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Abstract

Previous works have shown the efficiency of a new

approach for the Genetic Algorithms, the Dual Ge-
netic Algorithms, in the multiobjective optimization
context. Dual Genetic Algorithms make use of a
meta level to enhance the expressiveness of schemata,
entities implicitly handle by Genetic Algorithms. In
this paper, we show that this approach, coupled with
a new method, Pareto Elitism, leads to very interest-
ing results, in particular on an adaptation for mult:-
objective optimization of Royal Road Functions, the
Multi Royal Road Functions.
We begin with a quick reminder on multiobjective op-
timization, on what makes it different from single ob-
jective optimization and what has been done in this
context. After this, the Dual Genetic Algorithm prin-
ciples are briefly exposed, as well as previous results
obtained. Then, we present Pareto Elitism, combin-
ing steady state and sharing techniques for Pareto
optimization, and its behavior on Multi Royal Road
Functions.

1 Pareto Optimization

Many problems can be seen as optimization over a
cost function. In such a problem, we are given a
mapping f : X — Y, where X is the space being
searched. For that f, we seek one z* € X or a subset
X* C X, which gives rise to a particular y* € Y or
a particular subset Y* C ). The most studied case
is the one where ) = R. In this context, we seek
the z*’s that extremize the given f. Many methods,
as Simulated Annealing, Hill Climbing or Genetic
Algorithms, were developed and each have particu-
lar advantages or disadvantages that make them well
suited for a particular class of such single objective
functions.

However, engineers are very often faced with prob-
lems expressed in terms of many criteria, or objec-
tives, often competitive, which should be satisfied
simultaneously. In this case, Y = R”, where n is
the number of criteria in the problem. The map-
ping f is now a vector function, with n components
fr,k = 1..n, where each component has to be op-
timized. This mapping associates for each z € X' a
vector y € YV, such that y = f(z) = (fi(2), ..., fu(2)).
The goal is still to find particular z*’s which give rise
to optimal y. But the difficulty in the multiobjective
context is that there 1s no trivial way to say that one
y 1s better than another one and so, should be pre-
ferred.

The Pareto optimality gives a definition of optimal-
ity for multiobjective problems. A Pareto optimal
solution for a multiobjective problem is a solution
whose objective vector components could not been
improved simultaneously. More formally, consider,
without loss of generality, the minimization of the n
components of a vector function f. Then, a z, € X
is said to be Pareto optimal if and only if there is no
z, € X for which v = f(zy) = (fi(zy), ..., falzy))
dominates u = f(zy) = (fi(zy), ..., fa(zy)), that is,
there is no z, € X such that:

Vie{l,..,nbv;,<uw; A Fe{l . ,n}|lvu<uy

The vector u is said to be non-dominated.

The set of all Pareto optimal solutions is referred as
the Pareto optimal set, the Pareto front or even the
trade-off surface. The search of such a set is called
Pareto optimization.

Obviously, if the objectives are competitive, the
Pareto set is not reduced to a single element. This
i1s mainly why Pareto optimization involves different
reflections with regards to classical optimization
techniques, including Genetic Algorithms (Ga),
which take care of a single objective.



2 Genetic Algorithms and Multiob-
jective Optimization

Scalar optimizations methods such as Hill Climbing,
Simulated Annealing and even Genetic Algorithms,
traditionally perform poorly on multiobjective op-
timization (M00). Nevertheless, unlike the other
methods, GAs can be easily adapted to such opti-
mization problems. To date, evolutionist approaches
to M0OO can be considered as belonging to one of the
two following category.

2.1 Non Pareto Approaches

Since numerous relevant scalar optimization meth-
ods are available, the first approach has been to
reduce MOO to single objective optimization. This
can be done by using a weighted sum to combine all
objectives into an unique scalar value. Limitations
come from the fact that choosing weights in such
cases is critical and need knowledge about the prob-
lem at hand. Moreover, such a linear combination
does not enable the GA to find solutions located in
concave regions of trade-off surfaces. One can also
optimize separately each objective ([11]), but it has
been shown ([6]) that both approaches are identi-
cal as they are both limited by their intrinsic lin-
earity. Although previous approaches seek for non
dominated final solutions, none makes use of the no-
tion of Pareto optimality.

2.2 Pareto Approaches

Pareto partial order has been used by Goldberg ([8])
as well as Fonseca and Fleming ([5]) to address M0o0.
For instance, one can start with ¢ = 1, assign rank ¢
to all non-dominated individuals of the current popu-
lation, remove them, increase i and iterate. Different
versions have been developed based on the number
of dominating individuals, or using a tournament se-
lection method rather than ranking ([9]).

In all case, the GA must converge toward the set of
Pareto solutions and stabilize it. Such sets are most
of the time unstable because crossover is not able to
be closed between individuals subsumed by non com-
patible schemata. Next section explains the concept
of schemata which is essential to Genetic Algorithms.
We then present a new approach allowing a wider
range of sets to be compatible in order to easer GAs
optimization in the multiobjective context.

3 Dual Genetic Algorithms

This section introduces Dual Genetic Algorithms
(DGA) and analyses in details schemata they rely on.

3.1 Relational Schemata

Given chromosomes defined by ¢ = {0, 1}*, a schema
is a generic pattern s = {0,1,*}* which subsumes
(can relax to) a set of chromosomes by instanciating
occurrences of the joker character (*) inside it. For
instance, *1 corresponds to {01, 11} but {00, 11} can
not be represented by a single schema. This is the
expressiveness limitation for Positional Schemata (P-
schemata) i.e. schemata providing information about
each locus independently to the others.

Relational Schemata (R-schemata) have been intro-
duced ([2]) to express informations about relations
between different loci. Such schemata are defined by
s = {X,X, #}* where X stands for a boolean variable
and X its complement. Now, sets such as {00, 11}
and {10,01} can be expressed by R-schemata as re-
spectively XX and XX.

3.2 Implementing R-Schemata

The key idea is to design a Genetic Algorithm able
to implicitly process R-schemata just as Simple Ge-
netic Algorithms do with P-schemata. By doing so
we take advantage of the enhanced expressiveness of
schemata to increase possible stable sets of individ-
uals size.

Basically, R-schemata are implemented by the use of
meta-genes ([2]). Each chromosome is added a meta-
gene in front of it which manages the interpretation
of the rest of the string. If meta-gene is set to 0,
rest of the string remains unchanged, otherwise it is
complemented.

Thus, for a given problem involving A gene long chro-
mosomes and thus defining a search space! Q =
{0,1}*, the pGa will have to optimize a so-called
dual search space < Q >= {0, 1} x Q. Evaluation will
be achieved by first transcriptising genotypes from
< © > back to Q according to the previously stated
rule in order to be able to apply them the fitness
function corresponding to our considered problem.
In such a context, a P-schema of < € > can either
represent a P-schema or R-schema of 2. When the
meta-locus is instanciated, for instance, 1 0, the p-
schema of < Q > corresponds to a P-schema of Q,
here *1. On the contrary, when the meta-locus is not

IThere is a mapping, called decoding, from €, the space
the GA searches, to X, the search space of the problem.



instanciated, for instance %01, it will corresponds to
a R-schema of Q, here XX.

3.3 Mirroring

Along with this enhanced schemata expressiveness,
DGAs also provide two separate levels for the evo-
lutionist dynamics to be considered. Phenotypic ho-
mogeneity is now enabled to coexist along with geno-
typic diversity obtained through presence in the pop-
ulation of complementary chromosomes.

In order to ensure such a diversity, we introduce a
new operator, the mirroring operator. This one sim-
ply inverts the whole chromosome by complementing
each bit. The genotype of the individual is modified,
but its phenotype remains unchanged. Moreover,
when a chromosome is cross with an inverted ver-
sion of itself, the result may be any point in Q. So,
while not changing the efficiency of the population
for the problem, mirroring increases the population
capacity to produce new individuals.

4 DGA and Pareto Optimization

Previous work ([1]) has enlightened the benefits of
using DGA on two multiobjective problems. In this
section, we summarize results obtained. Then, in
the next section, we introduce Multi Royal Road
Functions.

4.1 MO Minimal Problem

We define as a MO Minimal Problem a problem in-
volving two objective functions on A = 2 gene long
chromosomes. Qur first problem ranks? solutions,
highest first, as follows: [{00,10}, {01, 11}]. The set
{00, 10}, represented by schema #0 (and thus being
a stable predicate) is the best tradeoff for this prob-
lem. We define a second problem ranking differently
solutions : [{01, 10}, {11}, {00}]. This time, the best
trade-off is set {01, 10} which is unstable as not rep-
resentable by a P-schema. Nevertheless, it is now
possible to represent it by R-schema XX thus strongly
suggesting DGAs as good candidates for such prob-
lem. Figures 1 and 2 show an instance of respectively
the first and the second problem, where the two func-
tions have to be minimized.

Simulations of either sGA or DGA dynamic showed
that on first problem convergence was quick toward
a stable population oscillating only between the two

2In the following, rank refers to Pareto rank as defined in
2.2
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Figure 1. An instance of the first minimal
problem
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Figure 2. Aninstance of the second minimal
problem

best trade-offs®. Second problem revealed to be in-
tractable for sGas while DGAs were plenty successful
by finding out a stable set of genotypes transcriptis-
ing to phenotypes of the optimal set.

4.2 MO Trap Problem

As previous problem was based on A = 2 genes
long chromosome to be computable by an equational
model of GA we chose to investigate a little more
realistic problem called Multiobjective Trap Prob-
lems. The figure 3 shows the two designed functions.
They are defined on the normalized unitation of the
chromosomes*, feature a local and a global optima,
return values between 0 and 1, and should be mini-
mized.

There are two Pareto sets;

e The local one (right) located between 0.9 and 1.

3This oscillation being due to the sharing method.
4i.e. the number of bits set to 1 divided by the total number
of bits



e The global one (left) located between 0 and 0.1.

These functions rely on two parameters; r which
measures the importance of the global Pareto set
with regard to the local one, and 2z, which measures
the relative importance of the basin of attraction of
the two Pareto sets.

We experimented while tuning both parameters. Re-

Figure 3. Multiobjective Trap Problems

sults allowed us to conclude that, contrary to sGas,
DGAs revealed to be able to find the good set for any
parameters values with a good proportion of popu-
lations inside it.

For » = 0, both Pareto sets are equivalent so that
there is a unique Pareto set where each element of
each subset is at least at a hamming distance of 2
from any element of the other subset. Contrary to
DGAS, SGAs were able to find only one subset as it 1s
hard to make individual from incompatible schemata
coexist. The explanation comes from the fact that
individuals at a distance é from each other in the ba-
sic space, may be either at distance é§ or at distance
A+ 1—46 (where A is the chromosome length in the
basic space) in the dual space [3].

5 Pareto Elitism

As previously exposed, there are two ways to include
multiobjective concept into Genetic Algorithms. For
the reasons invoked above, we use the second one,
which is the Pareto approach.

To design our method, we made use of two distinct
techniques. The first one is the so-called steady state
technique. The second one is the sharing technique.

5.1 Steady State for Pareto Optimiza-
tion

Steady state technique, as defined by Syswerda
in [12], replaces only a few members during one

generation, leaving the others quiet. In order to
do this, some new individuals are generated, using
classical parental selection, eventually crossover
and mutation operators. In order to insert these
new individuals in the population, room must be
made in this one. The worst technique to make
room is random deletion. This leads to equivalent
performance than sGa. There is a somewhat clever
strategy, that is to delete the worst individuals. This
technique is well suited for Pareto optimization,
since there is a way to design a relevant ranking
scheme in this context. The population is ranked
and individuals with lower ranks are removed. From
this technique, one can expect a improved stability,
since 1t can be compared to a super elitism.

5.2 Sharing for Pareto Optimization

Pareto optimization aims to obtain a set of Pareto
optimal solutions.  This set, in general, is not
reduced to a single point, since the objectives are
most often competitive. However, the natural trend
of a Genetic Algorithm is to converge toward a
unique individual. To counterbalance this effect,
several techniques have been developed. The general
goal of such methods is to preserve diversity in the
population. We use here the sharing technique ([8]).
This method shares the number of expected children
between individuals belonging to a same niche. The
niches are, in general, defined with a neighborhood
along either the genotypic space (e.g. Hamming
distance between chromosomes) or the phenotypic
one (e.g. Fuclidean distance between fitnesses).
For Pareto optimization, we use a sharing based
on the Euclidean distance between the objective
vectors. Sharing is used to obtain a density measure
around an individual. The Pareto ranking considers
equivalently all the non-dominated individuals
in the population. This may lead to premature
convergence or convergence toward a perhaps Pareto
optimal but unique solution. This equivalence 1s
removed by assigning an higher rank to individuals
with smaller density.

The sharing has an orthogonal effect to the selection
pressure.  While selection makes the population
converges towards a Pareto optimal solution, sharing
makes the population spread over the Pareto set.

5.3 Progressive Sharing

Sharing involves a strong side effect. Indeed, con-
sider two Pareto optimal solutions present in the



population. If at a given generation, a solution has
a greater density than the other, this solution gets a
lower expected number of children, and so will have
a lower density in the next generation. There is a
kind of instability that might be prejudical.

To overcome this difficulty, we modify the classical
sharing scheme. Instead of calculate the density of
an individual relatively to the whole population, we
calculate it with only the population part following
this individual, given any ordering of the population.
This way, we ensure that in a niche, there is always
one individual with the lowest density (i.e. 1) and
so, that each optimal niche has at least one member
ranked in the head of population.

This mechanism, combined with steady state and
ranking, allows a greater stability and a wider found
Pareto set, and prevents from premature conver-
gence. We choose the name Pareto FElitism, since
once a relative optimal solution is found, it stays in
the population (elitism), but the search toward other
regions of the Pareto front is encouraged through
sharing.

6 Multi Royal Roads

6.1 Royal Road Functions

Royal Road Functions were designed to provide a set
of easy problems for Genetic Algorithms [10, 7]. In
fact they revealed to be not so easy and lead to in-
teresting studies, in particular with DGa ([4]). These
functions reward the presence of user defined blocks
in the chromosomes. Since Genetic Algorithms im-
plicitly use blocks to obtain better and better solu-
tions, by specifying explicitly such blocks, one at-
tempts to offer a “royal road” towards the optimum.
In this paper, we are interested with the first version
of Simple Royal Road Functions. In this version,
there are height blocks, defined by a user specified
pattern (Figure 4). For an individual, each block
matched by its chromosome, gives a constant reward
(here 4).  We use here height bits long patterns,
giving 64 bits long chromosomes.

6.2 Combining Several RR Functions

Consider a two objectives problem where each objec-
tive is a RR Function, as defined above. Obviously,
if the required patterns of both functions are identi-
cal, the two objectives aren’t competitive and so the
problem admits an unique Pareto optimal solution.
Thus, in the following, we don’t consider this case.
On the contrary, if the two patterns aren’t identical,
the objectives are truly competitive. The solution 1is

] Required Pattern

[ 1 Not specified genes

Figure 4. Blocks defining the Royal Road
Function

a set of Pareto optimal solutions.

We construct such a problem because the number
of such solutions is known, and depends only on
the number of blocks. They are one more different®
Pareto optimal solution than the number of blocks.
So, in our case, the cardinality of the Pareto set is 9.
In figure 5 the elements of this set are shown with cor-
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Figure 5. Solutions for the Multi Royal Road
Function

responding chromosomes. It is worth noticing that
there may be several chromosomes corresponding to
a particular solution. These solutions are character-
izable by the relation f1 + fy = 32.

Thus, the Pareto set is well known. So, it is not
difficult to count, for a given method the number of
different Pareto optimal solutions found. This leads
to the definition of another criterion to measure effi-
ciency for Pareto optimization. This criterion is the
coverage of the trade-off surface. The coverage must
be as wider as possible. In the case of Multi RR func-
tion, since the cardinality of the Pareto set is small,
one can expect that all the Pareto optimal solutions

will be found.
6.3 Experimental Results

Figures 6 and 7 show the evolution of the number
of different optimal solutions within the current pop-

5in the objectives space (J) not in the variables space (X).



ulation. The two objectives are RR functions with
required patterns set to a 8 ones block for the first
function, and set to a 8 zeros These graphs are ob-
tained by averaging 50 different runs for each meth-
ods.

The figure 6 is a comparison between Dual Genetic
Algorithm and Standard Genetic Algorithm using
both the Pareto Elitism scheme for selection and re-
production. The steady part of the population is 60
percent, that is, each generation only 40 percent of
the population is generated. The population size is
set to 100, that is very much more than the cardinal-
ity of the target set. The crossover and the mutation
rate are respectively set to 1.0 and 0.005. For the
mirroring operator, the application rate is 0.1.

As one can see, for the DGA, there i1s a convergence
toward around 8, when the sGA finds only around 1
solution. A remark has to be done. These graphs
don’t give a true view of what is really happens. In-
deed, the final populations obtain with the DGA get
either 9 or 0 solutions. Once an optimal solution ap-
pears, the others are quickly found, as figure 8 shows
it. In introduction to RR functions, we said that
these functions were not so easy. The fact that the
DGA 1s not able to find one solution i1s due to an
intrinsic hardness of RR functions, which is the dif-
ficulty to construct a rewarded block by mutation or
crossover without information telling how near the
current block is. For instance, considering only mu-
tation, if the current block is at a Hamming distance
of 6 from the pattern, § mutations must occur to
find it. So, a more relevant way of reading the nDGA
curve is the percentage of runs that have found the
entire Pareto set at the generation ¢. These consid-
erations don’t stand for the sGA as the number of
found Pareto solution in the final population is be-
tween 0 and 3 for the 50 runs.

The figure 7 shows comparison between a DGA with
Pareto Elitism and a DGA with a Niched Pareto Tour-
nament method (drawn from [9]). The settings are
the same than above except that for the tournament
method, steady state is set to zero (this is a gener-
ational method), crossover rate is set to 0.8 and the
tournament size parameter, which tells how many in-
dividuals are implied in a tournament 1s set to 10. As
we expect, the tournament method curve is strongly
noisy. This instability unable the method to find the
9 solutions.

7 Conclusion

Previous works showed the efficiency of the Dual ap-
proach on multiobjective problems. This efficiency
was mainly due to the expressiveness improvement
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Figure 6. Comparison between DGA and
SGA with Pareto Elitism
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Figure 7. Comparison between Pareto
Elitism and Pareto Tournament

the DGA involves. Here, we present a new method to
address this class of problem. This method, called
Pareto Elitism, offers a greater stability, a wider fi-
nal Pareto set, than a tournament like method for
example. Since we only modify the algorithm, the
Duality concept still apply. So, the combination DGa
and Pareto Elitism, seems to be a very efficient way
of thinking the multiobjective optimization. We get
very good results on theoretical problems. However,
we still lack real engineering problems in order to val-
idate our approach. There is an open question: do
the advantages of such methods still remains when
the problem size increases.

Our future works would be to look for such a real
size problem, and to test different methods in order
to see if the theoretical results still apply. In the
same time, we work to improve more the expressive-
ness of the schemata the GaAs implicitly processes.
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Figure 8. Zoom on a typical run for DGA
with Pareto Elitism

The meta approaches, which the DGAs belongs, are
just beginning, so there is still a lot of works to do.
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