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Abstract

This work presents a simple artificial neural network which classifies, from their sequences alone,
proteins  into classes:  the membrane protein class  and the non-membrane protein  class.  This  is
important in the functional assignment and analysis of Open Reading Frames (ORF) identified in
complete genomes and, especially those ORF’s that correspond to proteins with unknown function.

The network described here have a simple hierarchical feed-forward topology and a limited number
of neurons which make it very fast. By using only information contained in 11 protein sequences,
the method was able to identify with 100% accuracy all membrane proteins with reliable topologies
collected from several papers in the literature. Applied to a test set of 995 soluble proteins, the
neural  network classifies  falsely 23 of  them in  the  membrane  protein  class  (with  considerable
success of 97.7% of correct assignment). The method was also applied to the whole SWISS-PROT
database and on ORF's of several complete genomes.

The neural  network developed was associated  with the PRED-TMR algorithm (Pasquier et  al.,
1999) in a new application package called PRED-TMR2. A WWW server running the PRED-TMR2
software is available at http://o2.db.uoa.gr/PRED-TMR2
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Introduction

The number of protein sequences stored in public databases (78197 in SWISS-PROT release 37,
178773 in TrEMBL ; Bairoch and Apweiler, 1998) is considerably larger than that of known protein
structures  (9129 in PDB ;  Sussman et  al.,  1998)  and the  gap is  continuously  increases  as  the
experimental determination of the three-dimensional structure of proteins is a very time consuming
process compared to the time needed for the determination of protein sequences. This is especially
true for transmembrane proteins which are difficult to solve by X-ray crystallography.

Usually, the structure of a new protein having homologies above a certain level to another sequence
of known structure can be predicted with reasonable accuracy (Persson and Argos, 1994; Rost et
al., 1994; Rost et al. 1995). However, the majority doesn't belong to this ideal case. For this set of
proteins,  predictions  methods  that  do  not  depend  on  sequence  alignments  but  using  solely
information contained in a sequence itself is still needed.

A number of  methods  or  algorithms designed to locate  the  transmembrane regions  in  proteins
without the need for multiple-sequence alignment information have been developed (von Heijne,
1992;  Cserzo  et  al.,  1997;  Pasquier  et  al.,  1999).  However,  these  algorithms  focus  on  the
localization of transmembrane segments in known integral membrane proteins and are not suited to
be applied on soluble proteins.

Recently, we have published the PRED-TMR method in an attempt to improve the fine localization
of transmembrane segments, by coupling an hydrophobicity analysis with a detection of potential
termini (starts and ends) of transmembrane regions (Pasquier et al., 1999). Now, we have extended
this  application  with  a  pre-processing  stage  represented  by  an  artificial  neural  network  which
attempts to classify proteins to membrane and non-membrane.

Several applications of neural networks applied to the prediction of transmembrane segments or
secondary structure prediction  can be found in the literature  (Reczko,  1993; Rost et  al.,  1994;
Fariselli and Casadio, 1996; Aloy et al., 1997; Diederichs et al., 1998). Most of them use a local
encoding for each amino acid and produce as output a classification for the amino acid in the
middle of the input window. When a hierarchical feed-forward topology is used (the connectivity
graph contains no loop), each network output is independent of the results obtained by previous
processing. This causes no or little problem when the output of the network consists of continuous
values (coordinates for example ; Diederichs et al., 1998). However, when a threshold parameter is
used for the choice of binary output, the absence of correlation between the possible structure of
adjacent residues frequently results in incoherent topologies (a transmembrane segment composed
of  only  one  residue  for  example).  Authors  solve  this  problem  by  designing  recurrent  neural
networks  which  use  additional  information  obtained  with  the  processing  of  previous  pattern
(Reczko, 1993) or by building a system of cascading neural networks (Rost et al., 1994; Fariselli
and Casadio, 1996). Nevertheless, these techniques are not appropriate for a correct classification
between  membrane  and  non-membrane  proteins  because  they  are  too  focused  on  one-residue
topology prediction.

This  paper  presents  an  artificial  neural  network  which  doesn't  predict  the  exact  location  of
transmembrane segments but produces instead a unique output showing whether an analyzed part
of a sequence is related to a transmembrane region or not. 
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Methods

Information gathering

11 proteins, with known topologies were used for the training of the network : 6 transmembrane
proteins containing a total of 19 transmembrane segments, 2 fibrous proteins and 3 globular ones.
The sequences used and other information concerning the application are presented on our web site
at http://o2.db.uoa.gr/PRED-TMR2/Results/).

Five different test data sets of  transmembrane proteins with reliable topologies were collected from
the literature. Test set 1 includes 64 sequences from the set of Rost et al. (1995) (the sequences
2MLT, GLRA_RAT, GPLB_HUMAN, IGGB_STRSP and PT2M_ECOLI which were not found in
the public databases were not used), sets 2 and 3, of 48 and 83 proteins respectively were specified
in Rost et al. (1996) paper, set 4 comprises the 44 sequences used by Cserzo et al. (1997) and set 5
is composed of 92 sequences from Fariselli and Casadio (1996).

A test data set of globular proteins was extracted from the Protein Data Bank (PDB), using the list
of non homologous sequences of PDBSELECT (Hobohm et al., 1994). The 25% threshold list was
used,  excluding  entries  of  membrane  and lipid  associated  protein  (1AIJ,  1ALY, 1AR1,  1ATY,
1BEH, 1BHA, 1BQU, 1BXM, 1FTS, 1IXH, 1JDW, 1KZU, 1LGH, 1LML, 1NKL, 1OCC, 1PRC,
1QCR, 1SQC, 1TLE, 1XDT, 1YST, 2CPS, 2MPR, 2OMF, 2POR AND 7AH1). This set of water-
soluble proteins consists of 995 sequences.

Table I. Propensity values and corresponding input used in the neural network for the 20 amino acid residue types to 
belong to transmembrane segments, calculated from the entire SwissProt database.

    Residue Pi NN input
Phenylalanine
Isoleucine
Leucine
Tryptophan
Valine
Methionine
Alanine
Cysteine
Glycine
Tyrosine
Threonine
Serine
Proline
Histidine
Asparagine
Glutamine
Aspartic acid
Glutamic acid
Arginine
Lysine

F
I
L
W
V
M
A
C
G
Y
T
S
P
H
N
Q
D
E
R
K

2.235
2.083
1.845
1.790
1.756
1.502
1.383
1.202
1.158
1.075
0.879
0.806
0.597
0.395
0.389
0.273
0.153
0.131
0.124
0.108

 1.000
 0.929
 0.817
 0.791
 0.775
 0.655
 0.599
 0.514
0.494
0.455
0.362
0.328
0.230
0.135
0.132
0.078
0.021
0.011
0.007
0.000

Calculation of  amino acid residue transmembrane propensities (potentials)
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As described by Pasquier et al. (1999), a propensity for each residue to be in a transmembrane
region was calculated using the formula: 

Fi

Fi
Pi

TM



where Pi is the propensity value (transmembrane potential) of residue type i  and TMFi  and Fi are
the  frequencies  of  the  ith  type  of  residue  in  transmembrane  segments  and  in  the  entire
SWISS-PROT database respectively. Values above 1 indicate a preference for a residue to be in the
lipid-associated structure of a transmembrane protein, whereas propensities below 1 characterize
unfavourable transmembrane residues. The propensity values for the 20 amino acid residue are
given in Table I.

Neural network topology and training parameters

The neural network used here has a multi-layer feed forward (MLFF) topology. It consists of an
input layer, one hidden layer and an output layer. Each of the units in the input layer are connected
to all the units in the hidden layer. The units in the hidden layer are then connected to all the units
in the output layer. This is a 'fully-connected' neural network where each unit i of a given layer is
connected to each unit j of the next layer (Figure 1). The strength of each connection is given by a
weight  wij.  The state  s of  each unit  in the input layer  is  assigned directly  from the input data,
whereas the states sj of higher layers j are computed by the sigmoid function:
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where wj0 is a bias from the states si of lower layers.

Fig. 1:  Schematical architecture of the neural network. Amino acids of the input sequence are converted to unique
input values corresponding to the propensity for each amino acid to be located inside à transmembrane region. Output
of the network consists of values between 0 and 1. Values above 0.9 (shown in black on the figure) indicate a detection
of a potential transmembrane segment.

The network was trained using the backpropagation algorithm.  During this  process,  a data  set,
describing the states si of the input units and  their desired output value is presented to the network.
The activations of the units of the network are then calculated, feeding forward layer-by-layer from
the inputs to the output. Once the network output value has been produced, it is compared to the
target output specified in the training data set. Following this comparison, a backwards adjustment
of the weights (backpropagation) is performed in order to minimize the differences between the
computed output  and the desired output  value.  The algorithm is performed until  the total  error
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reaches a low enough value which means that the network comes to approximate the target values
given the inputs in the training set.

During the prediction phase,  the neural network is  fed with new input data  that  are not in the
training set. By a simple feed-forward process, using the previously obtained weight, new output
values are calculated and are taken as predictions of the network.

Applied to our classification problem, the idea is to use as input of the network a representation of a
part or a sequence in order to obtain an unique output showing whether the analyzed segment is
related to a transmembrane region or not.

The propensity values for the 20 amino acids given in Table I, which can be regarded as numeric
representations  of  amino  acids,  are  used  to  encode  the  input  segment  after  being  linearly
transformed to lie in the range of 0 to +1. The output of the network consists of an unique value
between 0 to 1 which gives the propensity that the input segment is related to a transmembrane
region. A high output value (greater than 0.9) is used to trigger off the detection of a transmembrane
segment.  When  at  least  one  transmembrane  region  is  detected,  a  protein  is  classified  in  the
membrane protein class, otherwise it is put in the non-membrane protein class.

Experimentation determined the optimal size of the input layer to be 30. Training proteins were
converted to input vectors by shifting a window of 30 residues successively through the sequence,
i.e. the first segment contains amino acids from position 1 to position 30, the nth segment encodes
amino acids from n to n+30. The training set was accordingly converted to 3140 input vectors of 30
values each.

Considering  an  input  vector  of  30  amino  acids,  we  decide  that  it  represents  a  significant
transmembrane  region  if  at  least  10  amino  acids  in  it  belong  to  a  transmembrane  segment.
Experimentation determined the optimal number of the hidden layers to be 1 and the number of
neurons in this layer to be 2. The network was totally connected between adjacent layers.

The neural network was trained with the 3140 input vectors and their corresponding output values
until convergence to a total error of less than 0.005.

Results

By using only information contained in 11 sequences from the training set, the neural network was
able to generalize the processing to the testing set with a very good reliability. Applied on the 5
testing sets of membrane proteins (see methods), the system gives a perfect prediction rating of
100% by classifying all  the sequences in the membrane class. For the test  set  of 995 globular
proteins, the neural network predicts falsely 23 of them to be in the membrane class (97.7% of
good assignment). The proteins falsely classified are: 1AGN, 1AMU, 1ARZ, 1AW8, 1BFD, 1BIB,
1BNK, 1CD1, 1DLC, 1FGJ, 1IHP, 1KVE, 1LXT, 1MAZ, 1NOX, 1OVA, 1PS1, 1TAD, 1TAH,
1UAE, 1WER, 2ABK and 3R1R.

These  results  are  good but  cannot  be easily  generalized  to  decide  the  predictive  power of  the
method applied on real cases like the classification of Open Reading Frames (ORF) identified in
complete genomes. The test sets of membrane proteins seems indeed too limited and composed
exclusively  of  proteins  with  experimental  and  reliable  information  about  the  location  of
transmembrane segments. This doesn't necessarily reflects the composition of a complete genome.
In addition, the proteins used in these sets contains only -helices transmembrane which are easier
to predict than -strands transmembrane segments (Diederichs et al., 1998).

Despite the errors contained in SWISS-PROT, it is thought that the annotations contained in this
database can be used to automatically extract two sets of membrane and non-membrane proteins
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which should be representative of the composition of complete genomes. These sets can serve as a
common test that could be used for the rating and comparison of similar methods.

The set of membrane proteins extracted from the SWISS-PROT database release 37 contains 10743
entries. It has been built by selecting all sequences containing the keyword 'TRANSMEMBRANE'
and having at least one transmembrane segment annotated. All remaining sequences in the database
are  not  necessarily  non-membrane  proteins  as  some  membrane  sequences  might  be  not  yet
annotated.  A reliable  set  was  extracted  by  selecting,  from the  cluster  of  proteins  not  marked
transmembrane,  only sequences with a known three-dimensional structure (presence of the '3D-
STRUCTURE' keyword). The set of non-membrane proteins contains 2280 sequences.

The neural network was applied to these sets of membrane and globular proteins collected. For the
membrane proteins, it correctly classifies 92.28% of them in the membrane protein set (9914 out of
10743). For the soluble proteins, it correctly classifies 93.38% of them (2129 out of 2280). The
score obtained on this set of soluble proteins is lower than the rating calculated on the set listed in
PDBSELECT but should be a good indication of the validity of the extraction method. The ratio of
93% of good assignment (both for membrane and non-membrane proteins) should be representative
of the predictive power of the method when applied on complete genomes.

On the basis of these encouraging results, the neural network was associated with the PRED-TMR
algorithm in a new application package called PRED-TMR2. This program can directly be used for
the prediction of unknown proteins or on the ORF’s  (Open Reading Frames) predicted by the
various genome projects.

Table II. Percentages of transmembrane proteins predicted by PRED-TMR2 on seven complete genomes.

Genome names % of TM proteins

Escherichia coli

Haemophilus influenzae

Methanococcus jannaschii

Mycoplasma genitalium

Mycoplasma preumoniae

Saccharomyces cerevisiae

Synechocystis SP

24.6 %

21.2 %

19.8 %

26.3 %

22.9 %

28.0 %

26.5 %

PRED-TMR2 has  been  applied  on seven  complete  genomes  and  on  the  entire  content  of  the
SWISS-PROT database. The percentage of membrane sequences predicted in each genome is given
in table II. The results range from 19.8% for Methanococcus jannaschii to 28% for Saccharomyces
cerevisiae.  Details  of  the  results  obtained  can  be  downloaded  together  with  the  list  of  the
transmembrane segment assignments from http://o2.db.uoa.gr/PRED-TMR2/Results/.

Discussion

The  prediction  of  transmembrane  segments  in  proteins  is  a  central  domain  in  computational
biology. A number of methods have been developed over the past 20 years. Some of them obtains
good accuracy (Rost et al., 1995) and are available for biologist through the Internet. However,
most  of  these methods are  focused on the localization  of  -helices  transmembranes  in  known
integral  membrane proteins and produce a number of false segment detection when applied on
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soluble proteins. The rate of over-prediction is not well known as few publication were published
on this subject. Two recent paper tackle the problem of identification of transmembrane proteins.
Kihara et al. (1998) have tested their method on two sets of 89 transmembrane proteins collected in
the literature  and 928 globular  proteins  extracted from PDBSELECT. They announce a  correct
classification  of  82  of  the  transmembrane  proteins  (92.13%) and  of  836  of  the  globular  ones
(90.1%). Our neural network was found to perform slightly better than this methods. Hirokawa et
al. (1998) made the tests of their SOSUI system on a set of 92 transmembrane proteins listed by
Fariselli and Casadio (1996) and 502 soluble proteins extracted from PDBSELECT and state that
their system discriminated all sequences correctly, except for one in each set of data ; resulting in
an  accuracy  of  more  than  99%.  Concerning  the  classification  of  transmembrane  proteins,  our
method performs in a similar way as SOSUI as 100% of good classification were obtained on the
same set. For the globular proteins, SOSUI with an incredible accuracy of 99.8% is far better than
our neural network. However, an execution of SOSUI on the 23 soluble proteins misclassified by
our system results in an assignment as transmembrane for 3 of them (1BNK, 1CD1, 1KVE). Even
with these errors,  the rating is  still  excellent,  and better  of our method if  we consider that  all
remaining sequences are correctly predicted by SOSUI.

The systems above are not using neural network system for the classification. We show here that a
simple neural network systems can be applied to this kind of problem in a successful way. The
novelty in our network topology is the little number of neurons and connections required. Most of
the neural network system presented so far use the same local encoding for each amino acid in a
sequence (Qian and Sejnowski, 1988; Reczko, 1993; Rost et al., 1995; Fariselli and Casadio, 1996;
Aloy et al., 1997; Diederichs et al., 1998), i.e. each residue is represented by a vector of 20 or 21
values. The input layer of the networks using this encoding must be 20 times the size of the input
segment. In the case of a window of 30 amino acids, this represents 600 neurons. In our system,
each amino acid is encoded with an unique value and only 2 neurons in the hidden layer are used.

It is known that a successful generalization of a prediction by a neural network requires a much
larger number of cases that the number of weights adjusted during the training phase. With our
architecture, the total number of connections associated with a weight is only 62 (60 to connect 30
input  neurons to  the hidden layer  and 2 from this  layer  to  the  unique  output).  This  allows  to
successfully  train  the  network  with  information  on  the  topology  of  very  few proteins.  In  our
application, the number of cases (3140) is a factor of 50 higher than the number of weight.

In addition, the simple feed-forward topology of the network and its limited number of connections
allow proteins to be processed very quickly and could open the way for new implementation able to
handle longer segments of amino acids and, why not, complete sequences.

A WWW server  running  the  PRED-TMR2 algorithm is  available  at  http://o2.db.uoa.gr/PRED-
TMR2/
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