Y. Baraud, F. Comte, and G. Viennet, Adaptive estimation in an autoregressive and a geometrical ?-mixing regression framework, Annals of Statistics, vol.39, pp.839-875, 2001.

A. R. Barron, L. Birgé, and P. Massart, Risk bounds for model selection via penalization, Probability Theory and Related Fields, vol.113, issue.3, pp.113-150, 1999.
DOI : 10.1007/s004400050210

H. C. Berbee, Random walks with Stationary Increments and Renewal Theory Mathematical Centre Tracts 112, p.223, 1979.

L. Birgé and P. Massart, Minimum Contrast Estimators on Sieves: Exponential Bounds and Rates of Convergence, Bernoulli, vol.4, issue.3, pp.329-375, 1998.
DOI : 10.2307/3318720

C. Butucea and C. Matias, Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model, Bernoulli, vol.11, issue.2, pp.309-340, 2005.
DOI : 10.3150/bj/1116340297

URL : https://hal.archives-ouvertes.fr/hal-00101845

C. Butucea, Deconvolution of supersmooth densities with smooth noise, Canadian Journal of Statistics, vol.330, issue.2, pp.181-192, 2004.
DOI : 10.2307/3315941

URL : https://hal.archives-ouvertes.fr/hal-00103058

C. Butucea and A. B. Tsybakov, Sharp optimality for density deconvolution with dominating bias. I. Theor, Probab. Appl, vol.52, issue.1, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00204700

O. Cappé, E. Moulines, and T. Ryden, Inference in hidden Markov models. Springer series en Statistics, 2005.

K. C. Chanda, LARGE SAMPLE ANALYSIS OF AUTOREGRESSIVE MOVING-AVERAGE MODELS WITH ERRORS IN VARIABLES, Journal of Time Series Analysis, vol.5, issue.1, pp.1-15, 1995.
DOI : 10.2307/2684559

F. Comte, J. Dedecker, and M. Taupin, Adaptive density estimation for dependent inputs with measurement errors, 2006.

F. Comte and F. Merlevède, Adaptive estimation of the stationary density of discrete and continuous time mixing processes, ESAIM: Probability and Statistics, vol.6, pp.211-238, 2002.
DOI : 10.1051/ps:2002012

URL : https://hal.archives-ouvertes.fr/hal-00170768

F. Comte and Y. Rozenholc, Adaptive estimation of mean and volatility functions in (auto-) regressive models. Stochastic Process, Appl, vol.97, pp.111-145, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00748963

F. Comte, Y. Rozenholc, and M. Taupin, Penalized contrast estimator for adaptive density deconvolution, Canadian Journal of Statistics, vol.18, issue.3, pp.431-452, 2006.
DOI : 10.1002/cjs.5550340305

URL : https://hal.archives-ouvertes.fr/hal-00016489

F. Comte, Y. Rozenholc, and M. Taupin, Finite sample penalization in adaptive density deconvolution, Journal of Statistical Computation and Simulation, vol.1, issue.11, 2007.
DOI : 10.2307/3316026

URL : https://hal.archives-ouvertes.fr/hal-00016503

F. Comte and M. Taupin, Semi-parametric estimation in the nonlinear errors-in-variables autoregressive model, Mathematical Methods of Statistics, vol.10, pp.121-160, 2001.

F. Comte and M. Taupin, Adaptive estimation in a nonparametric regression model with errors-in-variables, Statistica Sinica, vol.17, issue.3, 2007.

B. Delyon, Limit theorem for mixing processes, p.546, 1990.

B. Van-es, P. Spreij, and H. Van-zanten, Nonparametric volatility density estimation for discrete time models, Journal of Nonparametric Statistics, vol.18, issue.2, pp.237-251, 2005.
DOI : 10.1109/TIT.1983.1056736

J. Fan, On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems, The Annals of Statistics, vol.19, issue.3, pp.1257-1272, 1991.
DOI : 10.1214/aos/1176348248

J. Fan and M. Masry, Multivariate regression estimation with errors-in-variables: Asymptotic normality for mixing processes, Journal of Multivariate Analysis, vol.43, issue.2, pp.237-272, 1992.
DOI : 10.1016/0047-259X(92)90036-F

J. Fan and Y. K. Truong, Nonparametric Regression with Errors in Variables, The Annals of Statistics, vol.21, issue.4, pp.1900-1925, 1993.
DOI : 10.1214/aos/1176349402

J. Fan, Y. K. Truong, and Y. Wang, Nonparametric function estimation involving errors-invariables . Nonparametric Functional Estimation and Related Topics, pp.613-627, 1991.

E. Ghysels, A. Harvey, and E. Renault, 5 Stochastic volatility, Statistical Methods in Finance, vol.14, pp.119-191, 1996.
DOI : 10.1016/S0169-7161(96)14007-4

D. A. Ioannides, A. , and P. D. , Nonparametric regression with errors in variables and applications, Statistics & Probability Letters, vol.32, issue.1, pp.35-43, 1997.
DOI : 10.1016/S0167-7152(96)00054-5

T. Klein and E. Rio, Concentration around the mean for maxima of empirical processes, The Annals of Probability, vol.33, issue.3, pp.1060-1077, 2005.
DOI : 10.1214/009117905000000044

J. Koo and K. Lee, B-spline estimation of regression functions with errors in variable, Statistics & Probability Letters, vol.40, issue.1, pp.57-66, 1998.
DOI : 10.1016/S0167-7152(98)00098-4

C. Lacour, Rates of convergence for nonparametric deconvolution, Comptes Rendus Mathematique, vol.342, issue.11, pp.877-882, 2006.
DOI : 10.1016/j.crma.2006.04.006

URL : https://hal.archives-ouvertes.fr/hal-00115610

C. Lacour, Nonparametric estimation of the stationary density and the transition density of a Markov chain, Stochastic Processes and their Applications, vol.118, issue.2, 2005.
DOI : 10.1016/j.spa.2007.04.013

URL : https://hal.archives-ouvertes.fr/hal-01139399

M. Pensky and B. Vidakovic, Adaptive wavelet estimator for nonparametric density deconvolution, Ann. Statist, vol.27, issue.6, pp.2033-2053, 1999.

N. Shephard, Statistical aspects of ARCH and stochastic volatility Time Series Models in Econometrics, Finance and Other Fields London, pp.1-67, 1996.

M. L. Taupin, Semi-Parametric Estimation in the Nonlinear Structural Errors-in-Variables Model, The Annals of Statistics, vol.29, issue.1, pp.66-93, 2001.
DOI : 10.1214/aos/996986502

K. Tribouley and G. Viennet, Lp adaptive density estimation in a ?? mixing framework, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.34, issue.2, pp.179-208, 1998.
DOI : 10.1016/S0246-0203(98)80029-0

G. Viennet, Inequalities for absolutely regular sequences: application to density estimation. Probab. Theory Relat, pp.467-492, 1997.

V. Volkonski?-i and Y. Rozanov, Some Limit Theorems for Random Functions. I, Theory of Probability & Its Applications, vol.4, issue.2, pp.178-197, 1960.
DOI : 10.1137/1104015