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Abstract7

The precise characterization of the microstructure of fibrous composites is essential8

for an accurate determination of their properties and behaviour. However, fabrica-9

tion processes usually introduce serious deviations from simple ideal spatial arrange-10

ments of preform fibres and matrix. The characterization of composites has been11

performed using destructive and non destructive testing techniques, many of them12

based on image analysis. Carbon fibres in carbon matrix composites, however, pose13

a difficult challenge to image analysis systems due to the poor contrast between14

the different phases. We describe a procedure for the reconstruction of the true15

microstructure of carbon/carbon composites using phase contrast X-ray microto-16

mography, show some results, and discuss its performance.17
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1 Introduction20

The special properties of fibre reinforced composites responsible for their suc-21

cess are based on their inherent anisotropy, a characteristic dictated by the spa-22

tial arrangement of the constituent phases. Indeed, the microscopic arrange-23

ment of the complex fibrous structure and matrix plays a major role in the24

determination of the macroscopic properties of the material, such as their elas-25

ticity, strength, permeability, or thermal conductivity. As such, there is a whole26

range of numerical methods designed to estimate bulk properties assuming the27

characteristics of the phases and their spatial arrangement are known, such as28

those based on Finite Elements Models. Among the structural characteristics29

that influence the properties of the material are those regarding the fibres,30

such as the distribution of lengths and orientations, waviness, curvature, and31

volume fraction, and similar quantities for the matrix and void phases. Man-32

ufacturing techniques are fine tuned to control these characteristics, but the33

tuning process usually requires repeated cycles of fabrication and comparison34

with characterized samples. The recent advances in computer aided modelling35

and simulation have not eliminated the necessity of experimental work, but36

rather have increased the demand of accurate experimental data for training,37

testing, and validation, once the early models based on ideal, regular, or uni-38

form structures have been superseded. Moreover, no matter how much fine39

tuning, there is no such a thing as the perfect manufacturing process and,40

therefore, different factors in the fabrication chain introduce in the real mi-41

crostructure of the product deviations from the theoretical design which affect42

the predicted performance of the material.43

Costly, limited, error-prone manual methods [1, 2] for the characterization44
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of samples of fibrous composites have been outdated by automatic methods,45

such as those in [3–20], using modern imaging systems [21] and digital image46

processing [22]. Most of them are based on optical microscopy, and therefore47

limited to the study of a 2D cross-section, serial sectioning, or, at most, limited-48

depth volumes of translucent materials using optical confocal microscopy [23].49

However, only some aspects of the 3D microstructure can be reconstructed50

from a 2D section, such as fiber orientation [20], subject to a series of assump-51

tions [24]. Producing and analyzing series of close, thin parallel slices of the52

samples [25], such as in [7,9,11,19], is labour intensive and adds the problem53

of matching among slices.54

X-ray microtomography [26, 27] is a non destructive technique that produces55

accurate images of 3D volumes by reconstruction from multiple X-ray pro-56

jections [28], allowing the direct characterization of the 3D microstructure of57

samples with significant thickness. The huge amount of data produced by this58

kind of imaging system for large enough samples, even at moderate resolu-59

tions, precludes any manual processing such as fibre identification. However,60

2D image processing techniques usually do not have a direct translation into61

the 3D domain, and processing a 3D microtomograph just as a series of 2D62

sections is clearly a waste of valuable information. Therefore, specific 3D tech-63

niques are needed [29,30], but the combined effect of the increased amount of64

data to process and the added dimension (most processing algorithms scale65

geometrically with the dimension of the dataset) calls for extreme care in the66

selection of the methods and their optimization.67

Carbon/carbon (C/C) fibre reinforced composites [31] are made of carbon fi-68

bres embedded in a continuous matrix of carbon. The fact of both matrix69

and fibres being fabricated from carbon produces a unique combination of70
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properties, including very low thermal expansion coefficients and high ther-71

mal conductivity, retaining their mechanical properties at high temperatures72

(> 2000◦C in nonoxidizing atmospheres), high specific strength, excellent re-73

sistance to abrasion and ablation, high resistance to thermal shock, very high74

elastic modulus, low density, high electrical conductivity, low hygroscopicity,75

nonbrittle failure, low biological rejection, resistance to chemical corrosion,76

and reasonable machinability [32].77

However, C/C composites pose a significant challenge to X-ray imaging sys-78

tems due to the close densities of inclusions and matrix, yielding very poor79

contrast among the constituent phases. Sensitivity can be increased for com-80

posites made up of materials with neighbouring densities such as C/C compos-81

ites by using coherent X-rays (e.g. from a synchrotron source) and varying the82

distance from sample to detector [27]. Yet this technique, called holotomogra-83

phy, applies only to very small C/C samples for which all fibres show the same84

orientation. Indeed, in larger samples, or in samples where fibres perpendic-85

ular to the tomography occur, these fibres cause very high cumulated phase86

lag values which saturate the detector. The resulting image is blurred, render-87

ing the separation of fibres and matrix impossible [33]. The alternative, also88

requiring a coherent X-ray source, is phase contrast tomography, also called89

edge-detection mode CMT, where interfaces between constituent phases are90

detected through the interference patterns arising from the out of phase waves91

propagated through materials with different refraction indices [34].92

Previous attempts have been made to characterise the microstructure of a93

C/C composite using X-ray microtomography [18, 34]. However, the carbon94

matrix proved to be very difficult to separate from the carbon fibres, and only95

the separation of the porosity from the solid phases was achieved. Later, the96
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method was succesfully applied to the separation of the three phases in an97

Al-SiCp composite [35, 36]. On the other hand, the X-ray microtomography98

segmentation procedures in [29,30] deal with easily separable phases, such as99

glass fibres in a polypropylene matrix, therefore the constituents are clearly100

resolved in the microtomographs and the segmentation phase is straightfor-101

wardly addressed by simple thresholding, ineffective in the case of a C/C102

composite synchrotron X-ray microtomography.103

In the following, we will show a procedure for the reconstruction of the 3D104

microstructure of a C/C fibrous composite from a phase contrast X-ray mi-105

crotomography, based on advanced image processing techniques, allowing the106

separation of fibres, porosity, and matrix, and the subsequent analysis, char-107

acterization, and even visualization by means of enhanced reality techniques108

as an aid to design and analysis. Section 2 describes a sample we use as study109

case to illustrate the method, described in section 3. The description is ac-110

companied by some results obtained with the study sample. Finally, section 4111

is a brief discussion and section 5 closes with a short summary.112

2 A C/C fibre reinforced composite microtomographic image113

The image in Figure 1 was obtained at the European Synchrotron Radia-114

tion Facility (ESRF) ID19 High Resolution Diffraction Topography Beamline,115

dedicated to radiography, microtomography, and diffraction imaging experi-116

ments [27, 34]. The X-ray beams produced at third generation synchrotron117

radiation facilities such as the ESRF at Grenoble (France) have a high de-118

gree of coherence. This results from the small source size, σ, about 50 µm,119

and the large distance from source to sample, L, in the 100 m range, so that120
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the transverse coherence length, dc = λL/2σ, is in the 100 µm range. Phase121

changes occur at the edges of a particle or porosity embedded in a matrix122

having a different index of refraction, and out of phase transmitted radiations123

produce an interference fringe marking the location of the interface. The im-124

age shown was obtained using phase contrast with fixed distance from sample125

to detector [34].126

The sample comes from the French aeronautics industrial company Snecma127

Propulsion Solide (SPS). SPS has decades of experience in isothermal chemical128

vapour infiltration (CVI) [32, 37, 38] for the development of proprietary C/C,129

C/SiC, and SiC/SiC composites for industries as varied as heat treatment,130

silicon, electronics, glass, nuclear power, and space. Figure 1 shows a 200 ×131

200×200 portion of a synchrotron microtomograph of a sample of one of SPS’s132

C/C composites at an incomplete densification stage (sample “CC2” in [34]).133

Figure 2 shows a 200 × 200 slice of the microtomograph in Figure 1.134

Fig. 1. A synchrotron microtomograph of a 0.0033 mm3 (side length < 0.15 mm)

cubic sample of a C/C composite. Voxel size is 0.745 µm.

Given that we are dealing with a C/C composite, there is no doubt that the135
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Fig. 2. A slice (0.0222 mm2) of the microtomograph in Figure 1.

image in Figure 1 provides a very good discrimination between fibres and136

matrix to the human observer. The porosity typical of the CVI densification137

process [39–41] can also be clearly seen in the image. However, Figures 1 and138

2 also show a high level of noise (greylevel variations not due to differences in139

the material but to added noise, such that the same greylevels appear mixed140

in different phases), poor use of the dynamic range (few different meaningful141

greylevels, see below), and moderate resolution. Resolution is expected to142

improve in the near future. X-ray detection is performed through film or visible143

light scintillators, and, therefore, the system is diffraction limited. X-ray lenses144

to magnify the image before the detector, such as Kirkpatrick-Baez focusing145

devices, may overcome this limitation. Nevertheless, resolution is also limited146

by data bandwidth and storage capabilities.147

However, limited resolution is not the worst characteristic of the image. Noise148

levels and poor quantization are. In Figure 2, apart from random noise, rings of149

varying intensity can be clearly seen around the tomography axis, an artefact150

due to variations in the efficiency of neighbouring pixels in the detector. Figure151

3 shows the histogram of the slice in Figure 2. Out of 256 possible levels in the152

8 bit quantization, only 53 have a pixel count different from zero. Moreover, 51153

of the 53 levels are grouped in 25 groups, thus reducing the effective dynamic154
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Fig. 3. Histogram of the image in Figure 2. There are 53 levels out of 256 possible

levels in the dynamic range, grouped in 27 groups, thus in practice reducing the

effective dynamic range to 27 levels.

range to 27 levels, i.e. the equivalent to less than 5 bit quantization.155

The effect of the noise and the reduced dynamic range can be seen in the156

magnified details in Figure 4. Close scrutiny reveals that, in spite of what could157

be assumed from Figure 1, greyscale based per-pixel segmentation of fibres158

from matrix by simple thresholding is not possible. The same grey levels are159

found in all phases of the material. The human visual system is able to segment160

the image because it performs high level processing involving edge detection161

and pattern matching with circular/elliptical primitives [42–44] corresponding162

to the expected fibre cross-sections (see the small windows at the lower right163

corners). Note for instance the effect that just a sparse couple of brighter pixels164

have on the recognition of the fibre in the lower right corner of the upper part165

of Figure 4.166

Within this context, our aim is to use image processing techniques for the167

automated extraction of fibres and porosity from the matrix, to allow the168

detailed characterization of the material.169
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Fig. 4. Details of fibres/matrix in the image in Figure 2. The small windows at the

lower right corners show the entire detail at normal scale.

3 Method170

3.1 Preprocessing171

As we have just seen, the grey levels of individual voxels are not enough to172

distinguish fibre voxels from matrix voxels. It is the edges —contrast among173

adjacent regions in the image— that determine the boundaries of the fibres.174

Fibres are restituted by our visual system from the edge information. Thus, we175

need the edges to define the fibres in the image. We have to reduce the noise176

level, but any noise filtering must respect the edges. Otherwise, we would be177

losing the information we are seeking, the basis of the segmentation procedure.178

The noise has a high spatial frequency, but low pass filtering would also blur179

the edges. Median filtering could preserve to some extent the edges, but the180

resolution is too poor: The edges are too narrow as to not be wiped away181

by any but the smallest of filters, which would be useless. A noise reduction182

method capable of efficiently removing high frequency noise while preserving183

edges is anisotropic diffusion [45,46].184
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Perona and Malik [45] noted that the convolution of an image I0(x, y) with a185

Gaussian kernel,186

Kσ(x, y) =
1

2πσ2
exp(−|x|2 + |y|2

2σ2
) (1)187

with standard deviation σ yields the same result as the solution of the isotropic188

diffusion (heat) partial differential equation,189

∂I(x, y, t)

∂t
= div(∇I(x, y, t)), (2)190

where I(x, y, t) is the image I(x, y) at time t = 0.5σ2, with initial conditions191

I(x, y, 0) = I0(x, y), and ∇I is the image gradient.192

Introducing in (2) as diffusion conductance or diffusivity, g(s), a rapidly de-193

creasing function of a greyscale edge detector such as the gradient magnitude,194

s = |∇I|,195

∂I(x, y, t)

∂t
= div(g(|∇I(x, y, t)|)∇I(x, y, t)), (3)196

smoothing on both sides of edges becomes much stronger than across them. A197

diffusivity constant with time but varying with location (x, y) would make (2)198

a linear nonhomogeneous diffusion equation. However, if g is made a function199

of time, as in (3), the diffusion equation becomes nonlinear and nonhomo-200

geneous, referred to as anisotropic in the image processing literature, even201

when conventional PDE terminology reserves the term for the case where the202

diffusivity is a tensor, varying both with location and direction. The conse-203

quence of this “pseudoanisotropy” is that only the magnitude but not the204

direction of the diffusion flux can be controlled. Noise close to edges remains205

unchanged due to the small flux in the vicinity of edges. To enable smoothing206
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parallel to edges, (3) must be generalized with a diffusivity matrix G with207

nonzero off diagonal elements (see, for instance, [46–50]), thus rendering it208

truly anisotropic.209

Perona and Malik suggested210

g(s) =
1

1 + s2/κ2
(4)211

and212

g(s) = exp(−s2/κ2) (5)213

as diffusivity functions. Since then, many other diffusivity functions have been214

proposed [46, 51]. In fact, Black et al. [51] demonstrated that anisotropic dif-215

fusion in the sense of (3) is the gradient descent of an estimation problem216

with a robust error norm induced by g(s), thus providing a sound theoretical217

foundation to choose adequate diffusivity functions.218

As several authors have revealed [52–55], (3) is an ill-posed problem, in the219

sense that images close to each other are likely to diverge during the process [54],220

but it can be stabilized by regularization. One common approach [53] is to221

smooth the variable of the diffusivity, i.e. to use a smoothed version of the222

image for the gradient in each step, as in223

∂I(x, y, t)

∂t
= div(g(|∇Iσ(x, y, t)|)∇I(x, y, t)), (6)224

where Iσ = Kσ ∗ I, with Kσ a suitable local convolution kernel of width σ, for225

instance a Gaussian kernel. However, Weickert and Benhamouda [56] proved226

that a standard spatial finite difference discretization is sufficient to turn (3)227

into a well posed system of nonlinear ordinary differential equations. Therefore,228
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direct implementations of the Perona-Malik filter tend to work reasonably well229

because of the regularizing effect of the discretization.230

The extension to D dimensions is straightforward. The diffusion process is231

described by the equation232

∂I(x, t)

∂t
= div(G · ∇I(x, t)), (7)233

where x ∈ R
D and G is a square D×D diffusivity matrix. Equation (3) is (7)234

with G a diagonal 2×2 matrix with equal diagonal elements g(|∇I|). Diffusion235

filtering is usually implemented using simple finite differences to approximate236

the image derivatives within an explicit or Euler-forward scheme.237

Fig. 5. Two orthogonal slices of the tomograph in Figure 1 before (left) and after

(right) filtering with 3D anisotropic diffusion.

Figure 5 shows the results of applying (7) with (4) and D = 3 to the tomograph238

in Figure 1, and they are quite satisfactory. The relevant edges have been239

preserved while most of the noise has been wiped away. Note that the filter is240

equally efficient on the two types of noise present in the image, the random241

uniform noise and the circular patterns around the tomography axis.242
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3.2 Segmentation243

However good the results in Figure 5 regarding noise reduction and mesoscale244

feature preservation, fibres cannot yet be separated on the basis of individual245

voxel grey levels. Many fibres show brighter nuclei inside darker boundaries,246

whose grey levels can also be encountered in the matrix. Our approach is247

masking all pixels within edges. For that purpose we use a differential profiler248

[57] along voxel rows. A differential profile is obtained by constructing an249

array of integers where every element represents the lowpass filtered gradient250

of the grey levels along a scan line. This is easily implemented using exclusively251

integer arithmetic. Let Ix,y,z be the greyscale image. Let Pl be an integer vector252

to hold the profile of a scan line, and assume without loss of generality that253

the scan direction is along +x. Combining forward differencing254

Pl = Il,y,z − Il+1,y,z (8)255

with lowpass filtering256

Pl =
1

3
(Pl−1 + Pl + Pl+1), (9)257

and forgetting about the dividing constant, we get258

Pl = Il−1,y,z − Il,y,z + Il,y,z

− Il+1,y,z + Il+1,y,z − Il+2,y,z (10)

= Il−1,y,z − Il+2,y,z

and thus the whole procedure to obtain the profile is reduced to a sequence259

of integer subtractions of grey levels. Near-zero profile segments reflect parts260

of the image where no significant variations of grey level occur. Positive peaks261

reflect decreasing grey levels, such as when entering a fibre, and negative peaks262
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increasing bright, such as when leaving a fibre. The narrower the peak, the263

faster the variation. The higher the peak, the greater the variation. Thus,264

peak shape and magnitude tell us everything we need to know about intensity265

transitions along a given direction.266
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Fig. 6. Edge detection by profiling scan lines in slices of the tomograph in Figure

1 after filtering with 3D anisotropic diffusion. The patterned areas in the profile

graph show the range of possible thresholds for successful detection of all fibres in

the given line.

Figure 6 shows a grey level profile (above) and the corresponding differential267

profile (center) along a line of the tomograph in an arbitrary direction (below).268

A tentative grey level threshold is plotted on the grey level profile (upper269

graph), to show the lack of robustness of a per-pixel approach due to the270

brighter nuclei of some fibres. The vertical arrows show the edges in the image271

corresponding to the peaks above or below tuneable thresholds (dashed lines)272

in the differential profile (lower graph). The range of possible thresholds that273

would achieve successful detection of all fibre edges in the line is highlighted274
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in the graph. The upper (in absolute value sense) bounds for the thresholds275

are dictated by two criteria: 1) The positive threshold should be low enough276

as to not miss any positive peak at the entrance of a fibre, and 2) the negative277

threshold should not miss any negative peak at the exit of a fibre. The lower278

bound for the positive threshold depends only on the peaks outside fibres279

(positive peaks inside fibres are irrelevant): the threshold should not allow280

any peak not lying at the entrance of a fibre. Conversely, the lower bound for281

the negative threshold depends only on the peaks inside fibres (negative peaks282

outside fibres are irrelevant): the negative threshold should be high enough as283

to exclude any negative peak not at the exit of a fibre.284

To obtain a mask of fibre voxels, therefore, the voxel rows along the three285

possible orientations in the 3D image are profiled, such that all voxels along286

a differential profile from a positive peak to a negative peak are marked as287

foreground voxels, and the rest as background voxels. In the resulting mask,288

some fibres are “broken”, i.e. the dark boundary does not surround the entire289

fibre, and therefore some profiles may result in spurious rectilinear spikes pro-290

truding from the fibre mask, due to the lack of a negative peak, or well similar291

rectilinear structures may be missing from the interior of a fibre due to the292

lack of a positive peak, or a spurious negative peak with sufficient magnitude293

inside a fibre.294

Here is where spatial correlation among the different orientations in the 3D295

image enters, as interior fibre voxels not marked in a profile in a given direction296

are likely to be marked in the profiles along any of the transversal directions,297

and thus the a priori knowledge of the morphology of the fibres is enough, in a298

simple postprocessing stage, to get rid of the majority of the thin, rectilinear,299

spike-like 2D artifacts protruding from or entering “broken” fibres.300
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Porosity in the matrix is segmented by the same procedure, only the thresholds301

for the peak detection in the differential profile are tuned to the characteristic302

edges of the porosity regions, where transitions are more pronounced than in303

fibres, see the darker lacunar areas with a brighter rim in Figure 5. This is304

due to the contrast saturation effect in the matrix/air interface induced by305

the increased sensitivity of the tomograph in order to resolve carbon/carbon306

interfaces.307

Both the fibre and the porosity masks can be “cleaned” with a labelling al-308

gorithm if their inspection reveals it to be necessary. Cleaning the masks con-309

sists in getting rid of remnants of matrix material that may be adhered to the310

outside face of fibre or porosity boundaries due to imprecisions in the exact311

localization of edges. This is achieved by 1) labelling all connected foreground312

voxels in the mask (fibres or porosity) with a unique label subject to the313

condition of their original grey levels being below a given threshold, and 2) la-314

belling as background voxels (i.e. delete from the mask) all connected groups315

of remaining unlabelled voxels in the mask if any voxel in the group touches316

a background voxel (matrix). This ensures that the “bright voxel hunt” takes317

effect only in groups of voxels attached to the exterior boundary of fibres or318

porosity, without affecting the bright cores of fibres. The result is a purified319

mask of fibre or porosity voxels where bright voxels are only permitted in the320

interior of fibres.321

The masks thus obtained, see Figure 7 and Figure 8 for some partial render-322

ings of fibre bundles and porosity, can be combined into a unique material323

description mask, detailing the microstructure of the material. All voxels in324

the tomograph are classified as belonging to one of the three phases in the325

material: matrix, fibre, or porosity. This mask can then be directly fed into326
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Fig. 7. Partial renderings of some fibre bundles, using the original grey levels in the

tomograph.

Fig. 8. Partial renderings of the porosity formed during the CVI process, using the

original grey levels in the tomograph.

models requiring a precise description of the microstructure of the material.327

Thus, for instance, a Finite Element Model can be constructed just by assim-328

ilating the finite elements to the classified voxels.329

3.3 Fibre individuation: The heavy ball330

The microstructure of the sample is contained in the mask, indeed, but still331

some further processing is necessary in order to be able to perform a com-332
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plete characterization of the microstructure. Some usual characteristics, such333

as void content or volume fractions, can be directly computed from the phase334

masks. However, others not less important such as the distribution of fibre335

lengths, orientations, curvature, or waviness, cannot. Fibres have to be identi-336

fied individually in order to be able to measure individual characteristics such337

as those just mentioned.338

A connected component labelling algorithm could do it, if we could warrant339

that individual fibres do not touch each other in the mask. However, this is not340

the case. Fibres touch each other both because of the limited resolution of the341

image and because some of them actually touch each other in the material.342

Therefore a connected component algorithm is able only to separate fibre343

bunches, groups of fibres either touching each other or close enough as to not344

be resolved by the spatial resolution of the imaging system, see Figure 7.345

We use a novel method, the heavy ball, to successfully separate individual346

fibres. It treats the fibre mask as a solid block drilled by wormholes, the347

fibres. The hole mouths are located in each side of the block, and a zero drag,348

zero gravity, high inertial ball is pushed into each hole in turn. The ball size is349

adapted to the diameter of each hole. The ball is forced to move continuously350

until it either finds the end of the fibre or leaves the block. The ball run along351

each fibre can be used to label the fibre with a unique identifier for subsequent352

characterization, or directly to compute the required parameters.353

For locating the ball entrance points and estimating the required ball size,354

the ellipse fitting procedure depicted in [20, 58], see [59], is applied to each355

outer boundary (six 2D binary images) of the binary fibre mask. The method356

requires the labelling of the connected components in each boundary. During357
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the labelling, the centroid and the covariance matrix of the coordinates of the358

pixels in each connected component is computed. The centroid (average loca-359

tion) gives the center of the fitted ellipse, and the root of the lesser eigenvalue360

of the covariance matrix Σ gives its minor axis, which coincides with the fibre361

radius, r:362

r2 = 2(Σ11 + Σ22 −
√

∆), (11)363

where364

∆ = (Σ11 + Σ22)
2 − 4(Σ11Σ22 − Σ12Σ21). (12)365

Touching fibres in the 2D image have to be split before the ellipse fitting366

procedure. Otherwise a single enclosing ellipse will be fitted to an entire group367

of touching fibres in the 2D image. The splitting of touching fibres can be368

performed by means of mathematical morphology operators, using successive369

erosions and dilations, such that fibres are shrunk until disconnection and370

then expanded again constrained to the original image. Disconnecting touching371

groups of pixels is a well known application of mathematical morphology [22].372

Fig. 9. Ellipse splitting procedure: left) Simple case; right) Complex case not consid-

ered in [58]. Small circles mark convex perimeter points. Dotted lines mark splitting

lines. The greyed area within the group on the right is enclosed by an internal

perimeter.

An alternative approach is described in [58]. The perimeters —foreground373
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pixels with at least one background neighbour— of the connected components374

in the 2D images are sequentially traversed and their curvature computed at375

each perimeter pixel. Pixels where the curvature becomes convex are recorded.376

If two fibres touch each other, there will be two convex points. A straight line377

joining the points can be drawn to split the fibres, so they can be labelled378

as two different components. If three or more fibres touch, it could be just379

a trivial extension of the two-fibre case, and then a line is drawn for each380

consecutive pair of convex points, see Figure 9 (left). However, it could also381

be a special case, not considered in [58], where three or more fibres touch382

each other, thus totally enclosing a background region inside the group, see383

Figure 9 (right). In this case, an odd number of convex points is found when384

traversing the external perimeter of the group. If this is the case, the internal385

perimeter (the perimeter of the enclosed background) has to be traced also,386

and the splitting lines should be drawn between pairs formed by a convex387

point from the external perimeter and the closest convex point in the internal388

perimeter, see Figure 9 (right). As many convex points have to be found in389

the internal perimeter as in the external perimeter. If they are not, another390

background area is enclosed within the group, and so on.391

Therefore, if the aggregation pattern of the fibres in a given sample is not392

too complex, the convex point search is probably faster than mathematical393

morphology. Otherwise, mathematical morphology is probably a safer choice.394

No matter what method is used, splitting the touching fibres is a fast opera-395

tion. Note that it is only performed on the external sides of the 3D domain396

of the fibre mask, Mf, six 2D binary images. Moreover, the purpose of ellipse397

fitting is locating entrance points for the heavy ball, and this is performed398

sequentially. Fibres traversed from the first side are likely to emerge on any399
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of the sides. Fibres are marked as they are traversed, to avoid repeated runs.400

Thus, as the process progresses through the sides, each side has less and less401

ellipses left to be fit.402

Fig. 10. Identification of individual fibres with the heavy ball method. Solid arrows

show the direction of the previous move. The dotted arrow and circle represent a

candidate movement. The thinner dotted line marks the limit for candidate moves

depending on the previous move. Ellipses in the mask surface are best fits to the

fibre sections and determine the radius and initial location of the ball.

Once the center and radius of the “wormhole” have been estimated, a heavy403

ball of the appropriate size —same radius as the fibre, i.e. minor axis of the404

fitted ellipse, r, equation 11— is placed centred in the hole mouth. Figure 10405

illustrates the method. The ball has inertia, i.e. at step k it remembers the406

previous move, vector mk. This memory is initialized opposite to the normal of407

the current mask boundary, m0 = −n̂. The ball moves looking for the widest408

passage, one voxel at a time. The set of candidate locations for the centre of409

the ball, Ck, is made of all the voxels Ci adjacent to the current centre Ck
410

such that the direction of advance is at most at right angles with the previous411

movement. This is verified by means of the scalar product of the vector of the412
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previous move and the vector linking the current centre and the candidates:413

Ck =
{

Ci ∈ Mf | ‖C
kCi‖0 = 1 ∧ CkCi · mk ≥ 0

}

(13)414

For each step, the number s(Ci) of fibre voxels overlapped by the ball in each415

candidate location Ci is computed:416

Ok
i =

{

P ∈ Mf | f(P) = 1 ∧ ‖CiP‖2
2 ≤ r2

}

(14)417

s(Ci) = I
(

Ok
i

)

(15)418

where f : Mf ⊂ Z
3 → {0, 1} is the binary fibre mask.419

If the maximum overlap is verified for more than one candidate location, the420

one closest to the previous direction is chosen, i.e. the one maximizing the421

scalar product of the intended and the previous movement:422

Ck+1 = arg max
Ci∈C

k

{

s(Ci) ∧ CkCi · mk
}

(16)423

This step by step advance is repeated until the centre of the ball leaves the424

fibre, either because the fibre ended inside the mask, or because the ball is425

leaving the mask, Ck 6∈ Mf.426

During the advance of the ball the centre locations {Ck} can be recorded427

—for instance for a curvature analysis—, the length of the moves accumu-428

lated,
∑

k ‖mk‖2, —to estimate the length of the fibre—, the fibre voxels
⋃Ok

429

labelled with a unique identifier —for further characterization in a later occa-430

sion or involving several fibres, such as nearest neighbour and average distance431

computations—, and appropriate statistics can be computed, such as extreme432

locations of the fibre centres {Ck}, or variations in the fiber width or size433
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by inspection of the cross sections at right angles with the current movement434

vector, mk.435

Fig. 11. Rendering of some of the fibres in the sample in Figure 1 after separation

with the heavy ball. Only some fibres are shown to avoid visual clutter.

Figure 11 shows some isolated fibres in the sample in Figure 1, where the436

output of the heavy ball algorithm has been used to produce a ray tracing437

rendering.438

3.4 Labelling algorithms439

Several steps in the methodology depicted above use connected components440

labelling algorithms, both in 2D and 3D.441

2D labelling is required for the ellipse fitting procedure. The components tar-442

geted by the algorithm are, if the previous processing was successful, small to443

medium compact rounded shapes. Here the simple classical recursive labelling444

algorithm [60, 61], also known as region growing or region burning, is likely445

to work fast and well. Moreover, the labelling aims at computing moments of446
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each connected component, and this can be easily done during the labelling447

with the recursive method. The limited size of the components is likely to pre-448

vent any stack overflow problem arising from its recursive nature, the cause449

why it is usually discarded in benefit of the two-pass iterative algorithm.450

In the classical two-pass iterative method [62,63], first the image is traversed451

in raster scan order assigning temporary labels to the components, and then452

a second pass resolves conflicts in components with multiple labels, thus re-453

quiring an equivalence table to record label conflicts, usually handled with454

a Union-Find data structure [64]. Therefore, in exchange of the robustness455

implicit in its iterative nature, it is far more complex than the recursive algo-456

rithm, and characterizing components during the labelling is not straightfor-457

ward, as components are not labelled sequentially and labels are not resolved458

until the second pass.459

Recently a hybrid algorithm has been proposed [65, 66], that has proven to460

be faster and more robust for compact objects than the classical recursive461

algorithm, whereas maintaining its simplicity and versatility. The 2D labelling462

in the ellipse fitting procedure is therefore a good instance for adoption of the463

hybrid technique.464

3D labelling is used to purify the phase mask. Labelling in 3D, however, can465

be trickier. The components are not moderately sized anymore. We are dealing466

now with three dimensions, and the recursion depth and the required stack467

grow accordingly. Thus serious doubts arise about the robustness of the algo-468

rithms relying on recursion. The classical recursive algorithm can be rewritten469

in iterative form, by using a custom stack. However, this comes at the cost of470

increased complexity.471

24



Rec. depth Time (ms)

Recursive 281 607 146.9 +62%

Iterative (Stack) 252 341 89.6% 167.3 +84%

Hybrid along x 27 617 9.8% 108.9 +20%

Hybrid along y 26 246 9.3% 99.7 +10%

Hybrid along z 15 481 5.5% 90.9

Two-pass N/A N/A 497.8 ×5.5

Table 1

Performance data in the labelling of the fibre mask with different labelling algo-

rithms.

We analyzed the performance and robustness in 3D of the different alternatives472

in the labelling of the phase mask. Table 1 summarizes the results, including473

different scan directions for the hybrid algorithm, which is anisotropic, in the474

sense that it favours a direction of choice. Note the effect of the inherent475

anisotropy of the fibrous components, even when many fibres in the sample476

deviate significantly from the main orientation, z, specially towards y, see477

Figure 11 and axes in Figure 1. All data were obtained on a iPentium M 2.13478

GHz, 1 GByte RAM, OS MS WindowsXP. Both time and stack figures were479

clearly favourable to hybrid labelling. A detailed analysis can be found in [66].480

4 Discussion481

The study case accompanying the description of the method just described482

shows its effectivity. It deals with a sample showing all the problems typical of483
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a C/C composite synchrotron tomograph, and demonstrates how the method484

is able to tackle them and results in a detailed description of the microstructure485

of the sample, either in the form of a phase mask suitable for numerical models486

working on explicit spatial domains, or up to the point of a detailed individual487

characterization of each fibre in the sample. Specifically, the heavy ball is not488

only able to separate the fibres, but it also produces a set of data permitting a489

whole range of measurements, from simple statistics, such as fibre length and490

orientation, to the parameterization of fibres as 3D curves, surfaces, or solids,491

see Figure 11.492

With respect to the computational overhead, clearly the heaviest stage is the493

anisotropic diffusion filtering. Completing the 30 to 40 iterations needed to494

get results such as those in Figure 5 on the 2003 sample takes several minutes.495

However, techniques do exist capable of accelerating significantly anisotropic496

diffusion [67].497

The differential profiler is very fast, the whole procedure in all sections along498

the three directions, including the correlation stage, takes about 2 seconds.499

With respect to the stages involving labelling algorithms, time figures are pro-500

vided in the previous section, and a detailed analysis of these techniques can501

be found in [65,66]. If the right choice is made in the selection of the labelling502

algorithm, labelling times for moderately sized samples are very small. How-503

ever, it should be noted that, in spite of the high reduction in stack overhead504

of the hybrid technique, it still uses recursivity, and this could be a source505

of trouble as sample sizes grow. For the 3D labelling of big samples, it may506

be necessary to resort to block techniques, where the sample is labelled by507

blocks [68], or to use an iterative technique.508
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Regarding the heavy ball, computation time depends on the length and radius509

of the fibre, but the average fibre, 200 voxel long and 14 voxel in diameter,510

takes about 60 ms, including dumping the center locations to a text buffer511

for export. Future implementations of the algorithm can yet be optimized512

for speed, for instance by avoiding repeated computations in the overlap for513

candidate moves at each step.514

With respect to parametric complexity, tuneable parameters are only found515

in two of the stages, the preprocessing filtering and the differential profiler.516

Anisotropic filtering uses three parameters, the noise scale σ in (6), the feature517

scale κ in (4), and the number of iterations. These usually require careful fine518

tuning when dealing with applications related to enhancement of images with519

multiple levels of detail and where the visual appearance of the final result520

is a major factor. However, 1) in our case the noise scale and the feature521

scale are well defined and well apart, and 2) we use anisotropic diffusion to522

provide suitable input for the differential profiler, which has a high degree of523

robustness and is itself tunable.524

The result is that, as long as the noise is sufficiently eliminated and the525

mesoscale features of the microstructure are well preserved, the sensitivity to526

the parameters of the diffusion filter is very low. Differences among parameter527

configurations can be handled by the tuneable thresholds in the differential528

profiler. We recommend plotting a couple of profiles anywhere through the529

sample every, say, ten iterations of the anisotropic diffusion filter, so that the530

progress in the edge enhancement and noise reduction can be tracked, a suit-531

able stopping point for the diffusion can be chosen, and adequate thresholds532

for the profiler can be set.533
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Regarding precision, anisotropic diffusion has the interesting property of pre-534

serving not only the existence of edges at the feature scale, but also their535

location. With the differential profiler, on the other hand, it is possible to de-536

termine with high accuracy the position of edges, and also to choose the outer537

side of the features (first threshold crossing point for ‘entry” peaks and second538

for “exit” peaks), the inner side (vice versa), or exactly the edge (maximum539

between threshold crossing points), see Figure 6.540

The only potential source of trouble are brighter cores within the fibres which541

sometimes may percolate to the outside of the fibre through a broken edge,542

creating a connection with the matrix material and leaving a gap for the543

differential profiler. However, correlations among profiles in the three spatial544

directions decrease their probability, and, moreover, the path of the heavy ball545

is not likely to be affected by these spots. Nevertheless, in significant numbers546

they could affect some of the statistics. An inspection of the phase mask will547

reveal the extent of the problem, if any, and advice about the opportunity548

of a finer tuning of the profiler thresholds or the anisotropic diffusion before549

characterization.550

Note also that the procedure described for the application of the heavy ball551

would miss any fibre entirely embedded inside the sample. If a low but signif-552

icant probability of short fibres entirely embedded in the sample is expected,553

the interior of the fibre mask may be scanned after completing the procedure,554

looking for fibre voxels that were not tracked by the heavy ball, in order to555

apply it there. Alternatively, if the material is expected to have a large pro-556

portion of short (with respect to sample size) fibres, the heavy ball can be557

applied as if peeling an onion: first the heavy ball is applied to all six outer558

boundaries of the sample, then the procedure is repeated a little deeper into559
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the sample for any fibre section not yet tracked, and so on, until the volume560

being inspected is too small as to contain any fibres.561

Finally, note that the diffusion process in the preprocessing stage involves562

mixing contributions from neighbouring voxels. This implies the existence of563

border effects near the image boundaries. Edge detection in the profiler, in564

turn, uses finite differences involving separated voxels, and it is not able to565

detect edges if they are just at the boundary of the image. Moreover, in the566

correlation among profiles, the extreme ends of profiles count with much less567

information than the rest. All this added up results in the outer boundaries of568

the resulting mask having a high degree of unaccuracy in the determination569

of phase type. Therefore, it is a good practice to discard a few layers of voxels570

around the mask before any further processing.571

5 Conclusion572

We have detailed and illustrated a multistage methodology able to extract and573

characterize the true microstructure of a fibrous C/C composite using phase574

constrast X-ray microtomography. Since C/C composites are probably a worst-575

case benchmark, the method can also be applied to other cylindrical fibre576

composites. The processing chain is made of 1) a preprocessing stage where577

3D anisotropic diffusion filtering is used to reduce the noise while preserving578

the features in the sample; 2) a differential profiling method to detect areas579

between intensity edges on every 2D cross section parallel to the reference580

system, which are then refined by correlating the outputs in 3D; 3) an optional581

“cleaning phase” using a 3D labelling algorithm to purify the resulting mask;582

and 4) a novel fibre separation process which requires a ellipse fitting procedure583
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applied to the outer boundaries of the 3D mask followed by the use of what584

we call a heavy ball to individually identify each fibre and characterize it.585

We hope to have contributed to demonstrate the ability of phase contrast586

X-ray tomography to produce sufficient information as to extract the true587

microstructure of composites with constituents with close densities, such as588

C/C composites, when appropriate image processing techniques are used.589
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