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ABSTRACT

This paper deals with the in-depth kinematic analysis of a
special spherical parallel wrist, called theAgile Eye. TheAgile
Eye is a three-legged spherical parallel robot with revolute
joints in which all pairs of adjacent joint axes are orthogonal.
Its most peculiar feature, demonstrated in this paper for the
first time, is that its (orientation) workspace is unlimitedand
flawed only by six singularity curves (rather than surfaces).
Furthermore, these curves correspond to self-motions of the
mobile platform. This paper also demonstrates that, unlikefor
any other such complex spatial robots, the four solutions to
the direct kinematics of theAgile Eye(assembly modes) have
a simple geometric relationship with the eight solutions tothe
inverse kinematics (working modes).

I. I NTRODUCTION

Most of the active research work carried out in the field of
parallel robots has been focused on a particularly challenging
problem, namely, solving the direct kinematics, that is to say,
finding each possible position and orientation of the mobile
platform (assembly mode) as a function of the active-joint
variables. A second popular problem has been the evaluation
and optimization of the workspace of parallel robots [1], [2].
Unfortunately, the direct kinematic problem and the workspace
analysis have most often been treated independently, although
they are closely related to each other.

It is well known that most parallel robots have singularities
in their workspace where stiffness is lost [3]. These singu-
larities (called parallel singularities in [4] and Type 2 in
[3]) coincide with the set of configurations in the workspace
where the finite number of different direct kinematic solutions
(assembly modes) changes. For parallel manipulators with
several solutions to the inverse kinematic problem (working
modes), another type of singularity exist and defines what may
be generalized as the workspace boundary. These singularities
(calledserial singularitiesin [4] and Type 1 in [3]) coincide
with the set of configurations in the workspace where the
finite number of different inverse kinematic solutions (working
modes) changes. While ensuring that a parallel robot stays
with the same working mode along a discrete trajectory is
straightforward, the notion of “same assembly mode” is not
even clear in the general case. Indeed, the direct kinematic
solutions are most often obtained by solving a univariate
polynomial of degreen > 3, which means that there is no
way to designate each solution to a particular assembly mode.

Then, how does one choose a direct kinematic solution for a
parallel robot for each different set of active-joint variables?

A natural sorting criterion is that the direct kinematic
solution could be reached through continuous motion from the
initial assembly mode, i.e., the reference configuration ofthe
robot when it was first assembled, without crossing a singular-
ity. Before [5], it was commonly thought that such a criterion
was sufficient to determine a unique solution. Unfortunately,
as for serial robots [5], [6], a non-singular configuration
changing trajectory may exist between two assembly modes
for robots that are calledcuspidal. This result later gave rise to
a theoretical work on the concepts of characteristic surfaces
and uniqueness domains in the workspace [7]. However, it
still remains unknown what design parameters make a given
parallel robot cuspidal, and it is still unclear how to make a
given parallel robot work in the same assembly mode. It will
be shown in this paper, that there is a spherical parallel robot
(quite possibly the only one), for which there are clear answers
to these complex questions.

From the family of parallel wrists [8], theAgile Eyeprovides
high stiffness and is quite probably the only one to provide a
theoreticallyunlimited and undivided orientation workspace.
The Agile Eye is a 3-RRR spherical parallel mechanism in
which the axes of all pairs of adjacent joints are orthogonal.
Based on theAgile Eyedesign, a camera-orienting device was
constructed at Laval University a decade ago [9], an orientable
machine worktable was manufactured at Tianjin University,
and a wrist for a 6-DOF robot was built at McGill University.

The Agile Eyehas been extensively analyzed in literature,
but surprisingly some of its most interesting features havenot
been noticed. One of the key references in this paper is [10],
where the simple solution to the direct kinematics of theAgile
Eye is presented. Namely, it is shown that theAgile Eyehas
always four trivial solutions (at which all three legs are at
singularity and can freely rotate) and four nontrivial solutions
obtained in cascade. A second key reference is [11], where
the singularities of theAgile Eyeare studied. Unfortunately,
in [11], it was mistakenly assumed that the only singular
configurations are the four trivial solutions (orientations) to
the direct kinematics. Basically, the fact that at each of these
four orientations, a special arrangement of the legs can letthe
mobile platform freely rotate about an axis was overlooked.
Indeed, as this paper shows, the singularities of theAgile Eye
are six curves in the orientation workspace corresponding to
self motions of the mobile platform or lockup configurations.
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Fig. 1. TheAgile Eyeat its reference configuration.

When it was realized that the unlimited workspace of the
Agile Eyeis not divided by singularity surfaces (as is the case
for all other spherical parallel robots), yet accommodating four
unique assembly modes, it first seemed that theAgile Eyeis a
cuspidal robot. In this paper, it is shows not only that theAgile
Eyeis not cuspidal, but that it is straightforward to identify its
four assembly modes via a simple relationship to its working
modes. The results of this paper provide more insight into the
kinematics of theAgile Eyeand shed some light to the open
problem of assembly mode designation.

The rest of the paper is organized as follows. In the next two
sections, the kinematic model of theAgile Eyeand its inverse
kinematics are presented briefly. Then, the direct kinematics
and the singularity analysis of theAgile Eyeare addressed
by partially reproducing, reformulating, and augmenting the
results of [10] and [11]. Finally, it is shown that for each
working mode there is a single corresponding assembly mode
from among the four nontrivial ones.

II. K INEMATIC MODEL OF THEAGILE EYE

Figure 1 depicts theAgile Eyeat its reference configuration,
where the mobile platform is at its reference orientation and all
active-joint variables are zero. At the reference configuration,
the axes of the first base joint, the second intermediate joint,
and the third platform joint coincide, and so on for the other
joints (the figure is self-explanatory).

A base reference frameOxyz is chosen in such a way
that its x axis is along the axis of the first base joint, its
y axis is along the axis of the second base joint, and itsz
axis is along the axis of the third base joint, as shown in
Fig. 1. A mobile reference frame (not shown) is fixed at the
mobile platform so that it coincides with the base frame at the
reference orientation. With these settings, the axes of thebase
joints are defined by the following unit vectors expressed in
the base reference frame:

u1 =





1
0
0



, u2 =





0
1
0



, u3 =





0
0
1



. (1)

Similarly, the axes of the platform joints are defined by the
following unit vectors expressed in the mobile reference frame:

v
′

1 =





0
−1
0



, v
′

2 =





0
0
−1



, v
′

3 =





−1
0
0



. (2)

The rotation matrixR describes the orientation of the
mobile frame with respect to the base frame. TheZYX Euler-
angle convention is used here because it simplifies greatly the
kinematic analysis. In the base frame, the axes of the platform
joints are defined as follows

vi = Rv
′

i = Rz(φ)Ry(θ)Rx(ψ)v′

i, (3)

wherei = 1, 2, 3, which yields

v1 =





sinφ cosψ − cosφ sin θ sinψ
− cosφ cosψ − sinφ sin θ sinψ

− cos θ sinψ



,

v2 =





− sinφ sinψ − cosφ sin θ cosψ
cosφ sinψ − sinφ sin θ cosψ

− cos θ cosψ



,

v3 =





− cosφ cos θ
− sinφ cos θ

sin θ



. (4)

Finally, the axes of the intermediate joints are defined by the
following unit vectors expressed in the base reference frame:

w1 =





0
− sin θ1

cos θ1



, w2 =





cos θ2
0

− sin θ2



, w3 =





− sin θ3
cos θ3
0



, (5)

whereθi is the active-joint variablefor leg i (in this paper
i = 1, 2, 3).

III. I NVERSEK INEMATICS AND WORKING MODES

Although very simple, the solutions to the inverse kinemat-
ics of theAgile Eyewill be presented for completeness [10].
For a given orientation of the mobile platform, each leg admits
two solutions forθi in (−π, π] obtained from

tan θ1 =
cos θ sinψ

cosφ cosψ + sinφ sin θ sinψ
, (6)

tan θ2 =
sinφ sinψ + cosφ sin θ cosψ

cos θ cosψ
, (7)

tan θ3 = tanφ. (8)

Thus, the inverse kinematic problem usually admits eight
real solutions or working modes for any (non-singular) orien-
tation of the mobile platform. It is very important to note that
for both solutions forθi, vectorwi is along the same axis but
with opposite directions. When a leg is fully extended or fully
folded, the corresponding equation from the above three ones
does no hold true and the corresponding active-joint variable
θi can be arbitrary.



IV. D IRECT K INEMATICS AND ASSEMBLY MODES

TheAgile Eyewas optimized to have maximum workspace
and global dexterity [9]. Incidentally, such properties also
yield great simplification in the direct kinematic problem
because the eight solutions for a general 3-RRRparallel wrists
degenerate to four trivial and four nontrivial ones. The direct
kinematics of theAgile Eyewas solved in [10] and will be
reformulated and further analyzed here.

The following constraint equations are written:

w
T
i vi = 0, (9a)

thus

sinψ(sin θ1 sin θ sinφ− cos θ cos θ1) +

cosψ sin θ1 cosφ = 0, (9b)

cosψ(cos θ2 sin θ cosφ− cos θ sin θ2) +

sinψ cos θ2 sinφ = 0, (9c)

sin(θ3 − φ) cos θ = 0. (9d)

From Eq. (9d), the direct kinematic problem is found to admit
two sets of solutions, defined by

cos θ = 0, and (10a)

sin(θ3 − φ) = 0. (10b)

In the next two subsections, these two equations will be solved.

A. First Set of Solutions — Trivial Solutions

Equation (10a) gives two solutions for the angleθ,

θ = π/2 and θ = −π/2, (11)

which both correspond to a representation singularity in the
XY Z Euler angles. From the first solution and after sim-
plification of Eq. (9b), the following condition is found for
arbitrary active-joint variables,

cos(φ− ψ) = 0, (12)

and from the second solution,

cos(φ+ ψ) = 0. (13)

In both cases, each of these two equations lead to two
solutions. Thus, because of the representation singularity, only
four rotation matrices describe the corresponding orientations
of the mobile platform:

RTO1 =





0 −1 0
0 0 1

−1 0 0



 , RTO2 =





0 1 0
0 0 −1

−1 0 0



 ,

RTO3 =





0 −1 0
0 0 −1
1 0 0



 , RTO4 =





0 1 0
0 0 1
1 0 0



 .

Figure 2 depicts the four trivial solutions (orientations)to
the direct kinematic problem. It may be seen geometrically,as
well as from Eqs. (9b-d), that when the platform is at one of
these four orientations, all three legs are at a singularity(fully
extended or folded) and can freely rotate about their base joint

(a) θ = π/2, φ− ψ = π/2 (b) θ = π/2, φ− ψ = −π/2

(c) θ = −π/2, φ+ ψ = π/2 (d) θ = −π/2, φ+ ψ = −π/2

Fig. 2. The four trivial solutions to the direct kinematic problem valid for
any set of active-joint variables but shown withθ1 = 0, θ2 = 0 andθ3 = 0.

axes. Thus, these four orientations are trivial solutions to the
direct kinematic problem of theAgile Eyeand exist for any set
of active-joint variables. These four families of configurations
will be discussed further in the section on singularity analysis.

B. Second Set of Solutions — Nontrivial Solutions

Equation (10b) gives two solutions for the angleφ:

φ = θ3 and φ = θ3 ± π. (14)

However, in theZYX Euler-angle convention, the triplets
{φ, θ, ψ} and{φ± π,−θ± π, ψ ± π} both correspond to the
same orientation. This means that the above two solutions will
lead to the same orientation of the mobile platform. Hence,
only the first solution will be used in this paper.

Substitutingφ = θ3 in Eqs. (9b-c), a new system of two
equations is obtained:

p1 cosψ + p2 sinψ = 0, (15a)

p3 cosψ + p4 sinψ = 0, (15b)

where
p1 = sin θ1 cos θ3, (15c)

p2 = sin θ1 sin θ sin θ3 − cos θ cos θ1, (15d)

p3 = cos θ2 sin θ cos θ3 − cos θ sin θ2, (15e)

p4 = cos θ2 sin θ3. (15f)

Since the termscosψ andsinψ cannot vanish simultaneously,
Eqs. (15a-b) lead to

p1p4 − p2p3 = 0. (16)



Solution 1 φ θ ψ

Solution 2 φ θ ψ + π

Solution 3 φ θ + π −ψ

Solution 4 φ θ + π −ψ + π

TABLE I

THE FOUR NONTRIVIAL SOLUTIONS TO THE DIRECT KINEMATIC PROBLEM

Hence, substituting Eqs. (15c-f) into the above equation gives

cos θ(q1 cos θ + q2 sin θ) = 0, (17a)

where

q1 = sin θ1 cos θ2 cos θ3 sin θ3 − cos θ1 sin θ2, (17b)

q2 = sin θ1 sin θ2 sin θ3 + cos θ1 cos θ2 cos θ3. (17c)

Equation (17a) leads to two possibilities:

cos θ = 0 and (18a)

q1 cos θ + q2 sin θ = 0. (18b)

Equation (18a) is the same as Eq. (10a) and will therefore be
discarded. Equation (18b) gives two solutions in(−π, π]:

θ = tan−1(−q1/q2) + kπ with k = 0, 1. (19)

Equations (15a-b) can now be used to findψ:

ψ = tan−1(−p1/p2) + kπ with k = 0, 1, or

ψ = tan−1(−p3/p4) + kπ with k = 0, 1,

which gives two values forψ in (−π, π] for eachθ.
Table I summarizes the solutions to the direct kinematic

problem, where a number to each solution is arbitrarily as-
signed. An example of four nontrivial solutions to the direct
kinematic problem of theAgile Eyeis given in Fig. 3 for the
active-joint variablesθ1 = −0.3, θ2 = −0.7 andθ3 = 0.1.

Later, a method will be presented to identify these nontrivial
solutions based on the working mode. For now, note by
solely observing Fig. 3 that these four nontrivial solutions
are obtained from each other by rotating the mobile platform
about a platform joint axis at 180 degrees (in fact, the same
is true for the four trivial solutions). Thus, if for a given
set of active-joint variables, there is one nontrivial solution,
then there are (at least) three other nontrivial solutions.The
important question whether there are always four nontrivial
solutions was not answered in [11] and will be given special
attention now.

C. Degenerate Cases

The second set of solutions will become the same as the first
set of solutions when Eq. (18b) degenerates andq2 = q1 = 0.
It can be shown thatq2 = q1 = 0 if and only if sin θ2 = 0
and cos θ3 = 0, or sin θ3 = 0 and cos θ1 = 0. In that case,
θ can be anything, which is one of the self-motions of the
mobile platform. If q2 = 0 but q1 6= 0, Eq. (18b) becomes

w1
w2

w3

(a) φ = 0.100, θ = −0.672,
ψ = −0.383

w1
w2

w3

(b) φ = 0.100, θ = −0.672,
ψ = 2.759

w1
w2

w3

(c) φ = 0.100, θ = 2.470,
ψ = 0.383

w1
w2

w3

(d) φ = 0.100, θ = 2.470,
ψ = 3.525

Fig. 3. The four nontrivial solutions to the direct kinematic problem of the
Agile Eyefor θ1 = −0.3, θ2 = −0.7 andθ3 = 0.1.

identical with Eq. (18a), meaning thatθ = ±π/2. Substituting
θ = ±π/2 into Eqs. (15a-b) yields

sin θ1 cos(φ∓ ψ) = 0 and cos θ2 cos(φ∓ ψ) = 0. (20)

If sin θ1 = 0 and cos θ2 = 0, (φ ∓ ψ) is arbitrary, meaning
that the platform can undergo a self motion. If, however, these
two conditions are not satisfied, thencos(φ ∓ ψ) = 0, which
means that the only direct kinematic solutions are the trivial
ones.

Thus, in summary, theAgile Eyewill have only the four
trivial solutions to its direct kinematic problem if and only if

q2 = sin θ1 sin θ2 sin θ3 + cos θ1 cos θ2 cos θ3 = 0, (21)

but neither of the following three pairs of conditions is true:

sin θ2 = 0 and cos θ3 = 0, or (22a)

sin θ3 = 0 and cos θ1 = 0, or (22b)

sin θ1 = 0 and cos θ2 = 0. (22c)

Taking the first pair yieldsq2 = 0 andq1 = 0, meaning that
θ can take any value. This means that there is a self motion
— even if all actuators are fixed, the platform can freely
move. Substitutingθ2 = 0 or θ2 = π, and θ3 = ±π/2 into
Eqs. (15a-b), yieldssinψ = 0. In addition,cosφ = cos θ3 = 0.
Similarly, for the second pair of conditions, it can be proved
that θ can have any value, whilecosψ = 0 and sinφ = 0.
Finally, taking the third pair of conditions,q2 = 0 but q1 6= 0,
Eq. 17a implies thatcos θ = 0. If this pair of conditions is
substituted into Eqs. (15a-b), it is reached to the conclusion



(a) (b)

Fig. 4. The two self motions of the mobile platform where leg 3is singular.

that sin(φ−ψ) can be anything in the case ofθ = π/2 or that
sin(φ+ ψ) can be anything in the case ofθ = −π/2.

Thus, it can be easily shown that Eqs. (22a–c) correspond to
six self motions represented by the following rotation matrices
(where angles are arbitrary):

RSM1a =





0 −1 0
cos θ 0 sin θ
− sin θ 0 cos θ



, (23a)

RSM1b =





0 1 0
cos θ 0 − sin θ
− sin θ 0 − cos θ



, (23b)

RSM2a =





cos θ sin θ 0
0 0 −1

− sin θ cos θ 0



, (23c)

RSM2b =





cos θ − sin θ 0
0 0 1

− sin θ − cos θ 0



, (23d)

RSM3a =





0 − sin(φ− ψ) cos(φ − ψ)
0 cos(φ− ψ) sin(φ− ψ)
−1 0 0



, (23e)

RSM3a =





0 − sin(φ+ ψ) − cos(φ+ ψ)
0 cos(φ + ψ) − sin(φ+ ψ)
1 0 0



. (23f)

Now, note that each of the pairs of conditions imposes a
constraint on two of the active-joint variables, while the third
one can take any value, without influencing the orientation
of the mobile platform. This means, that in the above self-
motions, there is a leg in singularity. In fact, the self-motion
of the platform is about the axis of the base joint of the leg
in singularity. The above self motions are divided into pairs,
where in each pair, one of the motions correspond to a fully
extended leg (the ones with the b index), while the other to a
fully folded one. Figure 4 shows the two self motions (SM3a
and SM3b) for which leg 3 is singular, corresponding to the
pair of conditions of Eq. (22c). In this figure, legs 1 and 2 are
each shown in one of the possible two configurations per leg.

As will be seen in the next section, all singular config-
urations were found in this section by purely studying the
degeneracies of the direct kinematics of theAgile Eye.

V. SINGULARITY ANALYSIS

The relationship between the active-joint rates,θ̇, and the
angular velocity of the mobile platform,ω, can be written as:

Aω + Bθ̇ = 0 (24)

whereA andB are Jacobian matrices and can be written as

A =





(w1 × v1)
T

(w2 × v2)
T

(w3 × v3)
T



 =





α
T
1

α
T
2

α
T
3



 , (25a)

B =





(w1 × v1)
T
u1 0 0

0 (w2 × v2)
T
u2 0

0 0 (w3 × v3)
T
u3



. (25b)

Type 2 singularities are characterized by studying matrix
A and occur whenever the three vectorsαi are coplanar or
collinear. For theAgile Eye, these vectors cannot be collinear.
Thus, when these three vectors are coplanar, the platform
can rotate (infinitesimally or finitely) about the axis passing
through the centerO and normal to the plane of the vectors.

Substituting the nontrivial solution set for the direct kine-
matics of theAgile Eyeinto the determinant ofA of Eq. (25a)
and simplifying, it is obtained that the expression in the active-
joint space for Type 2 singularities is:

det(A) = sin θ1 sin θ2 sin θ3 +cos θ1 cos θ2 cos θ3 = 0. (26)

Substituting the trivial solution set yields the same expres-
sion but with a negative sign. Note that the determinant ofA

is the same for all four assembly modes. This is not surprising
since from the geometric interpretation of the four assembly
modes, it can be seen that between any two assembly modes,
two pairs of vectorsαi have opposite directions and the third
pair is the same.

Type 1 singularities are characterized by studying matrixB

and occur whenever a leg is fully extended or folded. For a
general 3-RRRspherical parallel mechanism with legs of other
than 90 degrees, Type 1 singularities are two-dimensional
entities. In other words, for such a general parallel wrist,
when a single leg is singular, the platform remains with two
degrees of freedom. In theAgile Eye, however, when a leg is
singular, the axes of the base and platform joints coincide and
the mobile platform has a single degree of freedom, whereas
the leg can freely rotate without affecting the orientationof the
mobile platform. Therefore, Type 1 singularities of theAgile
Eyeare only six curves in the orientation space.

Substituting the nontrivial solution set for the direct kine-
matics of theAgile Eyeinto B of Eq. (25b) and simplifying
yields the following three expressions in the active-jointspace,
corresponding to Type 1 singularities occurring in leg 1, 2,and



3, respectively:

B11 = ±
sin θ1 sin θ2 sin θ3 + cos θ1 cos θ2 cos θ3

√

1 − cos2 θ3 sin2 θ1
√

1 − cos2 θ1 sin2 θ2
=0, (27)

B22 = ±
sin θ1 sin θ2 sin θ3 + cos θ1 cos θ2 cos θ3

√

1 − cos2 θ2 sin2 θ3
√

1 − cos2 θ1 sin2 θ2
=0, (28)

B33 = ±
sin θ1 sin θ2 sin θ3 + cos θ1 cos θ2 cos θ3

√

1 − cos2 θ2 sin2 θ3
√

1 − cos2 θ3 sin2 θ1
=0, (29)

whereBii is the i-th diagonal element ofB, and the plus-
minus sign depends on which of the four nontrivial direct
solutions is used, i.e., on the assembly mode.

Substituting the trivial solution set for the direct kinematics
of the Agile Eyeinto B and simplifying yields as expected:

B11 = B22 = B33 = 0. (30)

Indeed, at the trivial orientations all three legs are singular.
From Eqs. (27–29), it follows that if a configuration cor-

responds to a Type 2 singularity, then it should inevitably
correspond to a Type 1 singularity too. However, the opposite
is not necessarily true. In other words, if there is a Type 1
singularity, the Agile Eye is not necessarily at a Type 2
singularity too. Indeed, investigating the four orientations
shown in Fig. 2, it can be seen that the legs can be orientated
in such a way that the vectors normal to the last two joint axes
in each leg are not coplanar. Such a configuration is called a
lockup configuration, since the mobile platform is completely
restrained even if the actuators are removed. For these four
orientations, Eqs. (27–29) are replaced by Eq. (30).

Finally, it should be verified what happens, when the de-
nominators of the expressions in Eqs. (27–29) are zeroed. This
basically occurs when from the reference configuration, a leg
is turned at90◦ (in either direction), and possibly another one
is turned at180◦. It can be verified that at such a configuration,
a Type 1 singularity occurs. Indeed, the numerator of the above
three equations also becomes zero.

In conclusion, theAgile Eyehas the following three families
of singular configurations:

• Six self motions of the mobile platform described by
Eqs. (23a–f), in SO(3), and by Eqs. (22a–c), in the active-
joint space. For each self motion, one of the legs is
singular. For the active-joints corresponding to each of
Eqs. (22a–c), the four (nontrivial) assembly modes de-
generate in pairs into the two corresponding self motions.

• Infinitely many infinitesimal motions of the mobile
platform at the four trivial orientations when the active-
joints satisfy Eq. (26) but neither of Eqs. (22a–c). Each
of the four trivial orientations belongs to the sets of
orientations corresponding to three self motions. For the
active joint variables corresponding to these singular
configurations, the only solutions to the direct kinematic
problem are the four trivial ones.

• Lockup configuration described in SO(3) by each of
the four trivial orientations and in the active-joint space

Sign of B11 B22 B33 det(B)
Solution 1 − − − −

Solution 2 + + − −

Solution 3 − + + −

Solution 4 + − + −

TABLE II

THE SIGNS OFBii FOR A GIVEN SET OF ACTIVE-JOINT VARIABLES

θ
2

θ
1

θ
3

det( )>0A

det( )<0A

( )+++ ( )+−−

( )−+− ( )−−+
( )++− ( )+−+

( )−++ ( )−−−

Fig. 5. The eight assembly modes characterized by the working mode

space by anything but Eq. (26). At these Type 1 sin-
gular configurations, the mobile platform cannot move
even under external force. For the active joint variables
corresponding to these singular configurations, the direct
kinematic problem has eight solutions.

VI. WORKING MODES AND ASSEMBLY MODES

As was mentioned before, a particularity of theAgile Eyeis
that the determinant of matrixA, Eq. (26), is a function of the
active-joint variables only and has the same value for all four
nontrivial assembly modes. Equation (26) represents a surface
that divides the active-joint space into two domains where
det(A) is either positive or negative. A connectivity analysis
was made on these two domains to prove this property.

The images of these two domains in the workspace yield
eight identical domains (the whole orientation space without
the singularity curves), each one being associated with oneof
the eight working modes. It can been seen geometrically, or
proved algebraically, that each of the four nontrivial assembly
modes correspond to a different working mode. Therefore,
changing an assembly mode inevitably requires a singularity
to be crossed. Hence, theAgile Eyeis not cuspidal, meaning
that as long as it does not cross a singularity, it remains in a
single working mode and in a single assembly mode.

The eight working modes are divided into two groups.
Depending on the sign ofdet(A), the four assembly modes
each correspond to a working mode from one of these groups.
In Table II, it is assumed that for the first solution of the direct
kinematic problem the sign ofBii given in Eqs. (27–29) is
negative. For the other solutions,{ψ, θ, φ} are replaced by the
value given in Table I and the influence on the sign ofBii is
shown using simple trigonometric properties. Recall that|Bii|
does not change when an assembly mode is changed.

Figure 5 summarizes the behavior of the direct kinematic
problem where a solution can be chosen according to the sign
of Bii = (+ + +) for example and the sign ofdet(A).
Similarly, when the inverse kinematic model is solved, the
working mode is easily characterized by the sign ofBii.



VII. C ONCLUSIONS

An in-depth kinematic analysis of a special spherical par-
allel wrist, called theAgile Eye, was done, pinpointing some
important facts that were previously overlooked. It was demon-
strated that the workspace of theAgile Eyeis unlimited and
flawed only by six singularity curves (rather than surfaces).
Furthermore, these curves were shown to correspond to self-
motions of the mobile platform. It was also proved that the
four assembly modes of theAgile Eyeare directly related to
the eight working modes and the sign of the determinant of
one of the Jacobian matrices. It was shown that as long as the
Agile Eyedoes not cross its singularity curves, it remains in
a single working mode and in a single assembly mode.
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