Enrichment of Qualitative Beliefs for Reasoning under Uncertainty

Abstract : This paper deals with enriched qualitative belief functions for reasoning under uncertainty and for combining information expressed in natural language through linguistic labels. In this work, two possible enrichments (quantitative and/or qualitative) of linguistic labels are considered and operators (addition, multiplication, division, etc) for dealing with them are proposed and explained. We denote them $qe$-operators, $qe$ standing for ``qualitative-enriched" operators. These operators can be seen as a direct extension of the classical qualitative operators ($q$-operators) proposed recently in the Dezert-Smarandache Theory of plausible and paradoxist reasoning (DSmT). $q$-operators are also justified in details in this paper. The quantitative enrichment of linguistic label is a numerical supporting degree in $[0,\infty)$, while the qualitative enrichment takes its values in a finite ordered set of linguistic values. Quantitative enrichment is less precise than qualitative enrichment, but it is expected more close with what human experts can easily provide when expressing linguistic labels with supporting degrees. Two simple examples are given to show how the fusion of qualitative-enriched belief assignments can be done.
Type de document :
Pré-publication, Document de travail
12 pages. 2007
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

Contributeur : J. Dezert <>
Soumis le : lundi 3 septembre 2007 - 11:45:18
Dernière modification le : jeudi 15 novembre 2018 - 08:38:59
Document(s) archivé(s) le : vendredi 9 avril 2010 - 01:27:40


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00169298, version 1
  • ARXIV : 0709.1701



Xinde Li, Xinhan Huang, Florentin Smarandache, Jean Dezert. Enrichment of Qualitative Beliefs for Reasoning under Uncertainty. 12 pages. 2007. 〈hal-00169298〉



Consultations de la notice


Téléchargements de fichiers