The group of automorphisms of a real rational surface is n-transitive

Abstract : Let X be a rational nonsingular compact connected real algebraic surface. Denote by Aut(X) the group of real algebraic automorphisms of X. We show that the group Aut(X) acts n-transitively on X, for all natural integers n. As an application we give a new and simpler proof of the fact that two rational nonsingular compact connected real algebraic surfaces are isomorphic if and only if they are homeomorphic as topological surfaces.
Type de document :
Article dans une revue
Bulletin of the London Mathematical Society / The Bulletin of the London Mathematical Society, 2009, 41 (3), pp.563-568
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00168831
Contributeur : Frédéric Mangolte <>
Soumis le : jeudi 30 août 2007 - 14:21:39
Dernière modification le : jeudi 11 janvier 2018 - 06:12:26

Lien texte intégral

Identifiants

  • HAL Id : hal-00168831, version 1
  • ARXIV : 0708.3992

Collections

Citation

Johannes Huisman, Frédéric Mangolte. The group of automorphisms of a real rational surface is n-transitive. Bulletin of the London Mathematical Society / The Bulletin of the London Mathematical Society, 2009, 41 (3), pp.563-568. 〈hal-00168831〉

Partager

Métriques

Consultations de la notice

187