On Finite-Time Ruin Probabilities for Classical Risk Models

Abstract : This paper is concerned with the problem of ruin in the classical compound binomial and compound Poisson risk models. Our primary purpose is to extend to those models an exact formula derived by Picard and Lefèvre (1997) for the probability of (non-)ruin within finite time. First, a standard method based on the ballot theorem and an argument of Seal-type provides an initial (known) formula for that probability. Then, a concept of pseudo-distributions for the cumulated claim amounts, combined with some simple implications of the ballot theorem, leads to the desired formula. Two expressions for the (non-)ruin probability over an infinite horizon are also deduced as corollaries. Finally, an illustration within the framework of Solvency II is briefly presented.
Type de document :
Article dans une revue
Scandinavian Actuarial Journal, Taylor & Francis (Routledge), 2008, 2008 (1), pp.41-60. 〈10.1080/03461230701766882〉
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00168958
Contributeur : Stéphane Loisel <>
Soumis le : vendredi 31 août 2007 - 00:34:42
Dernière modification le : jeudi 31 décembre 2015 - 01:03:04
Document(s) archivé(s) le : vendredi 9 avril 2010 - 01:22:35

Fichier

Lefevre-Loisel-ISFA-WP2038.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Claude Lefèvre, Stéphane Loisel. On Finite-Time Ruin Probabilities for Classical Risk Models. Scandinavian Actuarial Journal, Taylor & Francis (Routledge), 2008, 2008 (1), pp.41-60. 〈10.1080/03461230701766882〉. 〈hal-00168958〉

Partager

Métriques

Consultations de la notice

251

Téléchargements de fichiers

894