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Abstract

A very particular connection between the commutation relations of the
elements of the generalized Pauli group of a d-dimensional qudit, d being
a product of distinct primes, and the structure of the projective line over
the (modular) ring Zd is established, where the integer exponents of the
generating shift (X) and clock (Z) operators are associated with submod-
ules of Z

2

d. Under this correspondence, the set of operators commuting
with a given one — a perp-set — represents a Zd-submodule of Z

2

d. A
crucial novel feature here is that the operators are also represented by
non-admissible pairs of Z

2

d. This additional degree of freedom makes it
possible to view any perp-set as a set-theoretic union of the corresponding
points of the associated projective line.

PACS Numbers: 03.65.-a – 03.65.Fd – 02.10.Hh – 02.40.Dr
Keywords: Qudit – Generalized Pauli Group – Projective Ring Line –
Commutation Algebra of Generalized Pauli Operators

1 Introduction

The study of the finite-dimensional Hilbert spaces and their associated gener-
alized Pauli operators has been a forefront issue of the quantum information
theory within the past few years. A substantial mathematical insight has been
possible thanks to a number of novel graph-combinatorial and algebraic geo-
metrical concepts employed, see, e. g., [1]–[6] and references therein. Among the
latter, it is the concept of a projective line defined over a(n associative) ring with
unity that acquired a distinguished footing [6]–[12]. In this approach, one simply
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identifies the points of a projective ring line with the generalized Pauli opera-
tors (or the maximum commuting sets of them) pertaining to a given Hilbert
space and rephrases their commutation relations in terms of neighbour/distant
relations between the points on the line in question. Given this identification, it
was possible to “projective-ring-geometrize” any N -qubit Hilbert space [6]–[10],
two-qutrits [11, 12], as well as to get important hints about the smallest com-
posite case, viz. a six-dimensional Hilbert space [13]. A detailed examination
of these particular cases led soon to a discovery of a more complex and unify-
ing approach based on group-theoretical considerations [14, 15]. Adopting and
properly generalizing the strategy pursued in the last two mentioned papers, we
shall demonstrate, on the example of a specific single qudit, that the concept of
a projective ring line naturally emerges also in a context slightly different from
that introduced and elaborated in [6]–[13], with the finest traits of the structure
of the projective line coming into play.

2 The Pauli group G of a single qudit

Let d > 1 be an integer and Zd := {0, 1, . . . , d−1}. Addition and multiplication
of elements from Zd will always be understood modulo d.

We consider the d-dimensional complex Hilbert space Cd and denote by

{ |s〉 : s ∈ Zd}

a computational basis of Cd. Furthermore, let ω be fixed a primitive d-th root
of unity (e. g., ω = exp(2πi/d)).

Now X and Z are unitary “shift” and “clock” operators on C
d defined via

X |s〉 = |s + 1〉 and Z|s〉 = ωs|s〉, respectively, for all s ∈ Zd. With respect to
our computational basis the matrices of X and Z are




0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0




and




1 0 0 . . . 0
0 ω 0 . . . 0
0 0 ω2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ωd−1



,

respectively.
The subgroup of the unitary group Ud generated by X and Z, known by

physicists as the (generalized) Pauli group, will be written as G. The operators
X0 =: I,X1, . . . , Xd−1 form a cyclic subgroup of G with order d; the same
properties hold for Z0, Z1, . . . , Zd−1. Hence

Xd−1 = X−1 and Zd−1 = Z−1. (1)

For all s ∈ Zd we have XZ|s〉 = ωs|s+ 1〉 and ZX |s〉 = ωs+1|s+ 1〉. This gives
the basic relation

ωXZ = ZX. (2)
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By virtue of (1) and (2), each element of G, usually referred to as a (generalized)
Pauli operator, can be written in the normal form

ωaXbZc for some integers a, b, c ∈ Zd. (3)

It is easy to see that this representation in normal form is unique: From
ωaXbZc = ωa′

Xb′Zc′ follows ωa−a′

Xb−b′Zc−c′ = I. As |0〉 remains fixed under
Zc−c′ we obtain ωa−a′

Xb−b′ |0〉 = |0〉. This shows b − b′ = 0 and a − a′ = 0.
Thus Zc−c′ = I which implies c − c′ = 0, as required. The uniqueness of the
normal form (3) will be crucial for our further exhibition.

We immediately may read off from (2) the following rule for multiplication
in G, when the factors are given in normal form:

(ωaXbZc)(ωa′

Xb′Zc′) = ωb′c+a+a′

Xb+b′Zc+c′ .

Observe that the product is also in normal form. The term b′c in the exponent
of ω on the right hand side shows that G is a non-commutative group. The
uniqueness of the normal form implies also that G is a group of order |G| = d3.

The commutator1 of two operators W and W ′ is

[W,W ′] := WW ′W−1W ′−1
. (4)

If W = ωaXbZc and W ′ = ωa′

Xb′Zc′ are given in normal form then it is
immediate from (2) that

[ωaXbZc, ωa′

Xb′Zc′ ] = ωcb′−c′bI. (5)

Recall that two operators commute if, and only if, their commutator (taken in
any order) is equal to I.

We shall be concerned with two important normal subgroups of G:
The centre Z(G) of G is the set of all operators in G which commute with

every operator in G. An operator ωaXbZc given in normal form lies in Z(G)
precisely when (5) holds for any choice of a′, b′, and c′. Setting b′ := 0, c′ := 1
we get b = 0, whereas b′ := 1 and c′ := 0 gives then c = 0. These necessary
conditions are also sufficient, whence

Z(G) = {ωaI : a ∈ Zd}.

Note that Z(G) is yet another cyclic subgroup of G with order d.
The commutator subgroup [G,G] is the smallest subgroup of G which con-

tains all commutators [W,W ′] with W,W ′ ∈ G. We follow the usual convention
to denote the commutator subgroup of G by G′. From [Z,X ] = ωI follows that
all powers of ωI are elements of G′. On the other hand (5) shows that there are
no other commutators but the powers of ωI. Altogether we obtain

G′ = Z(G) = {ωaI : a ∈ Zd}. (6)
1We shall always be concerned with commutator of operators in the sense of group theory.

It must not be confused with the commutator from ring theory which uses addition and
multiplication of operators.
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It is easy to see from (5) that each element of G′ is indeed a commutator, a
property which need not be true for the commutator subgroup of an arbitrary
group.

3 The ring associated with G

By expressing the elements of our group G in normal form we saw already that
several basic algebraic relations can be expressed solely in terms of the exponents
of ω, X and Z. These exponents are always elements of the ring (Zd,+, ·) of
integers modulo d. To be more precise, this ring is unital (1b = b for all b ∈ Zd)
and commutative (bc = cb for all b, c ∈ Zd). An element b ∈ Zd is a unit (an
invertible element) if, and only if b and d are coprime. If d is a prime then
every non-zero element of Zd is invertible and Zd is a field, otherwise there are
non-invertible elements — see, e. g., [16, 17] for more details.

We show now that the ring Zd “lives”, up to isomorphism, also within our
group G. Let us consider the bijective mapping

ψ : Zd → G′ : a 7→ ωaI.

This is an isomorphism of the additive group (Zd,+) onto the multiplicative
group (G′, ·), since clearly

ψ(a+ a′) = ωa+a′

I = ψ(a) · ψ(a′) for all a, a′ ∈ Zd.

However, in Zd we also have the binary operation of multiplication. We obtain
its counterpart in G′ via

ψ(aa′) = ωaa′

I = (ωaI)a′

= ψ(a)a′

for all a, a′ ∈ Zd.

Thus we could use the bijection ψ to turn G′ into an isomorphic copy of the ring
(Zd,+, ·) by defining “new” binary operations on G in accordance with the two
formulas from the above. However, we refrain from doing so in order to avoid
misunderstandings. (The “new” addition would be the “old” multiplication.)
It is nevertheless important to emphasise that such a construction is possible.

4 A symplectic module associated with G and

the commutation algebra of Pauli operators

As (G, ·) is a non-commutative group, it cannot be isomorphic to the additive
group of any module. Recall that the factor group of G by any normal subgroup
is commutative if, and only if, this normal subgroup contains the commutator
subgroup G′. This means that the “largest” commutative group we can obtain
from G by factorisation is the factor group

G/G′.
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Taking into account our normal form (3) and the description of G′ in (6), the
group G/G′ comprises all cosets

G′XbZc where b, c ∈ Zd. (7)

Each element of G/G′ can be written in a unique way in this normal form. As
a by-product of this uniqueness, we learn from (7) that the factor group G/G′

has order d2. Multiplication in G/G′ is governed by the formula

(G′XbZc)(G′Xb′Zc′) = G′Xb+b′Zc+c′ for all b, c, b′, c′ ∈ Zd. (8)

Let us consider the bijective mapping

ϕ : Z
2
d → G/G′ : (b, c) 7→ G′XbZc.

Note that the elements of Z2
d are written as rows. Sometimes they will be called

vectors. We now consider (Z2
d,+) as a commutative group with the addition

(+) defined componentwise. Then (8) establishes immediately that ϕ is an iso-
morphism of the additive group (Z2

d,+) onto the multiplicative group (G/G′, ·).
But Z2

d is also a module over Zd in the usual way. Thus we could use the
bijections ψ : Zd → G′ and ϕ : Z2

d → G/G′ to turn G/G′ into an isomorphic
module over G′. Like before, it is worth noting that this is possible, but the
actual construction will not be needed. Let us just present an example: Given
a, b, c ∈ Zd we have on the one hand a(b, c) = (ab, ac). On the other hand the
“product” of the “scalar” ωaI ∈ G′ with the “vector” G′XbZc would equal the
“vector” G′XabZac.

Recall that our main goal is to describe whether or not two operators of G
commute. Since G/G′ is a commutative group, any information of this kind is
eliminated by our passage from G to the factor group G/G′. This is why in the
following construction we use not only the group G/G′, but also the group G
and the commutator subgroup G′:

LetG′XbZc andG′Xb′Zc′ be elements ofG/G′ in normal form. We associate
with them the commutator

[XbZc, Xb′Zc′ ] = ωcb′−c′bI ∈ G′.

This assignment uses the group G. It is independent of the choice of represen-
tatives from the cosets G′XbZc and G′Xb′Zc′ , since a and a′ do not appear on
the right hand side of (5).

By virtue of the bijections ϕ−1 : G/G′ → Z2
d and ψ−1 : G′ → Zd we are now

in a position to transfer this construction to our Zd-module Z2
d. This gives a

mapping2

[·, ·] : Z
2
d → Zd :

(
(b, c), (b′, c′)

)
7→ cb′ − c′b (9)

which just describes the commutator of two elements ofG (given in normal form)
in terms of our Zd-module. There are several ways to rewrite the mapping (9),

2Of course the symbol [·, ·] has two different meanings in (4) and (9).
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for example

[
(b, c), (b′, c′)

]
= (b, c)

(
0 −1
1 0

) (
b′

c′

)
= det

(
b′ c′

b c

)
. (10)

By this formula, the mapping [·, ·] is a bilinear form on Z2
d. Clearly, this form

is alternating, i. e.,
[
(b, c), (b, c)

]
= 0 for all (b, c) ∈ Z2

d. As usual, we write

(b, c) ⊥ (b′, c′) if
[
(b, c), (b′, c′)

]
= 0 and speak of orthogonal (or: perpendicular)

vectors (with respect to [·, ·]). As an alternating bilinear form is always skew
symmetric, our orthogonality of vectors is a symmetric relation. As our form
[·, ·] is non-degenerate, i. e., only the zero-vector is orthogonal to all other vectors
of Z2

d, we have indeed a symplectic module.
Summing up, we see that the set of operators in G which commute with a

fixed operator ωaXbZc corresponds to the perpendicular set (shortly the perp-

set) of (b, c), viz.

(b, c)⊥ :=
{
(u, v) ∈ Z

2
d : (b, c) ⊥ (u, v)

}
.

The perp-set of (b, c) is closed under addition and multiplication by ring ele-
ments. Also, it is non empty, since

Zd(b, c) ⊂ (b, c)⊥. (11)

So, (b, c)⊥ is a Zd-submodule of Z2
d. We shall exhibit perp-sets in detail in the

following sections.

5 The projective line over Zd and the commuta-

tion algebra of Pauli operators

In order to say more about perp-sets in Z2
d we shall use some basic facts about

the projective line over the ring Zd. We do not need the theory of projective
ring lines in its most general form here, since our ring Zd is commutative and
finite. This will allow to work with determinants and state some definitions in
a simpler way. While we sketch here some basic notions and results, the reader
is referred to [18]–[22] for further details and proofs.

First, let us consider any vector (b, c) ∈ Z2
d. It generates the cyclic submodule

Zd(b, c) = {(ub, uc) : u ∈ Zd}

Such a cyclic submodule is called free, if the mapping u 7→ (ub, uc) is injective.
In this case the vector (or: pair) (b, c) is called admissible. Any free cyclic
submodule of Z2

d has precisely d vectors, including the zero-vector. However,
not all vectors 6= (0, 0) of a free cyclic submodule need to be admissible. If (b, c)
is an admissible vector then (ub, uc) is also admissible if, and only if, u ∈ Zd is
an invertible element. Thus, if d is not a prime each free cyclic submodule of
Z2

d contains at least one non-admissible vector other than (0, 0).
For our ring Zd there are several other ways of describing admissible vectors,

as the following assertions are equivalent for any vector (b, c) ∈ Z2
d:
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(a) The vector (b, c) is unimodular, i. e., there exist elements u, v ∈ Zd with

ub+ vc = 1.

(b) The vector (b, c) is the first row of an invertible 2× 2 matrix with entries
in Zd.

(c) The vector (b, c) is the first vector3 of a basis of Z2
d. (This means that

there is such a vector (b′, c′) ∈ Z2
d that the mapping

Z
2
d → Z

2
d : (u, u′) 7→ u(b, c) + u′(b′, c′)

is a bijection.)

In a more geometric language, motivated by classical analytic projective
geometry over the real or complex numbers, a free cyclic submodule of Z2

d is
called a point. The point set

P1(Zd) := {Zd(c, d) : (c, d) is admissible}

is the projective line over the ring Zd. According to this definition a point is
a set of vectors. In “genuine” projective geometry over a ring the individual
vectors contained in a point are of no particular interest. They are merely a
useful tool for doing geometry in terms of coordinates. For us, however, the
vectors within a point will be significant. This is of course in sharp contrast to
Euclid’s point of view: A point is that which has no part.

Two points Zd(b, c) and Zd(b
′, c′) of P1(Zd) are called distant if (b, c), (b′, c′)

is a basis of Z2
d. Two distant points share only the zero vector (0, 0). Otherwise,

the points are called neighbouring. Thus, two neighbouring points have always
a non-zero vector in common.

We are now in a position to state a first, preliminary result about perp-sets.

Theorem 1. Let (b, c) ∈ Z2
d be any vector and let Zd(b

′, c′) be any point of

the projective line P1(Zd) which contains the vector (b, c). Then the following

assertions hold:

(a) The point Zd(b
′, c′) is a subset of the perp-set (b, c)⊥.

(b) Under the additional assumption that Zd(b, c) is also a point, we have

(b, c)⊥ = Zd(b, c) = Zd(b
′, c′).

Proof. Ad (a): By (11) and the assumption of the theorem, (b, c) ∈ Zd(b
′, c′) ⊂

(b′, c′)⊥. We infer from the symmetry of the relation ⊥ that (b′, c′) ∈ (b, c)⊥.
Also, since (b, c)⊥ is a submodule, we obtain that the entire point Zd(b

′, c′) is a
subset of (b, c)⊥.

3All bases of Z
2

d
consist of two admissible vectors. In general, a module over a ring may

have bases of different size.
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Ad (b): As (b, c) is a unimodular vector, there exists a pair (c̃,−b̃) ∈ Z2
d

such that bc̃− cb̃ = 1. This means

det

(
b c

b̃ c̃

)
= 1

which in turn tells us that (b, c) and (b̃, c̃) form a basis of Z2
d. Each vector

(u, v) ∈ Z2
d can be expressed in a unique way as a linear combination

(u, v) = w(b, c) + w̃(̃b, c̃) with w, w̃ ∈ Zd.

By (10), a necessary and sufficient condition for (u, v) to lie in (b, c)⊥ reads

det

(
wb+ w̃b̃ wc+ w̃c̃

b c

)
= w̃(̃bc− bc̃) = −w̃ = 0.

Therefore (b, c)⊥ = Zd(b, c). Finally, we infer from (b, c) ∈ Zd(b′, c′) that the
point Zd(b, c) is a subset of the point Zd(b

′, c′). These points coincide, as both
have precisely d vectors.

Let us give an example, where d = 6. We consider the vector (2, 0) which
cannot be unimodular, because 2b′ + 0c′ = 1 has no solution in Z6. There
are only three distinct multiples of (2, 0), namely (0, 0), (2, 0), and (4, 0). This
indicates once more that (2, 0) is not unimodular (or: admissible). We infer
from

(2, 0) = 4(5, 0) = 4(2, 3) = 4(5, 3)

that there are (at least) three points containing (2, 0). The subsequent remarks
are immediate from Theorem 2 which will be established below. However, their
verification is also an easy exercise which can be carried out without any back-
ground knowledge: The projective line P1(Z6) has precisely twelve points. There
are no other points containing (2, 0) than those mentioned before. The perp-set
of (2, 0) coincides with the set-theoretic union of those three points, hence

(2, 0)⊥ = Z6(5, 0) ∪ Z6(2, 3) ∪ Z6(5, 3)

= {(5, 0), (4, 0), (3, 0), (2, 0), (1, 0), (0, 0),

(2, 3), (4, 0), (0, 3), (2, 0), (4, 3), (0, 0),

(5, 3), (4, 0), (3, 3), (2, 0), (1, 3), (0, 0)}.

This is a set of 18 − 6 = 12 vectors, because (2, 0), (4, 0) and (0, 0) are vectors
which belong to all three points.

6 A particular case: d is square-free

While Theorem 1 describes the perp-set of any admissible vector, the result for
non-admissible vectors is unsatisfactory. The aim of this section is to improve
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the results of Theorem 1 under the additional hypothesis that the number d is
square-free. Throughout this section we adopt the assumption that

d = p1p2 · · · pr, (12)

where p1, p2, . . . , pr are r ≥ 1 distinct prime numbers. The ring Zd is isomorphic
to the outer direct product

Zp1
× Zp2

× · · · × Zpr
(13)

of r finite fields. Let us recall how this isomorphism arises: We consider the
ring elements

qk := p1 · · · pk−1pk+1 · · · pr, where k ∈ {1, 2, . . . , r}.

(For r = 1 this product is empty, whence q1 = 1.) The ring Zd is the inner
direct product of the principal ideals

J (k) := Zdqk where k ∈ {1, 2, . . . , r}.

Given any element y ∈ Zd there exists a unique decomposition

y = y(1) + y(2) + · · · + y(r) with y(k) ∈ J (k).

We refer to the elements y(k) as the components of y. In terms of this de-
composition we can add and multiply elements of x, y ∈ Zd componentwise,
i. e.

(x+ y)(k) = x(k) + y(k) and (x · y)(k) = x(k) · y(k).

In particular, the unit element 1 ∈ Zd has the decomposition

1 = 1(1) + 1(2) + · · · + 1(r).

For each k ∈ {1, 2, . . . , r} the ideal J (k) is a field isomorphic to Zpk
. There is

only one isomorphism J (k) → Zpk
; it takes the element 1(k) to the unit element

1 ∈ Zpk
. Note that each element of J (k) can be written as 1(k) +1(k) + · · ·+1(k)

with a finite number of summands. Then its isomorphic image in Zpk
is the

sum 1 + 1 + · · ·+ 1 with the same number of summands. Below we shall always
use the representation of Zd as the inner direct product of the ideals J (k) rather
than the isomorphic model given in (13).

As a first application we obtain the following characterisation: An element
y ∈ Zd is invertible if, and only if, all its components are non-zero. In this case
the k-th component of the element y−1 is the unique solution in J (k) of the
equation y(k)x = 1(k) in the unknown x. Therefore the number of invertible
elements in Zd is

r∏

k=1

(pk − 1). (14)
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A similar description holds for the points of P1(Zd): A pair (b, c) is unimodular
(or: admissible) if, and only if, there exist elements u, v ∈ Zd with

u(k)b(k) + v(k)c(k) = 1(k) for all k ∈ {1, 2, . . . , r}.

Since each ideal J (k) is isomorphic to a field, the last equation is equivalent to

(b(k), c(k)) 6= (0, 0) for all k ∈ {1, 2, . . . , r}. (15)

We are now in a position to state our main result. Note that the set-theoretic
union of points gives a set of vectors.

Theorem 2. Let the square-free integer d > 1 be given as in (12). Also, let

(b, c) ∈ Z2
d. We denote by K the set of those indices k ∈ {1, 2, . . . , r} such that

(b(k), c(k)) = (0, 0). Then the following hold:

(a) The vector (b, c) is contained in precisely

∏

k∈K

(pk + 1) (16)

points of P1(Zd).

(b) The set-theoretic union of these points equals the perpendicular set of the

vector (b, c).

(c) The perpendicular set of the vector (b, c) satisfies

|(b, c)⊥| = d
∏

k∈K

pk. (17)

Proof. Ad (a): First, let us determine all admissible vectors (b′, c′) ∈ Z2
d such

that (b, c) = u(b′, c′) for some u ∈ Zd. So

(b(j), c(j)) = u(j)(b′(j), c′(j)) 6= (0, 0) for all j ∈ {1, 2, . . . , r} \K (18)

and

(b(k), c(k)) = u(k)(b′(k), c′(k)) = (0, 0) 6= (b′(k), c′(k)) for all k ∈ K. (19)

We obtain u(j) 6= 0 from (18), whence (b′(j), c′(j)) is one of the pj − 1 distinct
multiples of (b(j), c(j)) by a non-zero factor in J (j). Next, (19) implies u(k) = 0,
whence (b′(k), c′(k)) is one of the p2

k − 1 non-zero pairs with entries from J (k).
These necessary conditions are also sufficient so that we obtain

∏

j /∈K

(pj − 1)
∏

k∈K

(pk + 1)(pk − 1)

admissible vectors with the required property. Dividing by the number of in-
vertible elements of Zd, as stated in (14), gives the number of points containing
the vector (b, c).

10



Ad (b): By Theorem 1 (a), each point containing (b, c) is a subset of (b, c)⊥.
So the same property holds for the union of all these points. The proof will be
accomplished by showing that for any vector (x, y) ∈ (b, c)⊥ there is a point
Zd(b

′, c′) ∈ P1(Zd) which has (x, y) and (b, c) among its vectors. We define b′

and c′ in terms of their components as follows: For all j ∈ {1, 2, . . . , r} \K we
let (b′(j), c′(j)) := (b(j), c(j)). For the remaining indices k ∈ K we define

(b′(k), c′(k)) :=

{
(x(k), y(k)) if (x(k), y(k)) 6= (0, 0),

(1(k), 1(k)) otherwise.

According to our definition and (15) the submodule Zd(b
′, c′) is a point. Letting

u(j) := 1(j) for all j /∈ K and u(k) := 0 for all k ∈ K yields (b, c) = u(b′, c′).
Finally, we establish the existence of an element v ∈ Zd with (x, y) = v(b′, c′).

For this purpose the components of v can be chosen as follows: If j /∈ K then
(x, y) ⊥ (b, c) together with (10) gives

det

(
x(j) y(j)

b(j) c(j)

)
= 0.

As this is a determinant over the field J (j), and because the second row is non-
zero, we can define v(j) ∈ J (j) via (x(j), y(j)) = v(j)(b(j), c(j)). If k ∈ K and
(x(k), y(k)) 6= (0, 0) we set v(k) := 1(k), otherwise we let v(k) := 0.

Ad (c): By (b), it suffices to count the number of vectors (b′′, c′′) which are
a multiple of an admissible vector as described in part (a) of the present proof.
For each j /∈ K the pair (b′′(j), c′′(j)) can be chosen as any of the pj multiples
of (b(j), c(j)) by a factor in J (j), whereas for each k ∈ K the pair (b′′(k), c′′(k))
can be chosen arbitrarily in p2

k ways. Hence there are

∏

j /∈K

pj ·
∏

k∈K

p2
k = d

∏

k∈K

pk

such vectors.

As a by-product of Theorem 2 we may infer from (16) that the projective
line P1(Zd) has precisely

∏r
k=1(pk + 1) points. Also, returning to our initial

problem, we obtain the following result.

Corollary 1. With the settings and notations of Theorem 2 the number of

operators in the generalized Pauli group G which commute with the operator

ωaXbZc ∈ G equals the value given by (17) multiplied by d.

7 Conclusion

Given the generalized Pauli group associated with a d-dimensional qudit, d a
product of distinct primes, a general formula was derived for the number of
generalized Pauli operators commuting with a given one. This formula is based
on the properties of (sub)modules of the associated modular ring Zd and finds

11



its natural interpretation in the properties of the projective line defined over Zd.
When compared with other works on the subject [6]–[13], our approach makes
also use of non-admissible pairs of elements of the ring in question, thereby
giving the physical meaning to the full structure of the line; moreover, it seems
to be readily generalizable to tackle the case where d also contains powers of
primes.
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