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Abstract: We consider optimal execution strategies for block market orders placed in a limit
order book (LOB). We build on the resilience model proposed by Obizhaeva and Wang (2005)
but allow for a general shape of the LOB defined via a given density function. Thus, we can allow
for empirically observed LOB shapes and obtain a nonlinear price impact of market orders. We
distinguish two possibilities for modeling the resilience of the LOB after a large market order:
the exponential recovery of the number of limit orders, i.e., of the volume of the LOB, or the
exponential recovery of the bid-ask spread. We consider both of these resilience modes and, in
each case, derive explicit optimal execution strategies in discrete time. Applying our results to
a block-shaped LOB, we obtain a new closed-form representation for the optimal strategy of a
risk-neutral investor, which explicitly solves the recursive scheme given in Obizhaeva and Wang
(2005). We also provide some evidence for the robustness of optimal strategies with respect to
the choice of the shape function and the resilience-type.
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1 Introduction.

A common problem for stock traders consists in unwinding large block orders of shares, which
can comprise up to twenty percent of the daily traded volume of shares. Orders of this size
create significant impact on the asset price and, to reduce the overall market impact, it is
necessary to split them into smaller orders that are subsequently placed throughout a certain
time interval. The question at hand is thus to allocate an optimal proportion of the entire order
to each individual placement such that the overall price impact is minimized.

Problems of this type were investigated by Bertsimas and Lo [8], Almgren and Chriss [3, 4],
Almgren and Lorenz [5], Obizhaeva and Wang [16], and Schied and Schöneborn [18, 19] to
mention only a few. For extensions to situations with several competing traders, see [11], [12],
[20], and the references therein.

The mathematical formulation of the corresponding optimization problem relies first of all
on specifying a stock price model that takes into account the often nonlinear feedback effects
resulting from the placement of large orders by a ‘large trader’. In the majority of models
in the literature, such orders affect the stock price in the following two ways. A first part of
the price impact is permanent and forever pushes the price in a certain direction (upward for
buy orders, downward for sell orders). The second part, which is usually called the temporary
impact, has no duration and only instantaneously affects the trade that has triggered it. It
is therefore equivalent to a (possibly nonlinear) penalization by transaction costs. Models of
this type underlie the above-mentioned papers [8], [3], [4], [5], [11], [12], and [20]. Also the
market impact models described in Bank and Baum [7], Cetin et al. [13], Frey [14], and Frey
and Patie [15] fall into that category. While most of these models start with the dynamics of
the asset price process as a given fundamental, Obizhaeva and Wang [16] recently proposed
a market impact model that derives its dynamics from an underlying model of a limit order
book (LOB). In this model, the ask part of the LOB consists of a uniform distribution of shares
offered at prices higher than the current best ask price. When the large trader is not active,
the mid price of the LOB fluctuates according to the actions of noise traders, and the bid-ask
spread remains constant. A buy market order of the large trader, however, consumes a block
of shares located immediately to the right of the best ask and thus increase the ask price by a
linear proportion of the size of the order. In addition, the LOB will recover from the impact of
the buy order, i.e., it will show a certain resilience. The resulting price impact will neither be
instantaneous nor entirely permanent but will decay on an exponential scale.

The model from [16] is quite close to descriptions of price impact on LOBs found in empirical
studies such as Biais et al. [9], Potters and Bouchaud [17], Bouchaud et al. [10], and Weber
and Rosenow [21]. In particular, the existence of a strong resilience effect, which stems from
the placement of new limit orders close to the bid-ask spread, seems to be a well established
fact, although its quantitative features seem to be the subject of an ongoing discussion.

In this paper, we will pick up the LOB-based market impact model from [16] and generalize
it by allowing for a nonuniform price distribution of shares within the LOB. The resulting
LOB shape which is nonconstant in the price conforms to empirical observations made in
[9, 17, 10, 21]. It also leads completely naturally to a nonlinear price impact of market orders
as found in an empirical study by Almgren et al. [6]; see also Almgren [2] and the references
therein. In this generalized model, we will also consider the following two distinct possibilities
for modeling the resilience of the LOB after a large market order: the exponential recovery
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of the number of limit orders, i.e., of the volume of the LOB (Model 1), or the exponential
recovery of the bid-ask spread (Model 2). While one can imagine also other possibilities, we
will focus on these two obvious resilience modes. Note that we assume the LOB shape to be
constant in time. Having a time-varying LOB shape will be an area of ongoing research.

We do not have a classical permanent price impact in our model for the following reasons:
Adding classical permanent impact, which is proportional to the volume traded, would be
somewhat artificial in our model. In addition, this would not change optimal strategies as the
optimization problem will be exactly the same as without permanent impact. What one would
want to have instead is a permanent impact with a sensible meaning in the LOB context. But
this would bring substantial difficulties in our derivation of optimal strategies.

After introducing the generalized LOB with its two resilience modes, we consider the prob-
lem of optimally executing a buy order for X0 shares within a certain time frame [0, T ]. The
focus on buy orders is for the simplicity of the presentation only, completely analogous results
hold for sell orders as well. While most other papers, including [16], focus on optimization
within the class of deterministic strategies, we will here allow for dynamic updating of trad-
ing strategies, that is, we optimize over the larger class of adapted strategies. We will also
allow for intermediate sell orders in our strategies. Our main results, Theorem 4.1 and Theo-
rem 5.1, will provide explicit solutions of this problem in Model 1 and Model 2, respectively.
Applying our results to a block-shaped LOB, we obtain a new closed-form representation for
the corresponding optimal strategy, which explicitly solves the recursive scheme given in [16].
Looking at several examples, we will also find some evidence for the robustness of the optimal
strategy. That is the optimal strategies are qualitatively and quantitatively rather insensitive
with respect to the choice of the LOB shape. In practice, this means that we can use them
even though the LOB is not perfectly calibrated and has a small evolution during the execution
strategy.

The model we are using here is time homogeneous: the resilience rate is constant and trading
times are equally spaced. By using the techniques introduced in our subsequent paper [1], it
is possible to relax these assumptions and to allow for time inhomogeneities and also for linear
constraints, at least in block-shaped models.

The method we use in our proofs is different from the approach used in [16]. Instead of
using dynamic programming techniques, we will first reduce the model of a full LOB with
nontrivial bid-ask spreads to a simplified model, for which the bid-ask spreads have collapsed
but the optimization problem is equivalent. The minimization of the simplified cost functional
is then reduced to the minimization of certain functions that are defined on an affine space.
This latter minimization is then carried out by means of the Lagrange multiplier method and
explicit calculations.

The paper is organized as follows. In Section 2, we explain the two market impact models
that we derive from the generalized LOB model with different resilience modes. In Section 3, we
set up the resulting optimization problem. The main results for Models 1 and 2 are presented
in the respective Sections 4 and 5. In Section 6, we consider the special case of a uniform
distribution of shares in the LOB as considered in [16]. In particular, we provide our new
explicit formula for the optimal strategy in a block-shaped LOB as obtained in [16]. Section 7
contains numerical and theoretical studies of the optimization problem for various nonconstant
shape functions. The proofs of our main results are given in the remaining Sections A through D.
More precisely, in Section A we reduce the optimization problem for our two-sided LOB models
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to the optimization over deterministic strategies within a simplified model with a collapsed
bid-ask spread. The derivations of the explicit forms of the optimal strategies in Models 1 and
2 are carried out in the respective Sections B and C. In Section D we prove the results for
block-shaped LOBs from Section 6.

2 Two market impact models with resilience.

In this section, we aim at modeling the dynamics of a LOB that is exposed to repeated market
orders by a large trader. The overall goal of the large trader will be to purchase a large amount
X0 > 0 of shares within a certain time period [0, T ]. Hence, emphasis is on buy orders, and we
concentrate first on the upper part of the LOB, which consists of shares offered at various ask
prices. The lowest ask price at which shares are offered is called the best ask price.

Suppose first that the large trader is not active, so that the dynamics of the limit order
book are determined by the actions of noise traders only. We assume that the corresponding
unaffected best ask price A0 is a martingale on a given filtered probability space (Ω, (Ft),F ,P)
and satisfies A0

0 = A0. This assumption includes in particular the case in which A0 is a
Bachelier model, i.e., A0

t = A0 + σWt for an (Ft)-Brownian motion W , as considered in [16].
We emphasize, however, that we can take any martingale and hence use, e.g., a geometric
Brownian motion, which avoids the counterintuitive negative prices of the Bachelier model.
Moreover, we can allow for jumps in the dynamics of A0 so as to model the trading activities
of other large traders in the market. In our context of a risk-neutral investor minimizing the
expected liquidation cost, the optimal strategies will turn out to be deterministic, due to the
described martingale assumption.

Above the unaffected best ask price A0
t , we assume a continuous ask price distribution for

available shares in the LOB: the number of shares offered at price A0
t + x is given by f(x) dx

for a continuous density function f : R −→]0,∞[. We will say that f is the shape function of
the LOB. The choice of a constant shape function corresponds to the block-shaped LOB model
of Obizhaeva and Wang [16].

The shape function determines the impact of a market order placed by our large trader.
Suppose for instance that the large trader places a buy market order for x0 > 0 shares at time
t = 0. This market order will consume all shares located at prices between A0 and A0 +DA

0+,
where DA

0+ is determined by ∫ DA
0+

0

f(x)dx = x0.

Consequently, the ask price will be shifted up from A0 to

A0+ := A0 +DA
0+;

see Figure 1 for an illustration.
Let us denote by At the actual ask price at time t, i.e., the ask price after taking the price

impact of previous buy orders of the large trader into account, and let us denote by

DA
t := At −A0

t

4



aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaaPSfrag repla
ementsNumber of shares

Pri
e per share
f(0) f(DA0+)x0 = EA0+

f
DA0+ A0+A0

Figure 1: The impact of a buy market order of x0 shares .

the extra spread caused by the actions of the large trader. Another buy market order of xt > 0
shares will now consume all the shares offered at prices between At and

At+ := At +DA
t+ −DA

t = A0
t +DA

t+,

where DA
t+ is determined by the condition

∫ DA
t+

DA
t

f(x)dx = xt. (1)

Thus, the process DA captures the impact of market orders on the current best ask price.
Clearly, the price impact DA

t+ − DA
t will be a nonlinear function of the order size xt unless

f is constant between DA
t and DA

t+. Hence, our model includes the case of nonlinear impact
functions ; see, e.g., Almgren [2] and Almgren et al. [6] for a discussion.

Another important quantity is the process

EA
t =

∫ DA
t

0

f(x)dx, (2)

of the number of shares ‘already eaten up’ at time t. It quantifies the impact of the large trader
on the volume of the LOB. By introducing the antiderivative

F (z) =

∫ z

0

f(x) dx (3)

of f , the relation (2) can also be expressed as

EA
t = F (DA

t ) and DA
t = F−1(EA

t ), (4)

where we have used our assumption that f is strictly positive to obtain the second identity.
The relation (1) is equivalent to

EA
t+ = EA

t + xt. (5)
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We still need to specify how DA and, equivalently, EA evolve when the large trader is
inactive in between market orders. It is a well established empirical fact that order books
exhibit a certain resilience as to the price impact of a large buy market orders, i.e., after the
initial impact the best ask price reverts back to its previous position; cf. Biais et al. [9], Potters
and Bouchaud [17], Bouchaud et al. [10], and Weber and Rosenow [21] for empirical studies.
That is, at least a part of the price impact will only be temporary. For modeling this resilience,
we follow Obizhaeva and Wang [16] in proposing an exponential recovery of the LOB. While in
the case of a block-shaped LOB as considered in [16] the respective assumptions of exponential
recovery for DA and for EA coincide, they provide two distinct possibilities for the case of a
general shape function. Since either of them appears to be plausible, we will discuss them both
in the sequel. More precisely, we will consider the following two models for the resilience of the
market impact:

Model 1: The volume of the order book recovers exponentially, i.e., E evolves according to

EA
t+s = e−ρsEA

t (6)

if the large investor is inactive during the time interval [t, t+ s[.

Model 2: The extra spread DA
t decays exponentially, i.e.,

DA
t+s = e−ρsDA

t (7)

if the large investor is inactive during the time interval [t, t+ s[.

Here the resilience speed ρ is a positive constant, which for commonly traded blue chip
shares will often be calibrated such that the half-life time of the exponential decay is in the
order of a few minutes; see, e.g., [17, 10, 21]. Note that the dynamics of both DA and EA are
now completely specified in either model.

Up to now, we have only described the effect of buy orders on the upper half of the LOB.
Since the overall goal of the larger trader is to buy X0 > 0 shares up to time T , a restriction
to buy orders would seem to be reasonable. However, we do not wish to exclude the a priori
possibility that, under certain market conditions, it could be beneficial to also sell some shares
and to buy them back at a later point in time. To this end, we also need to model the impact
of sell market orders on the lower part of the LOB, which consists of a certain number of bids
for shares at each price below the best bid price. As for ask prices, we will distinguish between
an unaffected best bid price, B0

t , and the actual best bid price, Bt, for which the price impact
of previous sell orders of the large trader is taken into account. All we assume on the dynamics
of B0 is

B0
t ≤ A0

t at all times t. (8)

The distribution of bids below B0
t is modeled by the restriction of the shape function f to

the domain ]−∞, 0]. More precisely, for x < 0, the number of bids at price B0
t + x is equal to

f(x) dx. The quantity
DB

t := Bt − B0
t ,

which usually will be negative, is called the extra spread in the bid price distribution. A sell
market order of xt < 0 shares placed at time t will consume all the shares offered at prices
between Bt and

Bt+ := Bt +DB
t+ −DB

t = B0
t +DB

t+,
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where DB
t+ is determined by the condition

xt =

∫ DB
t+

DB
t

f(x)dx = F (DB
t+)− F (DB

t ) = EB
t+ −EB

t , (9)

for EB
s := F (DB

s ). Note that F is defined via (3) also for negative arguments. If the large
trader is inactive during the time interval [t, t+ s[, then the processes DB and EB behave just
as their counterparts DA and EA, i.e.,

EB
t+s = e−ρsEB

t in Model 1,

DB
t+s = e−ρsDB

t in Model 2.
(10)

3 The cost minimization problem.

When placing a single buy market order of size xt ≥ 0 at time t, the large trader will purchase
f(x) dx shares at price A0

t + x, with x ranging from DA
t to DA

t+. Hence, the total cost of the
buy market order amounts to

πt(xt) :=

∫ DA
t+

DA
t

(A0
t + x)f(x) dx = A0

txt +

∫ DA
t+

DA
t

xf(x) dx. (11)

For a sell market order xt ≤ 0, we have

πt(xt) := B0
t xt +

∫ DB
t+

DB
t

xf(x) dx. (12)

In practice, very large orders are often split into a number of consecutive market orders to
reduce the overall price impact. Hence, the question at hand is to determine the size of the
individual orders so as to minimize a cost criterion. So let us assume that the large trader needs
to buy a total of X0 > 0 shares until time T and that trading can occur at N + 1 equidistant
times tn = nτ for n = 0, . . . , N and τ := T/N . An admissible strategy will be a sequence
ξ = (ξ0, ξ1, . . . , ξN) of random variables such that

• ∑N
n=0 ξn = X0,

• each ξn is measurable with respect to Ftn,

• each ξn is bounded from below.

The quantity ξn corresponds to the size of the market order placed at time tn. Note that we
do not a priori require ξn to be positive, i.e., we also allow for intermediate sell orders, but we
assume that there is some lower bound on sell orders.

The average cost C(ξ) of an admissible strategy ξ is defined as the expected value of the
total costs incurred by the consecutive market orders:

C(ξ) = E

[ N∑

n=0

πtn(ξn)
]
. (13)
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Our goal in this paper consists in finding admissible strategies that minimize the average cost
within the class of all admissible strategies. For the clarity of the exposition, we decided no to
treat the case of a risk averse investor. We suppose that the introduction of risk aversion will
have a similar effect as in [16].

Note that the value of C(ξ) depends on whether we choose Model 1 or Model 2, and it
will turn out that also the quantitative—though not the qualitative—features of the optimal
strategies will be slightly model-dependent.

Before turning to the statements of our results, let us introduce the following standing
assumption for our further analysis: the function F is supposed to be unbounded in the sense
that

lim
x↑∞

F (x) = ∞ and lim
x↓−∞

F (x) = −∞. (14)

This assumption of unlimited order book depth is of course an idealization of reality and is for
convenience only. It should not make a difference, however, as soon as the depth of the real
LOB is big enough to accommodate every market order of our optimal strategy.

4 Main theorem for Model 1.

We will now consider the minimization of the cost functional C(ξ) in Model 1, in which we
assume an exponential recovery of the LOB volume; cf. (6).

Theorem 4.1 (Optimal strategy in Model 1).
Suppose that the function h1 : R → R+ with

h1(y) := F−1(y)− e−ρτF−1(e−ρτy)

is one-to-one. Then there exists a unique optimal strategy ξ(1) = (ξ
(1)
0 , . . . , ξ

(1)
N ). The initial

market order ξ
(1)
0 is the unique solution of the equation

F−1
(
X0 −Nξ

(1)
0

(
1− e−ρτ

))
=

h1(ξ
(1)
0 )

1− e−ρτ
, (15)

the intermediate orders are given by

ξ
(1)
1 = · · · = ξ

(1)
N−1 = ξ

(1)
0

(
1− e−ρτ

)
, (16)

and the final order is determined by

ξ
(1)
N = X0 − ξ

(1)
0 − (N − 1)ξ

(1)
0

(
1− e−ρτ

)
.

In particular, the optimal strategy is deterministic. Moreover, it consists only of nontrivial buy
orders, i.e., ξ

(1)
n > 0 for all n.

Some remarks on this result are in order. First, the optimal strategy ξ(1) consists only of
buy orders and so the bid price remains unaffected, i.e., we have EB

t ≡ 0 ≡ DB
t . It follows
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moreover that the process E := EA is recursively given by the following Model 1 dynamics:

E0 = 0,

Etn+ = Etn + ξ(1)n , n = 0, . . . , N, (17)

Etk+1
= e−ρτEtk+ = e−ρτ (Etk + ξ

(1)
k ), k = 0, . . . , N − 1.

Hence, by (15) and (16),

Etn+ = ξ
(1)
0 and Etn+1

= e−ρτξ
(1)
0 for n = 0, . . . , N − 1. (18)

That is, once ξ
(1)
0 has been determined via (15), the optimal strategy consists in a sequence of

market orders that consume exactly that amount of shares by which the LOB has recovered
since the preceding market order, due to the resilience effect. At the terminal time tN = T , all
remaining shares are bought. In the case of a block-shaped LOB, this qualitative pattern was
already observed by Obizhaeva andWang [16]. Our Theorem 4.1 now shows that this optimality
pattern is actually independent of the LOB shape, thus indicating a certain robustness of
optimal strategies.

Remark 4.2 According to (4) and (18), the extra spread D := DA of the optimal strategy ξ(1)

satisfies
Dtn+ = F−1 (Etn+) = F−1(ξ

(1)
0 ).

For n = N we moreover have that

DtN+ = F−1 (EtN+) = F−1
(
EtN + ξ

(1)
N

)

= F−1
(
ξ
(1)
0 e−ρτ +X0 − ξ

(1)
0 − (N − 1)ξ

(1)
0

(
1− e−ρτ

))

= F−1
(
X0 −Nξ

(1)
0

(
1− e−ρτ

))
.

Hence, the left-hand side of (15) is equal to DtN+.

We now comment on the conditions in Theorem 4.1.

Remark 4.3 (When is h1 one-to-one?) The function h1 is continuous with h1(0) = 0 and h1(y) >
0 for y > 0. Hence, h1 is one-to-one if and only if h1 is strictly increasing. We want to consider
when this is the case. To this end, note that the condition

h′
1(y) =

1

f(F−1(y))
− e−2ρτ

f(F−1(e−ρτy))
> 0

is equivalent to
ℓ(y) := f(F−1(e−ρτy))− e−2ρτf(F−1(y)) > 0. (19)

That is, the function h1 will be one-to-one if, for instance, the shape function f is decreasing
for y > 0 and increasing for y < 0. In fact, it has been observed in the empirical studies
[9, 17, 10, 21] that average shapes of typical order books have a maximum at or close to the best
quotes and then decay as a function of the distance to the best quotes, which would conform to
our assumption.
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Remark 4.4 (Continuous-time limit of the optimal strategy). One can also investigate the
asymptotic behavior of the optimal strategy when the number N of trades in ]0, T ] tends to
infinity. It is not difficult to see that h1/(1− e−ρτ ) converges pointwise to

h∞
1 (y) := F−1(y) +

y

f(F−1(y))
.

Observe also that N(1 − e−ρτ ) → ρT . Since for any N we have ξ
(1)
0 ∈]0, X0[, we can extract a

subsequence that converges and its limit is then necessarily solution of the equation

F−1(X0 − ρTy) = h∞
1 (y).

If this equation has a unique solution ξ
(1),∞
0 we deduce that the optimal initial trade converges

to ξ
(1),∞
0 when N −→ ∞. This is the case, for example, if h∞

1 is strictly increasing and

especially when f is decreasing. In that case, Nξ
(1)
1 converges to ρTξ

(1),∞
0 and ξ

(1)
N to ξ

(1),∞
T :=

X0 − ξ
(1),∞
0 (1 + ρT ). Thus, in the continuous-time limit, the optimal strategy consists in an

initial block order of ξ
(1),∞
0 shares at time 0, continuous buying at the constant rate ρξ

(1),∞
0

during ]0, T [, and a final block order of ξ
(1),∞
T shares at time T .

5 Main theorem for Model 2.

We will now consider the minimization of the cost functional

C(ξ) = E

[ N∑

n=0

πtn(ξn)
]

in Model 2, where we assume an exponential recovery of the extra spread; cf. (7).

Theorem 5.1 (Optimal strategy in Model 2).
Suppose that the function h2 : R → R with

h2(x) := x
f(x)− e−2ρτf(e−ρτx)

f(x)− e−ρτf(e−ρτx)

is one-to-one and that the shape function satisfies

lim
|x|→∞

x2 inf
z∈[e−ρτx,x]

f(z) = ∞. (20)

Then there exists a unique optimal strategy ξ(2) = (ξ
(2)
0 , . . . , ξ

(2)
N ). The initial market order ξ

(2)
0

is the unique solution of the equation

F−1
(
X0 −N

[
ξ
(2)
0 − F

(
e−ρτF−1(ξ

(2)
0 )

)])
= h2

(
F−1(ξ

(2)
0 )

)
, (21)

the intermediate orders are given by

ξ
(2)
1 = · · · = ξ

(2)
N−1 = ξ

(2)
0 − F

(
e−ρτF−1(ξ

(2)
0 )

)
, (22)
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and the final order is determined by

ξ
(2)
N = X0 −Nξ

(2)
0 + (N − 1)F

(
e−ρτF−1(ξ

(2)
0 )

)
.

In particular, the optimal strategy is deterministic. Moreover, it consists only of nontrivial buy
orders, i.e., ξ

(2)
n > 0 for all n.

Since the optimal strategy ξ(2) consists only of buy orders, the processes DB and EB vanish,
and D := DA is given by

D0 = 0,

Dtn+ = F−1
(
ξ(2)n + F (Dtn)

)
, n = 0, . . . , N (23)

Dtk+1
= e−ρτDtk+, k = 0, . . . , N − 1.

Hence, induction shows that

Dtn+ = F−1(ξ
(2)
0 ) and Dtn+1

= e−ρτF−1(ξ
(2)
0 ) for n = 0, . . . , N − 1.

By (4), the process E := EA satisfies

Etn+ = ξ
(2)
0 and Etn+1

= F
(
e−ρτF−1(ξ

(2)
0 )

)
for n = 0, . . . , N − 1.

This is very similar to our result (18) in Model 1: once ξ
(1)
0 has been determined via (15), the

optimal strategy consists in a sequence of market orders that consume exactly that amount
of shares by which the LOB has recovered since the preceding market order. At the terminal
time tN = T , all remaining shares are bought. The only differences are in the size of the initial
market order and in the mode of recovery. This qualitative similarity between the optimal
strategies in Models 1 and 2 again confirms our observation of the robustness of the optimal
strategy.

Remark 5.2 At the terminal time tN = T , the extra spread is given by

DtN+ = F−1 (EtN+) = F−1
(
EtN + ξ

(2)
N

)

= F−1
(
X0 −N

[
ξ
(2)
0 − F

(
e−ρτF−1(ξ

(2)
0 )

)])
,

and this expression coincides with the left-hand side in (21).

Let us now comment on the conditions assumed in Theorem 5.1. To this end, we first
introduce the function

F̃ (z) :=

∫ z

0

xf(x)dx. (24)

Remark 5.3 If F̃ is convex then condition (20) in Theorem 5.1 is satisfied. This fact admits
the following short proof. Take x∗ ∈ [e−ρτx, x] realizing the infimum of f in [e−ρτx, x]. Then

x2 inf
z∈[e−ρτx,x]

f(z) = x2f(x∗) ≥ x∗ (x∗f(x∗)) . (25)

Due to the convexity of F̃ , its derivative F̃ ′(x) = xf(x) is increasing. It is also nonzero iff
x 6= 0. Therefore the right-hand side of (25) tends to infinity for |x| → ∞.
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However, the convexity of F̃ is not necessary for condition (20) as is illustrated by the
following simple example.

Example 5.4 Let us construct a shape function for which (20) is satisfied even though F̃ need
not be convex. To this end, take any continuous function b : R →]0,∞[ that is bounded away
from zero. Then let

f(x) :=

{
b(1) |x| ≤ 1
b(x)√
|x|

|x| > 1.

This shape function clearly satisfies condition (20). Taking for example b(x) = 1+ε cos(x) with

0 < ε < 1, however, gives a nonconvex function F̃ . Moreover, by choosing ε small enough, we
can obtain h′

2(x) > 0 so that the shape function f satisfies the assumptions of Theorem 5.1.

We now comment on the condition that h2 is one-to-one. The following example shows that
this is indeed a nontrivial assumption.

Example 5.5 We now provide an example of a shape function f for which the corresponding
function h2 is not one-to-one. First note that h2(0) = 0 and

lim
ǫ↓0

h2(ǫ)− h2(0)

ǫ
=

1− e−2ρτ

1− e−ρτ
> 0. (26)

Therefore and since h2 is continuous, it cannot be one-to-one if we can find x∗ > 0 such
that h2(x

∗) < 0. To this end, we assume that there exist n ∈ {2, 3, . . . } such that e−ρτ = 1
n
and

take

f(x) :=





(n + 1) x ∈
[
0, 1

n

)

(n + 1)− n2

n−1

(
x− 1

n

)
x ∈

[
1
n
, 1
]

1 x ∈ (1,∞);

see Figure 2. Furthermore, we define x∗ := 1 to obtain

h2(x
∗) =

n2 − (n+ 1)

−n
< 0.

The intuition why Theorem 4.1 can be applied to this LOB shape (f is decreasing), but

Theorem 5.1 cannot be used, is the following: For the first trade ξ
(2)
0 from (21) we might get

Dtn+1
= e−ρτF−1(ξ

(2)
0 ) ≥ 1, i.e. there are only few new shares from the resilience effect since

f(x) is low for x ≥ 1. But this ξ
(2)
0 would not be optimal 1. We cannot have this phenomenon

in Model 1 because there the resilience is proportional to the volume consumed by the large
investor.

1Take e.g. n = 2 and e−ρτ = 1/2. Then for X0 = N + 9
2 we get from (21) ξ

(2)
0 = 7

2 , Dtn+1
= 1 and

ξ
(2)
1 = ... = ξ

(2)
N−1 = 1, ξ

(2)
N = 2. The corresponding cost are higher than for the alternative strategy ξ

(2)

0 = 5
2 ,

ξ
(2)

1 = ... = ξ
(2)

N−1 = 1, ξ
(2)

N = 3.

12



n + 1

0

f(x)

1

1

n
x∗ = 1

x

Figure 2: A shape function f for which the function h2 is not one-to-one.

Remark 5.6 (Continuous-time limit of the optimal strategy). As in Remark 4.4, we can
study the asymptotic behavior of the optimal strategy as the number N of trades in ]0, T [ tends
to infinity. First, we can check that h2 converges pointwise to

h∞
2 (x) := x(1 +

f(x)

f(x) + xf ′(x)
),

and that N(y − F (e−ρτF−1(y))) tends to ρTF−1(y)f(F−1(y)), provided that f is continuously
differentiable. Now, suppose that the equation

F−1(X0 − ρTF−1(y)f(F−1(y))) = h∞
2 (F−1(y))

has a unique solution on ]0, X0[, which we will call ξ
(2),∞
0 . We can check that ξ

(2),∞
0 is the only

one possible limit for a subsequence of ξ
(2)
0 , and it is therefore its limit. We can then show that

Nξ
(2)
1 converges to ρTF−1(ξ

(2),∞
0 )f(F−1(ξ

(2),∞
0 )) and ξ

(2)
N to

ξ
(2),∞
T := X0 − ξ

(2),∞
0 − ρTF−1(ξ

(2),∞
0 )f(F−1(ξ

(2),∞
0 )).

Thus, in the continuous-time limit, the optimal strategy consists in an initial block order of
ξ
(2),∞
0 shares at time 0, continuous buying at the constant rate ρF−1(ξ

(2),∞
0 )f(F−1(ξ

(2),∞
0 )) during

]0, T [, and a final block order of ξ
(2),∞
T shares at time T .

6 Closed form solution for block-shaped LOBs and ad-

ditional permanent impact.

In this first example section, we consider a block-shaped LOB corresponding to a constant
shape function f(x) ≡ q for some q > 0. In this case, there is no difference between Models 1
and 2. Apart from our more general dynamics for A0, the main difference to the market impact
model introduced by Obizhaeva and Wang [16] is that, for the moment, we do not consider a
permanent impact of market orders. In Corollary 6.4, we will see, however, that our results
yield a closed-form solution even in the case of nonvanishing permanent impact.

By applying either Theorem 4.1 or Theorem 5.1 we obtain the following Corollary.

13



Corollary 6.1 (Closed-form solution for block-shaped LOB).
In a block-shaped LOB, the unique optimal strategy ξ∗ is

ξ∗0 = ξ∗N =
X0

(N − 1)(1− e−ρτ ) + 2
and ξ∗1 = · · · = ξ∗N−1 =

X0 − 2ξ∗0
N − 1

. (27)

The preceding result extends [16, Proposition 1] in several aspects. First, we do not focus on
the Bachelier model but admit arbitrary martingale dynamics for our unaffected best ask price
A0. Second, only static, deterministic buy order strategies are considered in [16], while we here
allow our admissible strategies to be adapted and to include sell orders. Since, a posteriori,
our optimal strategy turns out to be deterministic and positive, it is clear that it must coincide
with the optimal strategy from [16, Proposition 1]. Our strategy (27) therefore also provides an
explicit closed-form solution of the recursive scheme obtained in [16]. We recall this recursive
scheme in (31) below.

On the other hand, Obizhaewa and Wang [16] allow for an additional permanent impact of
market orders. Intuitively, in a block-shaped LOB with f ≡ q > 0, the permanent impact of
a market order xt means that only a certain part of the impact of xt decays to zero, while the
remaining part remains forever present in the LOB. More precisely, the impact of an admissible
buy order strategy ξ on the extra spread DA is given by the dynamics

DA
t = λ

∑

tk<t

ξk +
∑

tk<t

κe−ρ(t−tk)ξk, (28)

where λ < 1/q is a constant quantifying the permanent impact and

κ :=
1

q
− λ (29)

is the proportion of the temporary impact. Note that, for λ = 0, we get back our dynamics (6)
and (7), due to the fact that we consider a block-shaped LOB. It will be convenient to introduce
the process Xt of the still outstanding number of shares at time t when using an admissible
strategy:

Xt := X0 −
∑

tk<t

ξk. (30)

We can now state the result by Obizhaeva and Wang.

Proposition 6.2 [16, Proposition 1] In a block-shaped LOB with permanent impact λ, the
optimal strategy ξOW in the class of deterministic strategies is determined by the forward scheme

ξOW
n =

1

2
δn+1 [ǫn+1Xtn − φn+1Dtn ] , n = 0, . . . , N − 1, (31)

ξOW
N = XT ,

where δn, ǫn and φn are defined by the backward scheme

δn :=
( 1

2q
+ αn − βnκe

−ρτ + γnκ
2e−2ρτ

)−1

ǫn := λ+ 2αn − βnκe
−ρτ (32)

φn := 1− βne
−ρτ + 2γnκe

−2ρτ .

14



with αn, βn and γn given by

αN =
1

2q
− λ and αn = αn+1 −

1

4
δn+1ǫ

2
n+1,

βN = 1 and βn = βn+1e
−ρτ +

1

2
δn+1ǫn+1φn+1, (33)

γN = 0 and γn = γn+1e
−2ρτ − 1

4
δn+1φ

2
n+1.

It is a priori clear that for λ = 0 the explicit optimal strategy obtained in Corollary 6.1
must coincide with the strategy ξOW obtained via the recursive scheme (31) in Proposition 6.2.
To cross-check our results with the ones in [16], we will nevertheless provide an explicit and
independent proof of the following proposition. It can be found in Section D.

Proposition 6.3 For λ = 0, the optimal strategy (27) of Corollary 6.1 solves the recursive
scheme (31) in Proposition 6.2.

Let us now extend our results so as to obtain the explicit solution of (31) even with nonvan-
ishing permanent impact. To this end, we note that the optimal strategy ξOW = (ξOW

0 , . . . , ξOW
N )

is obtained in [16] as the unique minimizer of the cost functional

COW

λ,q : RN+1 → R

defined by

COW

λ,q (x0, . . . , xN)

= A0

N∑

i=0

xi +
λ

2

( N∑

i=0

xi

)2

+ κ

N∑

k=0

( k−1∑

i=0

xie
−ρ(k−i)τ

)
xk +

κ

2

N∑

i=0

x2
i ,

where κ is as in (29). Now we just have to observe that

COW

λ,q (x0, . . . , xN ) =
λ

2

( N∑

i=0

xi

)2

+ COW

0,κ−1(x0, . . . , xN).

Therefore, under the constraint
∑N

i=0 xi = X0, it is equivalent to minimize either COW

λ,q or COW

0,κ−1.

We already know that the optimal strategy ξ∗ of Corollary 6.1 minimizes COW

0,q . But ξ∗ is in
fact independent of q. Hence, ξ∗ also minimizes COW

0,κ−1 and in turn COW

λ,q . We have therefore
proved:

Corollary 6.4 The optimal strategy ξ∗ of Corollary 6.1 is the unique optimal strategy in any
block-shaped LOB with permanent impact λ < 1/q. In particular, it solves the recursive
scheme (31).

The last part of the assertion of Corollary 6.4 is remarkable insofar as the recursive scheme (31)
depends on both q and λ whereas the optimal strategy ξ∗ does not.
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Figure 3: Plots of the power law shape functions for q = 5, 000 shares and exponent α =
−2,−1, 0, 1

2
and 1 top down. Please note that these examples do not necessarily correspond to

real-world shape functions.

7 Examples.

In this section, we consider the power law family f : R → R>0 with

f(x) =
q

(|x|+ 1)α
(34)

as example shape functions. The antiderivative of the shape function and its inverse are

F (x) =





q log(x+ 1) if α = 1

qx if α = 0
q

1−α
[(x+ 1)1−α − 1] otherwise

F−1(y) =





e
y
q − 1 if α = 1

y

q
if α = 0

[
1 + (1− α)y

q

] 1

1−α − 1 otherwise

for positive values of x and y. Set F (x) = −F (−|x|) and F−1(y) = −F−1(−|y|) for x, y < 0.
One can easily check that the assumptions of both Theorem 4.1 and Theorem 5.1 are

satisfied for α ≤ 1. It is remarkable that the optimal strategies (Figure 4) vary only slightly
when changing α or the resilience mode. This observation provides further evidence for the
robustness and stability of the optimal strategy, and this time not only on a qualitative but
also on a quantitative level.

From Figure 4 one recognizes some monotonicity properties of the optimal strategies. We
want to give some intutition to understand these. Let us start with Model 1. There the
dynamics of Et do not depend on the LOB shape, but solely on the strategy. Only the cost
depends on f . We know from the constant LOB case that the optimum strategy is not sensible
to the value of f(ξ

(1)
0 ). This explains why there are few quantitative differences for Model 1

along the different LOB shapes. Moreover, ξ
(1)
1 = (1 − a)ξ

(1)
0 with a := e−ρτ is proportional

to ξ
(1)
0 since it is the number of shares that reappear between two trades. Therefore the optimal

strategy is just a trade-off between ξ
(1)
0 and ξ

(1)
N . When f is increasing (decreasing), the first

trade is relatively more (less) expansive compared to the last one. This explains that ξ
(1)
0 < ξ

(1)
N

for α < 0 and ξ
(1)
0 > ξ

(1)
N for α > 0. With ‘relatively’ we mean ’with respect to the constant

LOB case’ (α = 0) where ξ0 = ξN .
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Figure 4: The plots show the optimal strategies for varying exponents α. We set X0 = 100, 000
and q = 5, 000 shares, ρ = 20, T = 1 and N = 10. In the left figure we see ξ

(1)
0 (dashed and

thick), ξ
(1)
N (thick line) and ξ

(2)
0 , ξ

(2)
N . The figure on the right hand side shows ξ

(1)
1 (thick line)

and ξ
(2)
1 .

For Model 2 the dynamics of Et do depend on the shape function, which explains more
substantial variations according to f . Here the main idea is to realize that, for increasing
(decreasing) shape functions, resilience of the volume is stronger (weaker) in comparison to
Model 1. Indeed, we have then x−F (aF−1(x)) ≥ x(1− a) (resp. x−F (aF−1(x)) ≤ x(1− a)).

Therefore ξ
(1)
1 < ξ

(2)
1 (ξ

(1)
1 > ξ

(2)
1 ) and the discrete trades ξ

(2)
0 and ξ

(2)
N are lower (higher) as in

Model 1. These effects are the more pronounced the steeper the LOB shape. Furthermore,
there is the tendency that ξ

(2)
0 ≈ ξ

(2)
N . On the one hand, the same argument as in Model 1

suggests ξ
(2)
0 < ξ

(2)
N for increasing f . But on the other hand, for an increasing shape function

the number of reappearing shares grows disproportionately in the initial trade which favors the
initial trade being higher than the last trade. These two effects seem to counterbalance each
other.

Remark 7.1 Taking the special LOB shape f(x) = q√
1+µ|x|

, q > 0 and µ ≥ 0 we can solve

explicitly the optimal strategy in Model 1 from Theorem 4.1. The optimal initial trade is given
by

ξ
(1)
0 =

1 + a+N(1 − a)(1 + (µ/2q)X0)

(µ/2q)(N2(1− a)2 − (1 + a+ a2))

−
√

(N + 1− a(N − 1))2 + (µ/q)X0[N(1− a2) + (1 + a + a2)(1 + (µ/4q)X0)]

(µ/2q)(N2(1− a)2 − (1 + a+ a2))
,

and we can show that it is increasing with respect to the parameter µ that tunes the slope of the
LOB.

A Reduction to the case of deterministic strategies.

In this section, we prepare for the proofs of Theorems 4.1 and 5.1 by reducing the minimization
of the cost functional

C(ξ) = E

[ N∑

n=0

πtn(ξn)
]
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with respect to all admissible strategies ξ to the minimization of certain cost functions C(i) :
R

N+1 → R, where i = 1, 2 refers to the model under consideration.
To this end, we introduce simplified versions of the model dynamics by collapsing the bid-

ask spread into a single value. More precisely, for any admissible strategy ξ, we introduce a
new pair of processes D and E that react on both sell and buy orders according to the following
dynamics.

• We have E0 = D0 = 0 and

Et = F (Dt) and Dt = F−1(Et). (35)

• For n = 0, . . . , N , regardless of the sign of ξn,

Etn+ = Etn + ξn and Dtn+ = F−1 (ξn + F (Dtn)) . (36)

• For k = 0, . . . , N − 1,

Etk+1
= e−ρτEtk+ in Model 1,

Dtk+1
= e−ρτDtk+ in Model 2.

(37)

The values of Et and Dt for t /∈ {t0, . . . , tN} will not be needed in the sequel. Note that E = EA

and D = DA if ξ consists only of buy orders, while E = EB and D = DB if ξ consists only of
sell orders. In general, we will only have

EB
t ≤ Et ≤ EA

t and DB
t ≤ Dt ≤ DA

t . (38)

We now introduce the simplified price of ξn at time tn by

πtn(ξn) := A0
tn
ξn +

∫ Dtn+

Dtn

xf(x) dx, (39)

regardless of the sign of ξn. Using (38) and (8), we easily get

πtn(ξn) ≤ πtn(ξn) with equality if ξk ≥ 0 for all k ≤ n. (40)

The simplified price functional is defined as

C(ξ) := E

[ N∑

n=0

πtn(ξn)
]
.

We will show that, in Model i ∈ {1, 2}, the simplified price functional C has a unique minimizer,
which coincides with the corresponding optimal strategy ξ(i) as described in the respective
theorem. We will also show that ξ(i) consists only of buy orders, so that (40) will yield C(ξ(i)) =
C(ξ(i)). Consequently, ξ(i) must be the unique minimizer of C.

Let us now reduce the minimization of C to the minimization of functionals C(i) defined on
deterministic strategies. To this end, let us use the notation

Xt := X0 −
∑

tk<t

ξk for t ≤ T and XtN+1
:= 0. (41)
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The accumulated simplified price of an admissible strategy ξ is

N∑

n=0

πtn(ξn) =

N∑

n=0

A0
tn
ξn +

N∑

n=0

∫ Dtn+

Dtn

xf(x) dx.

Integrating by parts yields

N∑

n=0

A0
tn
ξn = −

N∑

n=0

A0
tn
(Xtn+1

−Xtn) = X0A0 +

N∑

n=1

Xtn(A
0
tn
−A0

tn−1
). (42)

Since ξ is admissible, Xt is a bounded predictable process. Hence, due to the martingale
property of the unaffected best ask process A0, the expectation of (42) is equal to X0A0.

Next, observe that, in each Model i = 1, 2, the simplified extra spread process D evolves de-
terministically once the values ξ0, ξ1(ω), . . . , ξN(ω) are given. Hence, there exists a deterministic
function C(i) : RN+1 → R such that

N∑

n=0

∫ Dtn+

Dtn

xf(x) dx = C(i)(ξ0, . . . , ξN). (43)

It follows that
C(ξ) = A0X0 + E

[
C(i)(ξ0, . . . , ξN)

]
.

We will show in the respective Sections B and C that the functions C(i), i = 1, 2, have unique
minima within the set

Ξ :=
{
(x0, . . . , xN ) ∈ R

N+1
∣∣

N∑

n=0

xn = X0

}
,

and that these minima coincide with the values of the optimal strategies ξ(i) as provided in
Theorems 4.1 and 5.1. This concludes the reduction to the case of deterministic strategies. We
will now turn to the minimization of the functions C(i) over Ξ. To simplify the exposition, let
us introduce the following shorthand notation in the sequel:

a := e−ρτ . (44)

B The optimal strategy in Model 1.

In this section, we will minimize the function C(1) of (43) over the set Ξ of all deterministic
strategies and thereby complete the proof of Theorem 4.1. To this end, recall first the definition
of the two processes E and D as given in (35)–(37). Based on their Model 1 dynamics, we will

now obtain a formula of the cost function C(1) of (43) in terms of the functions F and F̃ . It
will be convenient to introduce also the function

G(y) := F̃
(
F−1(y)

)
. (45)
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Then we have for any deterministic strategy ξ = (x0, . . . , xN) ∈ Ξ that

C(1)(x0, . . . , xN ) =

N∑

n=0

∫ Dtn+

Dtn

xf(x)dx

=
N∑

n=0

(
F̃
(
F−1 (Etn+)

)
− F̃

(
F−1 (Etn)

))

=

N∑

n=0

(
G (Etn + xn)−G (Etn)

)
(46)

= G (x0)−G (0)

+G (ax0 + x1)−G (ax0)

+G
(
a2x0 + ax1 + x2

)
−G

(
a2x0 + ax1

)

+ . . . (47)

+G
(
aNx0 + · · ·+ xN

)
−G

(
aNx0 + · · ·+ axN−1

)
.

The derivative of G is

G′(y) = F̃ ′
(
F−1(y)

)
(F−1)′(y) = F−1(y)f

(
F−1(y)

) 1

f(F−1(y))
= F−1(y). (48)

Hence, G is twice continuously differentiable, positive and convex. The cost function C(1) is
also twice continuously differentiable.

Lemma B.1 We have C(1)(x0, . . . , xN )−→+∞ for |ξ| → ∞, and therefore there exists a local
minimum of C(1) in Ξ.

Proof: Using (48) and the fact that F−1(yx) is increasing, we get that for all y ∈ R and c ∈ (0, 1]

G(y)−G(cy) ≥ (1− c) · |F−1(cy)| · |y|. (49)

Let us rearrange the sum in (47) in order to use inequality (49). We obtain

C(1)(x0, . . . , xN)

= G
(
aNx0 + aN−1x1 + · · ·+ xN

)
−G (0)

+
N−1∑

n=0

[
G
(
anx0 + · · ·+ xn

)
−G

(
a(anx0 + · · ·+ xn)

)]

≥ G
(
aNx0 + aN−1x1 + · · ·+ xN

)
−G (0)

+(1− a)
N−1∑

n=0

∣∣F−1
(
a(anx0 + · · ·+ xn)

)∣∣ |anx0 + · · ·+ xn| .

Let us denote by T1 : R
N+1 → R

N+1 the linear mapping

T1(x0, . . . , xn) =
(
x0, ax0 + x1, . . . , a

Nx0 + x1a
N−1 + · · ·+ xN

)
.
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It is non trivial and therefore the norm of T1(x0, . . . , xN ) tends to infinity as the norm of its
argument goes to infinity. Because F is unbounded, we know that both G(y) and |F−1(ay)||y|
tend to infinity for |y| → ∞. Let us introduce

H(y) = min(G(y), |F−1(ay)||y|).

Then also H(y)−→+∞ for |y| → ∞, and we conclude that

C(1)(x0, . . . , xN) ≥ (1− a)H(|T1(x0, . . . , xN)|∞)−G(0),

where | · |∞ denotes the ℓ∞-norm on R
N+1. Hence, the assertion follows.

We now consider Equation (15) in Theorem 4.1, which we recall here for the convenience of
the reader:

F−1 (X0 −Nx0 (1− a)) =
h1(x0)

1− a
.

This equation is solved by x0 if and only if x0 is a zero of the function

ĥ1(y) := h1(y)− (1− a)F−1
(
X0 −Ny(1− a)

)
. (50)

Lemma B.2 Under the assumptions of the Theorem 4.1, ĥ1 has at most one zero x0, which,
if it exists, is necessarily positive.

Proof: It is sufficient to show that ĥ1 is strictly increasing. We know that h1(0) = 0, h1(y) > 0
for y > 0, and h1 is continuous and one-to-one. Consequently, h1 must be strictly increasing
and therefore

ĥ′
1(y) = h′

1(y) +
N(a− 1)2

f
(
F−1 (X0 +Ny (a− 1))

) > 0.

Furthermore, if there exists a solution x0, then it must be positive since

ĥ1(0) = (a− 1)F−1(X0) < 0.

Theorem 4.1 will now follow by combining the following proposition with the arguments
explained in Section A.

Proposition B.3 The function C(1) : Ξ → R has the strategy ξ(1) from Theorem 4.1 as its
unique minimizer. Moreover, the components of ξ(1) are all strictly positive.
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Proof: Thanks to Lemma B.1, there is at least one optimal strategy ξ∗ = (x∗
0, . . . , x

∗
N) ∈ Ξ, and

standard results give the existence of a Lagrange multiplier ν ∈ R such that

∂

∂xi

C(1)(x∗
0, . . . , x

∗
N) = ν for i = 0, . . . , N .

Now we use the form of C(1) as given in (47) to obtain the following relation between the partial
derivatives of C(1) for i = 0, . . . , N − 1:

∂

∂xi

C(1)(x0, . . . , xN) = a

[
∂

∂xi+1
C(1)(x0, . . . , xN)−G′

(
a(aix0 + · · ·+ xi)

)]

+ G′
(
aix0 + · · ·+ xi

)

Recalling (48), we obtain

h1

(
aix∗

0 + · · ·+ x∗
i

)
= ν (1− a) for i = 0, . . . , N − 1.

Since h1 is one-to-one we must have

x∗
0 = h−1

1 (ν (1− a))

x∗
i = x∗

0 (1− a) for i = 1, . . . , N − 1 (51)

x∗
N = X0 − x∗

0 − (N − 1)x∗
0 (1− a) .

Note that these equations link all the trades to the initial trade x0. Due to the dynamics (36)
and (37), it follows that the process E of ξ∗ is given by

Etn = a (ax0 + x0 (1− a)) = ax0. (52)

Consequently, by (46),

C(1)(x∗
0, . . . , x

∗
N ) = G(x∗

0)−G(0) + (N − 1)
[
G (ax∗

0 + x∗
0(1− a))−G(ax∗

0)
]

+G
(
ax∗

0 +X0 − x∗
0 − (N − 1)x∗

0(1− a)
)
−G(x∗

0a)

= N
[
G(x∗

0)−G(x∗
0a)

]
+G

(
X0 +Nx∗

0(a− 1)
)
−G(0)

=: C
(1)
0 (x∗

0).

It thus remains to minimize the function C
(1)
0 (y) with respect to y. Thanks to the existence

of an optimal strategy in Ξ for C(1), we know that C
(1)
0 (y) has at least one local minimum.

Differentiating with respect to y gives

∂C
(1)
0 (y)

∂y
= N

[
F−1(y)− aF−1 (ay) + (a− 1)F−1 (X0 +Ny (a− 1))

]

= Nĥ1(y). (53)

Lemma B.2 now implies that C
(1)
0 can only have one local minimum, which is also positive if it

exists. This local minimum must hence be equal to x∗
0, which establishes both the uniqueness

of the optimal strategy as well as our representation.

22



Finally, it remains to prove that all market orders in the optimal strategy are strictly
positive. Lemma B.2 gives ξ

(1)
0 = x∗

0 > 0 and then (51) gives ξ
(1)
n = x∗

n > 0 for n = 1, . . . , N−1.
As for the final market order, using the facts that (53) vanishes at y = x∗

0 and F−1 is strictly
increasing gives

0 = F−1(x∗
0)− aF−1(ax∗

0)− (1− a)F−1(ax∗
0 + x∗

N)

> (1− a)
[
F−1(ax∗

0)− F−1(ax∗
0 + x∗

N)
]
,

which in turn implies x∗
N > 0.

C The optimal strategy in Model 2.

In this section, we will minimize the function C(2) of (43) over the set Ξ of all deterministic
strategies and thereby complete the proof of Theorem 5.1. To this end, recall first that the
definitions of D and E are given by (35)–(37). Based on their Model 2 dynamics, we will now

obtain a formula of the cost function C(2) of (43) in terms of the functions F , F̃ , and G, where
G is as in (45). For any deterministic strategy ξ = (x0, . . . , xN) ∈ Ξ,

C(2)(x0, . . . , xN ) =

N∑

n=0

∫ Dtn+

Dtn

xf(x)dx

=
N∑

n=0

(
G (xn + F (Dtn))− F̃ (Dtn)

)
. (54)

We now state three technical lemmas that will allow to get the optimal strategy.

Lemma C.1 We have C(2)(x0, . . . , xN )−→+∞ for |ξ| → ∞, and therefore there exists a local
minimum of C(2) in Ξ.

Proof: We rearrange the sum in (54):

C(2)(x0, . . . , xN) = F̃
(
aF−1(xN + F (DtN ))

)

+
N∑

n=0

[
F̃
(
F−1(xn + F (Dtn))

)
− F̃

(
aF−1(xn + F (Dtn))

)]

≥
N∑

n=0

[
F̃
(
F−1(xn + F (Dtn))

)
− F̃

(
aF−1(xn + F (Dtn))

)]
. (55)

For the terms in (55), we have the lower bound

F̃ (z)− F̃ (az) =

∣∣∣∣
∫ z

az

xf(x)dx

∣∣∣∣ ≥
1

2
(1− a2)z2 inf

z̃∈[az,z]
f(z̃) ≥ 0.
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Let

H(y) =
1

2
(1− a2)F−1(y)2 inf

x∈[aF−1(y),F−1(y)]
f(x).

Then we have H(y)−→+∞ for |y| → ∞, due to (20) and (14). Besides, we have

C(2)(x0, . . . , xN ) ≥ H(|T2(ξ)|∞)

where | · |∞ denotes again the ℓ∞-norm on R
N+1, and T2 is the (nonlinear) transformation

T2(ξ) =
(
x0, x1 + F−1(Dt1), . . . , xN + F−1(DtN )

)
.

It is sufficient to show that |T2(ξ)|∞−→∞ when |ξ| → ∞. To prove this, we suppose by
way of contradiction that there is a sequence ξk such that |ξk|∞ −→ ∞ and T2(ξ

k) stays
bounded. Then, all coordinates in the sequence (T2(ξ

k))k are bounded, and in particular (xk
0)k

is a bounded sequence. Therefore, Dk
t1

= aF−1(xk
0) is also a bounded sequence. The second

coordinate xk
1+F−1(Dk

t1
) being also bounded, we get that (xk

1)k is a bounded sequence. In that
manner, we get that (xk

n)k is a bounded sequence for any n = 0, . . . , N , which is the desired
contradiction.

Lemma C.2 (Partial derivatives of C(2)).
We have the following recursive scheme for the derivatives of C(2)(x0, . . . , xN )
for i = 0, . . . , N − 1:

∂

∂xi

C(2) = F−1 (xi + F (Dti)) +
af

(
Dti+1

)

f (F−1 (xi + F (Dti)))

[
∂

∂xi+1

C(2) −Dti+1

]
. (56)

Proof: From (23) we get the following scheme for Dtn for a fixed n ∈ {1, . . . , N}:

Dtn

‖
aF−1(xn−1+ F (Dtn−1

))
‖
. . .

aF−1(xi+1+ F (Dti+1
))

‖
aF−1(xi+ F (Dti))

‖
. . .

aF−1(x0).

Therefore the following relation holds for the partial derivatives of Dtn :

∂

∂xi

Dtn =
af(Dti+1

)

f (F−1 (xi + F (Dti)))

∂

∂xi+1
Dtn , i = 0, . . . , n− 2. (57)
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Furthermore, according to (54) and (48),

∂

∂xi

C(2) = F−1 (xi + F (Dti)) + (58)

+

N∑

n=i+1

f(Dtn)
∂

∂xi

Dtn

[
F−1 (xn + F (Dtn))−Dtn

]

for i = 0, . . . , N . Combining (58) and (57) yields (56). Note that (57) is only valid up to
i = n− 2.

Lemma C.3 Under the assumptions of the Theorem 5.1, equation (21) has at most one solu-
tion x0 > 0. Besides, the function g(x) := f(x)− af(ax) is positive.

Proof: Uniqueness will follow if we can show that both h2 ◦ F−1 and

ĥ2(y) := −F−1
(
X0 −N

[
y − F

(
aF−1(y)

)])

are strictly increasing. Moreover, h2◦F−1(0) = 0 and ĥ2(0) < 0 so that any zero of h2◦F−1+ĥ2

must be strictly positive.
The function h2 is one-to-one, has zero as fixed point, and satisfies (26). It is therefore

strictly increasing, and since F−1 is also strictly increasing, we get that h2 ◦ F−1 is strictly
increasing. It remains to show that ĥ2 is strictly increasing. We have that

ĥ′
2(y) = N

f (F−1(y))− af (aF−1(y))

f (F−1(y)) f (F−1 (X0 −N [y − F (aF−1(y))]))
,

is strictly positive, because, as we will show now, the numerator of this term is positive. The
numerator can be expressed as g(F−1(y)) for g as in the assertion. Hence, establishing strict
positivity of g will conclude the proof. To prove this we also define g2(x) := f(x)− a2f(ax) so
that

h2(x) = x
g2(x)

g(x)
.

Both functions g and g2 are continuous and have the same sign for all x ∈ R due to the
properties of h2 explained at the beginning of this proof. Because of g(x) < g2(x) for all x ∈ R,
we infer that there can be no change of signs, i.e., either g(x) > 0 and g2(x) > 0 for all x ∈ R

or g(x) < 0 and g2(x) < 0 everywhere. With g(0) = f(0)(1 − a) > 0 we obtain the positivity
of g.

Theorem 5.1 will now follow by combining the following proposition with the arguments
explained in Section A.

Proposition C.4 The function C(2) : Ξ → R has the strategy ξ(2) from Theorem 5.1 as its
unique minimizer. Moreover, the components of ξ(2) are all strictly positive.
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Proof: The structure of the proof is similar to the one of Theorem 4.1 although the computations
are different. Thanks to Lemma C.1, we know that there exists an optimal strategy ξ∗ =
(x∗

0, . . . , x
∗
N ) ∈ Ξ. There also exists a corresponding Lagrange multiplier ν such that

∂

∂xi

C(2)(x∗
0, . . . , x

∗
N) = ν, i = 0, . . . , N.

From (56), we get

ν = h2

(
F−1 (x∗

i + F (Dti))
)
, i = 0, . . . , N − 1.

Since h2 is one-to one, this implies in particular that x∗
i + F (Dti) does not depend on i =

0, . . . , N − 1. It follows from (23) also Dti+ = F−1(x∗
i + F (Dti)) is constant in i, and so

Dti+ = Dt0+ = F−1(x∗
0) and Dti+1

= aF−1(x∗
0). (59)

Hence,

x∗
0 = F

(
h−1
2 (ν)

)
,

x∗
i = x∗

0 − F (Dti) = x∗
0 − F

(
aF−1(x∗

0)
)

for i = 1, . . . , N − 1, (60)

x∗
N = X∗

0 − x∗
0 − (N − 1)

[
x∗
0 − F

(
aF−1(x∗

0)
)]

.

These equations link all market orders to the initial trade x∗
0. Using (60) and once again (59),

we find that C(2)(x∗
0, . . . , x

∗
N) is equal to

C
(2)
0 (x∗

0) := C(2)
(
x∗
0, x

∗
0 − F (aF−1(x∗

0)), . . . , X0 −Nx∗
0 + (N − 1)F (aF−1(x∗

0))
)

= N
[
G(x∗

0)− F̃
(
aF−1(x∗

0)
)]

+G
(
X0 +N

[
F
(
aF−1(x∗

0)
)
− x∗

0

])
.

The initial trade x∗
0 must clearly be a local minimum of C

(2)
0 and thus ∂

∂y
C

(2)
0 (x∗

0) = 0. Therefore,

0 = N

[
D0+ − a2D0+

f(Dt1)

f(D0+)
+DtN+

(
a
f(Dt1)

f(D0+)
− 1

)]
,

which is equivalent to

DtN+ = D0+
f(D0+)− a2f(Dt1)

f(D0+)− af(Dt1)
. (61)

This is just equation (21), which has at most one solution, due to Lemma C.3. This concludes
the proof of the existence and the representation of the optimal strategy ξ(2) in Theorem 5.1.

Finally, we need to show the strict positivity of the optimal strategy. Thanks to the posi-
tivity of the optimal x∗

0, we get

x∗
i = x∗

0 − F (aF−1(x∗
0)) > 0

for i = 1, . . . , N − 1. So it only remains to show that x∗
N > 0. We infer from (61) and (59) that

DtN+ = D0+
f(D0+)− a2f(aD0+)

f(D0+)− af(aD0+)
= D0+

[
1 +

af(aD0+)− a2f(aD0+)

f(D0+)− af(aD0+)

]
.

The fraction on the right is strictly positive due to Lemma C.3. Hence,

DtN+ > D0+ =
1

a
DtN > DtN ,

which implies x∗
N > 0.
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D Optimal strategy for block-shaped LOB.

Here we prove the results of Section 6.

Our aim is to prove Proposition 6.2, i.e., to show that the strategy (27) satisfies the re-
cursion (31). The key point is that we have indeed explicit formulas for the coefficients in the
backward schemes of Proposition 6.2.

Lemma D.1 The coefficients αn, βn, and γn from (33) are explicitly given by

αn =
(1 + a−1)− qλ [(N − n) (a−1 − 1) + 2 (1 + a−1)]

2q [(N − n) (a−1 − 1) + (1 + a−1)]
(62)

βn =
1 + a−1

[(N − n) (a−1 − 1) + (1 + a−1)]

γn =
(N − n) (1− a−1)

2κ [(N − n) (a−1 − 1) + (1 + a−1)]
.

The explicit form of the sequences δn, ǫn and φn from (32) is

δn =
2a−2 [(N − n) (a−1 − 1) + (1 + a−1)]

κ [(N − n) (1− a−2) + (N − n+ 2) (a−3 − a−1)]
(63)

ǫn =
κ (a−1 − a)

[(N − n) (a−1 − 1) + (1 + a−1)]

φn =
(N − n+ 1) (a−1 − a)− (N − n) (1− a2)

[(N − n) (a−1 − 1) + (1 + a−1)]
.

This Lemma can be proved in two steps. First, by a backward induction, we get the explicit
formulas for α, β and γ. Then, combining (62) with (33) and (32), we get (63).

Proof of Proposition 6.2. We can deduce the following formulas from the preceding lemma:

δnǫn =
2

(N − n)(1− a) + 2
, δnφn =

2

κ

(N − n)(1− a) + 1

(N − n)(1− a) + 2
. (64)

They will turn out to be convenient in (31).
Let us now consider the optimal strategy (ξ∗0 , . . . , ξ

∗
N) from (27). We consider the associated

processes Dt := DA
t and Xt as defined in (28) and (30). For n = 0, we have

ξ∗0 =
X0

(N − 1)(1− a) + 2
=

1

2
δ1ǫ1

and it satisfies (31) because D0 = 0. For n ≥ 1, we can show easily by induction on n that
Dtn = aκξ∗0 . From (27), we get that ξ∗n = (1− a)ξ∗0 for n 6∈ {0, N}, and therefore we get

Xtn = X0 − ξ∗0 − (n− 1)(1− a)ξ∗0 = [(N − n)(1− a) + 1]ξ∗0 .

Using these formulas, and combining with (64), it is now easy to check that
for n ∈ {1, . . . , N − 1},

ξ∗n =
1

2
[δn+1ǫn+1Xtn − δn+1φn+1Dtn ] ,

which shows that the optimal strategy given in (27) solves (31).
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