds h′(s)Tr {ρ(s)Mz} (26)

where Mz =
∑N/2

p=1 Mz
p , with Mz

p = a+
p ap+a+

−pa−p−1, is
the total magnetization operator in the z-direction. Us-
ing the factorised form of ρ(t) and the additive structure
of Mz, it is easy to compute 〈Mz〉(t) as a sum of N/2
independent modes. One obtains

〈Mz〉(t) =

N/2
∑

p=1

tanh
(

βΛp

2

)

Λp

[

(h(0) − cosφp)(2|U
11
p |2 − 1)

− 2 sinφpIm
{

U12
p U11

p
∗
}

]

(27)

with Λp =
√

sin2 φp + (h(0) − cosφp)2. Together with

the solutions of the Up components in terms of Heun
functions, this formally solves the problem for the average

work. One may notice that the factor tanh(βΛ(0)
2 ) in this

expression leads to the previously observed tanh(β/2) in
(13) since in that case h(0) = 0 and then Λp(0) = 1 ∀p
and one has for the average magnetization

〈Mz〉(t) = − tanh

(

β

2

)

[1 + 2
∑

p

cosφp|U
11
p |2

+ sinφpIm
{

U12
p U11

p
∗
}

] (28)

and consequently the average work can be written as
in (13): 〈W 〉β = tanh(β/2)〈δW 〉. The independence
of the N/2 modes also explains the linear behavior
of the variance observed in the previous section since

〈W 2〉β − 〈W 〉2β =
∑N/2

q 〈W 2
q 〉β − 〈Wq〉

2
β ∼ N , where Wq

is the work associated to the qth mode. Finally, taking
h1 = −h2 = ho/2, such that h(t) = ho sin2(ωt

2 ), we have
an exact solution for a situation which closely resembles
to the triangular drift treated above numerically. We
show the behavior of the average work on figure 8 for
different periods τ = 2π/ω. As previously observed, the
average work fluctuations are maximum around τ = 3.
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FIG. 8: Time evolution of the average work for the Ising chain
with a sine square periodic transverse field at β = 1 and
maximal amplitude ho = 1/2 with periods τ = 1 (circles),
τ = 3 (squares) and τ = 4 (triangles). The inset shows the
free energy difference (lower curve) and the average work (top
curve) for a large period τ = 50 of the field. In this case the
transformation is nearly adiabatic.

2. XX chain in a longitudinal magnetic field

Finally we present the results obtained in the forced
regime for the XX chain. In figure 9 we show the sta-
tionary work probability distributions for short and long
period τ on a chain of N = 8 spins obtained from an
initial infinite temperature state after applying the field
over typically several tens of periods (after about 30 pe-
riods the work distributions are collapsing nicely on the
same curve). We see clearly the appearance of two differ-
ent regimes depending on the time scale τ . For very short
periods τ ≪ 1, the shape of the distribution is very well
approximated by an exponential law e−|W |/α/(2α) while
for long enough time scale τ its shape is close to a normal
law. One may notice on figure 9 the very good collapse
of the distributions for different values of the period τ
in both short and long periods regimes. We have also
seen that this transition survives at finite temperature.
The main difference between the infinite and the finite
temperature cases being that in the last case the work
distribution is no more symmetric but squeezed toward
the positive work values as seen in figure 10.

To give evidences of this transition, we have plotted
on figure 11 the variance 〈W 2〉−〈W 〉2 (the average work
is vanishing for β = 0) of the distribution P (W ) as a
function of the time scale τ . For a system of size N = 8,
we observe a sharp increase of the variance from values
around 0.25 at time scales smaller than for τc ≃ 1 to
values around 2.5 at larger periods τ where the shape is
gaussian-like. Note that the threshold value τc is depend-
ing on the system size, decreasing as the size is increased.
On figure 12 we show the field amplitude dependence of
the variance 〈W 2〉0 of the work distribution for short and
long periods of the external drift. One may notice that
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FIG. 9: Work probability distribution for the XX quantum
chain with N = 8 spins at β = 0 for ho = 1/2.
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FIG. 10: Work probability distribution for the XX quantum
chain with N = 8 spins at β = 1/2 for ho = 1/2.

at long periods, the increase of the variance with the
field amplitude is almost linear, while it is more curved
at short periods. On figure 13 we see that as the size is
increased the variance at large time scales strongly grows
with N, while there is almost no dependence on the size
at high frequencies. It means that when the period of
the external field is to short, the system has no time
to follow the perturbation and only transitions between
nearby levels are significantly induced. For the density
of work w = W/N this leads to a δ(w) distribution in the

limit h → 0, since as seen on figure 12, α =
√

〈W 2〉/2 is
a vanishing function of the amplitude of the field h, pre-
sumably linear. On the contrary, and as the system size
is increased, at long periods enough, meaning that the
external field drives efficiently the system from its initial
level to a new state, transitions between far apart levels
are becoming significant. Taking that the variance seems
to be const.hN2 from figures 12 and 13, the distribution

π(w) in that case behaves as e−const.w2/h.
Finally, we have analyzed the temperature dependence

of the work distribution P (W ) in the large τ regime. As
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FIG. 11: Variance of the work distribution for the XX quan-
tum chain with N = 8 spins at β = 0 and β = 1 for ho = 1/2
as a function of the field period τ .
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FIG. 12: Second moment of the work distribution for the XX
quantum chain with N = 8 spins at β = 0 as a function of
the field maximal amplitude ho.

seen on figure 14, the average work after a first increase
with β seems to finally saturate at a value close to 0.44.
We have checked that this shape is compatible with a
tanh(µβ) behavior. Contrary to the almost temperature
independent variance of the Ising case distributions, we
see here that the variance of the distribution is decreas-
ing(increasing) with β(temperature), which is what one
would normally expect.

III. SUMMARY AND DISCUSSION

In this study we have presented the numerical and
analytical results we have obtained for the work dis-
tribution of small quantum systems driven by an ex-
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FIG. 13: Second moment of the work distribution for the XX
quantum chain with ho = 1/2, at β = 0 as a function of the
system size N for τ = 0.1 (squares) and τ = 10 (circles).
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FIG. 14: First (circles), second (squares) and variance (trian-
gles) of the work distribution for the XX quantum chain with
N = 8 spins at τ = 10 at ho = 1/2 as a function of the inverse
temperature β.

ternal field. We have considered two different models,
namely the integrable Ising quantum chain in a time-
dependent transverse field and the XX quantum chain
in a time-dependent longitudinal magnetic field. In this
last model, the presence of the longitudinal field breaks
the free fermionic structure of the chain, while the trans-
verse field in the Ising case preserves the free particles
structure which obviously leads to integrability. In a
first stage, we have checked the validity of both quan-
tum Jarzynski and quantum Crooks relations that were
largely discussed in section 2. After this initial check,
validating our numerical approach, we focused our at-
tention to the periodic driven situation. In the Ising
chain, exploiting its free fermionic structure, we solved

exactly the unitary dynamics of the system in terms of
somehow complicated double confluent Heun functions.
The main features observed are, as expected, that for a
slow enough process, that is large period of the oscilla-
tions of the field compared to the coupling constant, we
recover the adiabatic situation where the work slightly
differs, from above, from the equilibrium free energy dif-
ference. This is a statement of the second principle. As
the process is fastened, the average work starts to deviate
significantly from the free energy difference with fluctu-
ations in time that are growing as the frequency of the
field is increased. Nevertheless, at very high frequencies,
the work fluctuations decrease again to zero. In this case,
the variation of the field is so fast that the system is not
able to follow it anymore. The maximum amplitude of
the work fluctuations is obtained at an intermediate pe-
riod which is of order of the inverse field amplitude, at
least for large field enough. This threshold is understood
as a dynamical resonance. In the Ising chain, one is not
able to observe a steady work distribution. The behav-
ior of the XX chain in a longitudinal periodic field is
quite different. We observe numerically, that the long-
time work distribution reaches a steady shape which is
strongly dependent on the frequency of the field. In-
deed, at high frequencies the distribution is well fitted
by an exponential curve, e−|W |/α/(2α), where α ∼ h is
almost size-independent. Lowering the frequency, there is
a sharp transition toward a Gaussian like behavior for the
work distribution with a variance which seems from the
numerics to be proportional to hN2, . In order to under-
stand the transition between these two limit distribution,
one has to realize that the energy band of the chain has
a width δE of order N (since the typical coupling J is set
to one). The periodic perturbation introduces a typical
energy scale ω ≡ 2π/τ . For ω > δE , there is no resonant
coupling of the system with the periodic forcing. But as
soon as ω < δE resonant coupling leads to the appearance
of resonant peaks, that is sharp increases of the transition
probability in the regions W = ±ω and integer multiples
of ω. The typical width of those peaks is of the order of
the amplitude h of the perturbation. Consequently, the
deviation to the initial exponential distribution starts at
periods τ > O(2π/N). As the period is increased further,
the first peaks moves toward the center of the distribu-
tion and new resonant peaks enter into play from the
boundaries. Finally, the superposition of these resonant
peaks for τ > O(1/h) leads to a new limit distribution of
the work. So the transition region between the two limit
distributions is O(2π/N) < τ < O(1/h). Finally, one
may remark that the change of shape from exponential-
like to Gaussian-like could be linked to the integrability
of the model. Indeed, at very short periods, the system
is not able to follow the external perturbation and its be-
havior is governed by the initial integrable Hamiltonian
(XX-chain without field) while at larger periods the sys-
tem feels effectively its non-integrability, possibly leading
to a Gaussian distribution of level spacing (which is our
work). To confirm eventually this scenario one needs to
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push further this investigation.
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[5] J. Kurchan, J. Phys. A 31, 3719 (1998).
[6] J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95, 333

(1999).
[7] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
[8] T. Hatano and S. I. Sasa, Phys. Rev. Lett. 86, 3463

(2001).
[9] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

[10] G. E. Crooks, Phys. Rev. E 60, 2721 (1999).
[11] G. E. Crooks, Phys. Rev. E 61, 2361 (2000).
[12] J. Kurchan, cond-mat/0007360v2 (2000).
[13] T. Monnai and S. Tasaki, cond-mat/0308337 (2003).
[14] T. Monnai, Phys. Rev. E 72, 027102 (2005).
[15] S. Mukamel, Phys. Rev. Lett. 90, 170604 (2003).
[16] M. Esposito and S. Mukamel, Phys. Rev. E 73, 046129

(2006).
[17] W. DeRoeck and C. Maes, Phys. Rev. E 69(2), 026115

(2004).
[18] A. E. Allahverdyan and T. M. Nieuwenhuizen, Phys. Rev.

E 71, 066102 (2005).
[19] J. Liphardt, S. Dumont, S. B. Smith, I. Tinico, and

C. Bustamante, Science 296, 1832 (2002).
[20] D. Collin, F. Ritort, C. Jarzynski, S. Smith, I. Tinico,

and C. Bustamante, Nature 437, 231 (2005).
[21] F. Douarche, S. Ciliberto, A. Petrosyan, and I. Rabbiosi,

Europhys. Lett. 70, 593 (2005).
[22] G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles, and

D. J. Evans, Phys. Rev. Lett. 89, 050601 (2002).
[23] D. M. Carberry, J. C. Reid, G. M. Wang, E. M. Se-

vick, D. J. Searles, and D. J. Evans, Phys. Rev. Lett. 92,
140601 (2004).

[24] C. Tietz, S. Schuler, T. Speck, U. Seifert, and
J. Wrachtrup, Phys. Rev. Lett. 97, 050602 (2006).

[25] F. Ritort, Sém. Poincaré 2, 193 (2003).
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