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Scale-Space Approach for Color Image Segmentation

R. Megret

ESI/LAPS (UMR CNRS 5131), ENSEIRB, Talence, France

Abstract

This paper presents a new method for color image segmentation based on ascale-space clustering of the image
pixels. Unlike standard image scale-spaces, which smooth the images, thisapproach consider an augmented space
which combines spatial and color dimensions. The clustering relies on the mean-shift algorithm to find the modes
of the position and color distribution of the pixels. In order to produce a non-hierarchical segmentation, we also
present a method to prune the computed hierarchy by suppressing nodes that are not stable enough.

1. Introduction

Image segmentation is a central task for image and video
analysis, especially in the context of multimedia indexing
and retrieval. Indeed an image is made of several distinct
visual structures, that are combined to produce a global per-
ception of that image. Color is one one the most important
low-level feature that can be used to extract some informa-
tion about the visual structure of an image, such as homoge-
neous regions, that are most of the time related to objects or
parts of objects.

There has been a lot of work done in color image seg-
mentation, that Lucchese and Mitra [7] classify into three
broad categories. Feature-based techniques segment the im-
age by finding some clusters in a feature space (color or
texture space) that do not take spatial relationships into ac-
count. Those methods are based on clustering pixel features,
or histogram thresholding. Image-based techniques on the
other hand try to satisfy both feature homogeneity and spa-
tial compactness by explicitly manipulating the pixels. This
category contains split-and-merge, region growing and edge-
based approaches. Physics-based methods are more appli-
cation specific, as they model the causes that may produce
color variations.

There is an intermediate approach between feature- and
spatial-based approaches, where color and spatial con-
stituencies are enforced simultaneously, by working in a
space that combines pixel positions and color features. This
approach was in particular proposed by Comaniciu and Meer
[3], with a mean-shift based color segmentation method.
This method was optimized by Bailer et al. [1] to segment
consecutive images of a video sequence. In this paper, we
propose a new method based on the same idea on combining
color and spatial features in order to produce a multi-scale
segmentation of a color image.

In section 2 we present the mathematical and algorith-

mic foundations of clustering by mode seeking, which is the
technique we apply to color image segmentation. In section 3
we discuss the method of Comaniciu and Meer [3] which is
based on this framework, but operates at fixed scale. In sec-
tion 4 we introduce the scale-space formalization for color
image segmentation. Finally, in section 5 a new method to
simplify the hierarchical segmentation is proposed.

2. Clustering by mode seeking

In this section, we recall some mathematics about clustering
by mode seeking, which we will use for color and position
clustering.

2.1. Problem

The general problem of density based clustering can be
stated as follows:

Given a set ofn samplesxi in IRN, group together
samples that form dense clusters.

The mode seeking approach is based on the density esti-
mate fK(x) of those samples using a kernel estimator:

fK(x) =
1
n

n

∑
i=1

K(x−xi), (1)

whereK is a kernel that defines the neighborhood over which
the contribution of samples is integrated in order to estimate
a local density. Each mode of this density function corre-
sponds to a point that is denser, compared to its neighbors,
and thus can be considered the center of a cluster. The wa-
tershed of− fK , associates to each mode a natural influence
zone, which is bounded by the influence of their modes.

The clustering problem can therefore be formalized by as-
sociating a cluster to each mode offK . A point belongs to a
cluster if the trajectory computed by gradient ascent from
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this point converges to the mode of this cluster. The prob-
lem hence boils down to finding for each sample the mode it
belongs to using gradient ascent.

2.2. Gradient ascent and fixed scale clustering

The mean-shift algorithm provides us with a way to accom-
plish gradient ascent of the density functionfK defined as in
equation 1. For the sake of clarity, we will restrict ourselves
to isotropic kernels, which are defined by their profilek and
a scale parameterh:

Kh(∆x) =
ck,N

hN k(‖∆x‖2/h2), (2)

whereck,N is a normalization constant depending on the pro-
file k and the dimensionalityN of x.

If we introduceG a second kernel whose profileg is

g(x) =−k′(x), (3)

then the mean-shift vector defined as

mh(x) =
∑i xig(‖x−xi‖

2/h2)

∑i g(‖x−xi‖2/h2)
−x (4)

is collinear with the gradient∇ fKh of the density of interest:

mh(x) = h2 ck,N

2cg,N

∇ fKh(x)

fGh(x)
. (5)

The gradient ascent algorithm is therefore:

1) Initialize moving pointsy0
i to the original pointxi

2) Repeat steps 3-5 until convergence ofyi
3) Compute the mean-shift vectormh(y

k
i )

4) Apply the shift vector to the current position:yk+1
i ← yk

i +

mh(y
k
i )

5) If the density did not increase (f (yk+1
i ) < f (yk

i )), then
divide the shift vector by 2 and repeat step 3a.

This algorithm produce for each original pointxi a conver-
gence pointy∞i . This point should be a mode of the distri-
bution. The convergence point may not be a mode in some
degenerate cases (local minimum, saddle point). These situa-
tions are not met in practical situations and could be resolved
by adding a small perturbation.

According to the definitions we drew at the beginning of
this section, clustering the points amounts to grouping points
associated to identical modesy∞i . From a practical point of
view, points are declared to converge at the same point if the
distance between twoy∞i is less than a given thresholdε.

2.3. Scale-space clustering

In the previous developments the scale parameterh was fixed
to an arbitrary value. By allowing this continuous parameter
to change, we can build a scale-space(x,h) 7→ fKh(x), which
considers in a unified manner densities computed for all pos-
sible values ofh.

We are interested in the position of modes offKh for h
fixed, but want to consider how these modes evolve whenh
changes. Leung et al. [5] showed that the position of modes
form simple curves whenh changes continuously. In order
to build the multi-scale structure of the modes, modes can

therefore be linked across scale by considering that a mode
at a given scale is close to the corresponding mode when the
scale changed slightly.

The general events that can occur when the scale in-
creases can be classified [6] as creation (a mode appears
at a scale, but no corresponding mode can be found on a
lower scale), splitting (a node at a given scale can be linked
to several modes at a higher scale), destruction (no corre-
sponding mode can be found on a higher scale) and merging
(several modes at a given scale can be associated to a mode
at a higher scale).

The algorithm to build a hierarchical structure is described
now.

1) Associate a mode to each original point, forh close to 0.
2) Repeat untilh is above a fixed threshold:

2.1) Compute the new position of each mode by mean-
shift iterations until convergence

2.2) Merge modes closer than the thresholdε
2.3) Increase the scale:h← h dh

This algorithm leads to a tree structure, where leaves cor-
respond to the original points, and each node corresponds to
a piece of curve in the scale-space associated to the displace-
ment of a given mode across scale. Each node possesses an
existence interval, comprised between an apparition scale
and a disappearance scale. The apparition occurs either at
initialization at scaleh = 0, or when two existing modes
merge. The disappearance occurs when the mode associated
with the node merges with another mode.

Each node of the tree corresponds to exactly one mode of
fKh for any scale in its existence interval. By cutting the tree
for any given scaleh we can therefore get a subset of the set
of modes that would be computed by the fixed scale method.
This difference is good for the robustness of the method. In-
deed, as scale increases details should be smoothed out, so
that created or split modes are not wanted, and we expect
the number of modes to decrease. This property is true for
one-dimensional scale-spaces with the gaussian kernel, but
not for higher-dimensional spaces or other kernels.

Exceptions to this rule appear nevertheless only is specific
configurations, as pointed out by Lindeberg [6] where the
density function is rather elongated, and the smoothing cuts
it in two parts. Some modes may also be created because
of numerical instabilities: if the convergence tests stop the
modes before they reach their theoretical location and if the
threshold on the distance for modes fusion is too small, we
may find several modes when there is theoretically only one.
By imposing a hierarchical structure, we restrict ourselves
to modes that can be linked to modes existing at the lowest
scale, thus decreasing such phenomenons.

The previous algorithms and methods are very general,
we will now see how they can be used in the context of color
image segmentation.

3. Color Image Segmentation using Mean-shift

3.1. Position and color clustering

Comaniciu and Meer [3] introduced a color segmentation
method based on the clustering of pixels in a position and
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color space. Instead of modeling the distribution of colors
and positions with a parametric model, they use the non-
parametric approach we detailed in the previous section:
each mode of the colors and positions density corresponds
to a cluster of pixels that are both close in position and color.
Instead of applying parametric models to the distribution of
colors and positions as was done in the Pfinder project [10],
they use the non-parametric approach we detailed in the pre-
vious section: each mode of the colors and positions density
corresponds to a cluster of pixels that are both close in posi-
tion and color.

This density is expressed as:

Hβ,r (p,c) = ∑
i

k

(

∥

∥

∥

pi −p
r

∥

∥

∥

2
+

∥

∥

∥

∥

ci − c
β

∥

∥

∥

∥

2
)

, (6)

where (xi ,ci) is the position and color of pixel numberi
in the image. We can indeed verify that this function cor-
responds to the general form of equation 1 required to apply
the mode-seeking clustering approach. The considered space
is a position and color space, withx ∈ IR5 being the concate-
nation ofp ∈ IR2 andc ∈ IR3:

x =

(

p
r
,

c
β

)

(7)

Using the algorithms we presented previously, the authors
can cluster the pixels by associating each pixel with a mode
of densityHβ,r in the position and color space. The segmen-
tation is done for a fixed scale, where parametersβ andr are
tuned manually.

3.2. Post-processing

The previous clustering does not suffice for practical cases,
which is why Comaniciu and Meer added an additional post-
processing step. Once the modes have been computed, they
are grouped based on a threshold on their respective dis-
tance in position and color space. Modes whose position dif-
ference is less thanr and color difference less thanβ are
merged. This grouping is transitive. Modes which are close
enough are linked, and the connected components of the re-
sulting graph define how the modes are merged.

This step is necessary because regions of an image may
have uniform colors, but they generally have different sizes.
Therefore their distribution in the position and color space
looks like a set of elongated blobs, that extend along the po-
sition dimensions according to the region sizes, and along
the color dimensions according to the color variance. The
spatial scaler used to smooth the distribution being fixed
globally, it can not match both large and small regions (see
Figure 1). For small regions,r risks to be too large, and make
contributions from one region to mix with another region, re-
sulting in their fusion. For large regions,r may be too small:
although the density can be high over the spatial support of
the region, several modes can be present, which results in
over-segmentation.

The modes grouping post-processing addresses this issue,
by grouping the modes that are supposed to correspond to
the same large region. The spatial scaler should then be
chosen close to the size of the smallest regions to segment.

(d) (e)

(c)(b)

(a)

H(p,c1)H(p,c1)

p p

pp

c1

c0

c

p
H(p,c0)

H(p,c0)

Figure 1: The same spatial bandwidth r can not apply simul-
taneously to small and large regions. (a): Samplesxi used to
compute the position and color density Hβ,r (x,c), for a small
r (left column), and for a larger r (right column). (b) and (c):
Density Hβ,r (x,c) for c = c0, which is the color of the large
region; multiple modes are found when r is small. (d) and
(e): Density Hβ,r (x,c) for c = c1, which is the color of two
small regions; only one mode is found when r is large.

c

c0
H(p,c0)

pp

Higher color variance

(b)(a)

Figure 2: Case where the modes associated to one homoge-
neous region are split apart by the gradient ascent.

Small regions will be associated one mode directly. Larger
regions will be associated several modes, that will be merged
in the post-processing step. This is based on the heuristic
assumption that the kernel smoothing shifts the modes to-
ward the center of the homogeneous regions. While this is
true close to the boundaries on the region, because of the
contrast with the exterior, we can find cases where the in-
terior of the region does not verify this property. Figure 2
represents a region whose color variance is not uniform, and
which makes the modes to get far away instead of coming
close to each other. This problem occurs because the modes
fusion does not take into account the density function, but
only the modes locations.
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4. Scale-space Color Image Segmentation

Defining an appropriate scale for segmentation is a difficult
task, as we have seen that mode estimation alone cannot
handle all region sizes correctly. The post-processing group-
ing of modes is one possibility to alleviate this problem, al-
though is still requires to fix the scaling parameters before-
hand. It this section, we propose a new method based on the
same position and color density approach, but embedded in a
scale-space that allows us to handle all region sizes, without
the need of the post-processing step.

4.1. Local Color Distribution

Before we detail the algorithm itself, we now replace the
approach of clustering in the position and color space in a
more general context, to get some insight on what kind of
visual structures the methods we present depend on.

A local color distribution can be associated to each po-
sition p in the image. This distribution represents the color
distribution in a neighborhood ofp, and is sometimes re-
ferred aslocal color histogram. A general formulation was
proposed by Kœnderink and van Doorn [4]:

Hσ,β,r (p,c) = ∑
i

Kr (pi −p)Kβ (Lσ(pi)− c) , (8)

where

• p is the position around which the local color distribution
c 7→ H(p,c) is computed.pi is the pixel numberi in the
image.

• Kr andKβ are smoothing kernels (Kβ is a normal kernel
in [4]).

• σ (internal scale) is the bandwidth of a gaussian filter ap-
plied to the original color imageI to remove unnecessary
spatial details.Lσ is the result of this smoothing.σ is char-
acteristic of the level of resolution that is used to analyze
the image.

• r (external scale) represents the size of the spatial neigh-
borhood aroundp.

• β (tonal scale) represents the smoothing bandwidth along
the color dimension. This parameter defines the character-
istic distance between two colors to be considered similar.

This representation is denoted by Kœnderink and van
Doorn aslocally orderless image. This expresses the fact that
H does not contain information on the spatial organization of
colors on a local level, since local contributions have been
mixed by smoothing. Non local organization is still kept, as
different positionsp can have different local color distribu-
tions. The authors developed a method to produce out of an
image several other images having the same local color dis-
tribution, but different pixelwise organization. Such images
look scrambled (see examples in [4]), as the local order is
modified. However, large homogeneous regions can still be
discerned, as well as contrasted regions, even small ones.

The density in the position and color space used by Co-
maniciu and Meer is a special case of the local color distri-
bution of Equation 8 whenK is a separable kernel such that
K(x) = Kr(p)Kβ(c) andσ→ 0 (no smoothing of the original
image).

Whenr→∞, the position and color distribution becomes

a purely color distribution. Clustering pixels by associating
to a mode then amounts to clustering the color distribution
of the image, and retro-projecting the classes found onto the
image. This approach was used in particular in the Blob-
World system by Carson et al. [2] who represent a color im-
age as a set of color and texture blobs. They cluster color
and texture features, without taking spatial information into
account. Once clusters have been found, the spatial regions
are found by retro-projection : each pixel is labeled like the
cluster its color and texture belong to.

Three scale-space structures are associated withH in the
Locally Orderless Images : one is related to the smoothing
of the original image with parameterσ, the second is related
to spatial integration with parameterr, the third is related
to color distribution smoothing with parameterβ. Therefore
several possibilities exist to define a multi-scale segmenta-
tion method based on the position and color distribution, de-
pending on which scales are to be used.

4.2. Multi-scale segmentation

In order to produce a hierarchical segmentation out of equa-
tion 8, one has to define a unique scale parameter. In this
paper, we chose to keepσ fixed, and bind bothβ andr lin-
early to a unique scale parameterh:

σ = σ0, β = β0h, r = r0h. (9)

Smoothing of the original image can then be considered
a pre-processing step to remove some additive random noise
that may be present in the image. The density function whose
modes are to be computed is then:

Hh(p,c) = ∑
i

k

(

‖pi −p‖2/r0
2 +‖ci − c‖2/β0

2

h

)

. (10)

Equation 10 corresponds to the scale-space clustering
of the point set{(pi/r0,ci/β0)}i , that we detailed in sec-
tion 2.3. The whole scale-space is a 6 dimensional space (2
dimensions for the position, 3 for the color, 1 for the scale
parameterh).

This algorithm leads to a tree structure, where leaves cor-
respond to image pixels, and each node corresponds to a re-
gion, which correspond to one mode over its existence inter-
val. When cutting this tree at a fixed scale we can produce a
segmentation of the image.

In such a framework we do not have anymore the problem
of choosing a unique scale (as we illustrated in figure 1),
which could not handle simultaneously regions of different
sizes. Indeed, each scale in considered in turn, and regions
detected are organized in a unique multi-scale structure.

Figure 3 illustrate the properties of the fixed-scale ap-
proach and the scale-space approach. The segmentations
shown have been computed withr0 equal to the height of
the image, andβ0 = 100 in L*u*v* color space. This ensures
that both position and color have comparable dynamics. The
scales-space algorithm was started ath= 0.05, and increased
by a factor ofdh= 1.1. We can observe that the modes of the
fixed-scale method (b) lead to over-segmentation ath = 0.1,
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(a) (b) (c)

(d) (e) (f)

Figure 3: Segmentations produced on the image (a), for r0 = image heightandβ0 = 100with L*u*v* color space. (b): Fixed
scale segmentation without post-processing h= 0.1. (c): Fixed scale segmentation with post-processing h= 0.1. (d),(e) and (f):
Segmentations produced by cutting the hierarchical segmentation at scales h= 0.1, h= 0.2 and h= 0.3 respectively.

as we discussed, while the hierarchical approach produces
less regions for the same scale (d).

5. Hierarchy simplification

The hierarchical segmentation produced previously contains
information at several scales simultaneously. It is not view-
able directly like a fixed scale segmentation. This limitation
is not a problem when the segmentation is included in a sys-
tem where several interpretations of the same image are use-
ful, like for object tracking or image indexing, if both small
and large visual elements are to be taken into account.

The great number of regions found at multiple scales can
nevertheless be too large and need some special handling,
specially in order to avoid the numerous small regions at
low scales. First, the hierarchical structure helps reducing
the number of regions tremendously, as modes detected for
one scale get linked with modes detected for other scales.
The redundancy across scales is therefore taken into account.
Two regions are detected when they represent two different
visual elements : either they are disjoint, or one corresponds
to smaller details inside the other.

In order to further reduce the number of regions found, or
if a non-hierarchical segmentation is needed, the clustering
tree can be pruned, by removing some nodes which are not
stable enough. The stability is expressed as the length of the
existence interval of a node, that is the difference between
the highest and the lowest scales for which a mode is asso-
ciated to it. This difference is denoted by the lifetime of a
node.

Witkin [8] proposed atop-level description, where each
top-level node whose lifetime is smaller than the average
lifetime of its immediate children is suppressed. Its children
then become top-level nodes. The process is repeated until
no top-level node can be suppressed. Wong [9] proposed a
longest lifetime firstalgorithm, where a node is suppressed
if any of its children has a longer lifetime.

We found those methods unadapted for our application.
Indeed, the top-level description only considers removal of
top-level nodes. If some nodes inside the hierarchy are very
stable but are not the direct children of the top-level nodes,
they may not be considered at all. On the opposite, the
longest lifetime approach always select stable nodes, but at
the same time select their siblings, which may be very un-
stable. Both effect can be seen in figure 4 (a) and (c).

Our method is related to the top-level description. Instead
of considering only top-level nodes for suppression, we con-
sider in turn each node, starting from the leaves and going
up in the hierarchy. With this algorithm, very stable nodes
can go up in the hierarchy by making their parents be sup-
pressed. Unlike the longest lifetime first approach, a node is
suppressed if its lifetime is less than the average of its chil-
dren, therefore leading to a trade-off between making stable
nodes go up and letting their unstable siblings do the same.
Figure 4 (b) show the improvement that this technique has
in our context.
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Figure 4: Segmentations found by simplification of the multi-scale color image segmentation. The gray-level represents the
lifetime of each selected region: darker means a more stable node, with a longer lifetime. (a): Top-level description. (b): Multi-
level simplification. (c): Longest lifetime first.

6. Conclusion

In this paper, we have presented a hierarchical color image
segmentation. It is based on the hierarchical clustering of im-
age pixels in a color and position space. We have shown how
our method relate to the existing fixed-scale approach pro-
posed by Comaniciu and Meer [3]. In particular, we showed
that a post-processing step used in the original method what
necessary in order to avoid over-segmentation, while our hi-
erarchical approach produce stable regions, without requir-
ing such a step.

We have also discussed the properties of the methods, and
interpreted them within the framework of Locally Orderless
Images [4]. From that formalism, we used two out of three
scale parameters in order to build our scale-space color im-
age segmentation method. Using a different set of parame-
ters may lead to another vein of approaches.
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