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Bâtiment 210, Université de Paris-Sud 91405 Orsay, France

alain.barrat@th.u-psud.fr

ALESSANDRO VESPIGNANI

School of Informatics and Biocomplexity Center
Indiana University, Bloomington, IN 47406, USA

alexv@indiana.edu

Received (received date)
Revised (revised date)

We report a study of the correlations among topological, weighted and spatial properties
of large infrastructure networks. We review the empirical results obtained for the air
transportation infrastructure that motivates a network modeling approach which inte-

grates the various attributes of this network. In particular we describe a class of models
which include a weight-topology coupling and the introduction of geographical attributes
during the network evolution. The inclusion of spatial features is able to capture the ap-
pearance of non-trivial correlations between the traffic flows, the connectivity pattern and
the actual distances of vertices. The anomalous fluctuations in the betweenness-degree
correlation function observed in empirical studies are also recovered in the model. The
presented results suggest that the interplay between topology, weights and geographical
constraints is a key ingredient in order to understand the structure and evolution of
many real-world networks.

Keywords: Networks; Traffic; Transportation systems.

1. Introduction

The empirical evidence coming from studies on systems belonging to areas as diverse

as social sciences, biology and computer science have shown that in a wide range
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of networks the occurrence of vertices with a very large degree (number of links to

other vertices) is very common [2, 17, 4, 43]. The presence of these “hubs” often

goes along with very large degree fluctuations. The large topological heterogeneity

associated to these features is statistically expressed by the presence of heavy-tailed

degree distributions with diverging variance that have a very strong impact on the

networks’ physical properties such as resilience and vulnerability, or the propagation

of pathogen agents [15, 38, 1, 42].

The purely topological definition of networks, however, misses important at-

tributes which are frequently encountered in real-world networks. In the first in-

stance, networks are far from a binary structure and are better represented as

weighted graphs with the intensity of links that may vary over many orders of mag-

nitude. Indeed, in many graphs ranging from food-webs to metabolic networks, large

variations of the link intensities are empirically observed [24, 19, 31, 32, 29, 7, 3].

Notably, the statistical properties of weights indicate non-trivial correlations and

association with topological quantities [7].

Another important element of many real networks is their embedding in the

real space. For instance, most people have their friends and relatives in their neigh-

borhood, transportation networks depend on distance, and many communication

networks include devices with definite transmission ranges [27, 37, 23, 20, 21]. A par-

ticularly important example of such a “spatial” network is the Internet which is a set

or routers linked by physical cables with different lengths and latency times [30, 43].

An analogous situation is faced in the air transportation network with routes cov-

ering very different distances. The length of the link is a very important quantity

usually associated with an intrinsic cost in the establishment of the connection. If

the cost of a long-range link is high, most of the connections starting from a given

node will go to the closest neighbors in the embedding space. Long-range links, on

the other hand, correspond usually to connections towards already well-connected

nodes (hubs). This seems natural in the case of the air transportation network

for instance: short connections go to small airports while long distance flights are

directed preferentially towards large airports (i.e. well connected nodes). It is there-

fore natural to find that spatial constraints can have important consequences on the

topology of the resulting network [13, 25, 34]. This issue is particularly important

in spatial economics where the evolution of an economic system depends strongly

on the geographical distribution of the economic activity [5].

In this article, we discuss the interplay of the three aforementioned ingredients

(heterogeneous topology, weights and spatial constraints) in a model of growing

network combining these ingredients at once. The proposed model is obtained as the

embedding of the weighted growing network introduced in [8] in a two-dimensional

geometrical space. Spatial constraints are translated into a preference for short

links, and combined with the coupling between the evolution of the network and

the dynamical rearrangement of the weights. This mechanism naturally leads to

the appearance of many features observed in real-world networks, in particular the
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non-linear correlations between weights and topology, and the large fluctuations of

the betweenness centrality. Let us note that although we were motivated by the

airport network, we don’t intend here to present a specific model for this network

but rather to investigate the effects of different ingredients.

The paper is organized as follows. In section 2, we briefly review some impor-

tant empirical results of the North-American airline network, highlighting the most

salient geographical effects. Sections 3 and 4 are devoted to the presentation and to

the numerical study of the spatial weighted model, stressing the effect of the spatial

embedding and constraints on the properties of the resulting network. In section 5,

we present a summary of the results and conclusions about large network modeling.

2. A case study: Space, topology and traffic in the North

American airline network

2.1. Topological characterization

The characteristics of the world-wide air-transportation network (WAN) using the

International Air Transportation Association (IATA) database [28] have been pre-

sented in [7]. The network is made of N = 3880 vertices and E = 18810 edges

and shows both small-world and scale-free properties as also confirmed in different

datasets and analyses [31, 32, 26, 25]. In particular, the average shortest path length,

measured as the average number of edges separating any two nodes in the network

shows the value 〈`〉 ' 4.4, very small compared to the network size N . The degree

distribution, takes the form P (k) = k−γf(k/kx), where γ ' 2.0 and f(k/kx) is an

exponential cut-off function. The degree distribution is therefore heavy-tailed with

a cut-off that finds its origin in the physical constraints on the maximum number

of connections that a single airport can handle [26, 25, 4]. The airport connection

graph is therefore a clear example of small-world network showing a heavy-tailed

degree distribution and heterogeneous topological properties. This heavy-tailed dis-

tribution is the signature of very large degree fluctuations a which will have a crucial

impact on all dynamical processes which take place on this type of networks.

The world-wide airline network necessarily mixes different effects. In particular

there are clearly two different spatial scales, global (intercontinental) and domestic.

The intercontinental scale defines two different groups of travel distances and for the

statistical consistency we eliminate this specific geographical constraint by focusing

on a single continental case. Namely, in the following we will essentially consider the

North-American network constituted of N = 935 vertices with an average degree

〈k〉 ≈ 8.4 and an average shortest path 〈`〉 ' 3.9. The statistical topological prop-

erties of the North American network are consistent with the WAN. In particular,

the North American network presents a degree distribution statistically consistent

with the world-wide airline network. Indeed, we observe (Fig. 1) also in this case a

aThis can also be observed by a very large value of the variance or equivalently by the fact that
〈k2〉 � 〈k〉2.
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power-law behavior on almost two orders of magnitude, followed by a cut-off indi-

cating the maximum number of connections possible due to limited airport capacity

and to the size of the network considered.
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Fig. 1. Cumulative degree distribution Pc(k) for the North-American network. The straight line
indicates a power-law decay with exponent γ − 1 = 0.9.

A further characterization of the network is provided by considering quantities

that takes into account the global topology of the network. For instance, the degree

of a vertex is a local measure that gives a first indication of its centrality. However,

a more global approach is needed in order to characterize the real importance of

various nodes. Indeed, some particular low-degree vertices may be essential because

they provide connections between otherwise separated parts of the network. In

order to take properly into account such vertices, the betweenness centrality (BC)

is commonly used [18, 39, 22, 14]. The betweenness centrality of a node v is defined

as

g(v) =
∑

s6=t

σst(v)

σst
(1)

where σst is the number of shortest paths going from s to t and σst(v) is the number

of shortest paths going from s to t and passing through v. This definition means that

central nodes are part of more shortest paths within the network than peripheral

nodes. Moreover, the betweenness centrality gives in transport networks an estimate

of the traffic handled by the vertices, assuming that the number of shortest paths is

a zero-th order approximation to the frequency of use of a given node. It is generally

useful to represent the average betweenness centrality for vertices of the same degree

g(k) =
1

N(k)

∑

v/kv=k

g(v) . (2)

where N(k) is the number of nodes of degree k. For most networks, g(k) is strongly

correlated with the degree k and in general, the largest the degree and the largest
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the centrality. For scale-free networks it has been shown that the centrality scales

with k as

g(k) ∼ kµ (3)

where µ depends on the network [39, 22, 14] and which value for the North Amer-

ican network is µ ≈ 1.2. For some networks however, the BC fluctuations around

the behavior given by Eq. (3) can be very large and “anomalies” can occur, in

the sense that the variation of the centrality versus degree is not a monotonous

function. Guimerà and Amaral [25] have shown that this is indeed the case for the

air-transportation network. This is a very relevant observation in that very central

cities may have a relatively low degree and vice versa. In Fig. 2 we report the aver-

age behavior along with the scattered plot of the betweenness versus degree of all

airports of the North American network. Also in this case we find very large fluc-

tuations around the average with a behavior similar to those observed in Ref. [25].

Interestingly, Guimerà and Amaral have put forward a network model embedded in

real space that considers geopolitical constraints. This model appears to reproduce

the betweenness centrality features observed in the real network pointing out the

importance of space as a relevant ingredient in the structure of networks. In the fol-

lowing we focus on the interplay between spatial embedding, topology and weights

in a simple general model for weighted networks in order to provide a modeling

framework considering these three aspects at once.
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Fig. 2. Scatter-plot of the betweenness centrality versus degree for nodes of the North-American
air-transportation network. The red squares correspond to the average BC versus degree. The
straight line is a power law fit with exponent µ ≈ 1.2.

2.2. Traffic properties

The airline transportation infrastructure is a paramount example of large scale

network which can be represented as a complex weighted graph: the airports are the

vertices of the graph and the links represent the presence of direct flight connections
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among them. The weight on each link is the number of maximum passengers on the

corresponding connection.

More generally, the properties of a graph can be expressed via its adjacency

matrix aij , whose elements take the value 1 if an edge connects the vertex i to the

vertex j and 0 otherwise (with i, j = 1, ..., N where N is the size of the network).

Weighted networks are usually described by a matrix wij specifying the weight on

the edge connecting the vertices i and j (wij = 0 if the nodes i and j are not

connected). In the following we will consider only the case of symmetric positive

weights wij = wji ≥ 0.

Along with the degree of a node, a very significative measure of the network

properties in terms of the actual weights is obtained by looking at the vertex strength

sw
i defined as [7]

sw
i =

∑

j∈V(i)

wij (4)

where the sum runs over the set V(i) of neighbors of i. The strength of a node

integrates the information both about its connectivity and the importance of the

weights of its links and can be considered as the natural generalization of the connec-

tivity. When the weights are independent from the topology, we obtain sw ' 〈w〉k

where 〈w〉 is the average weight. In the presence of correlations we obtain in general

sw ' Akβw with βw = 1 and A 6= 〈w〉 or βw > 1.

For the North-American air transportation network we observe a non linear

behavior with exponent βw ' 1.7 (see Fig. 3) while for the global WAN network [7]

we obtain βw(WAN) = 1.5 ± 0.1. These values of βw larger than one imply that

the strength of vertices grows faster than their degree, i.e. the weight of edges

belonging to highly connected vertices tends to have a value higher than the one

corresponding to a random assignment of weights (in the randomized version of the

network where the weights are randomly re-distributed on the existing topology of

the network, we checked that we obtain βw = 1). There is thus a strong correlation

between the weight and the topological properties which means that the larger is

an airport, the more traffic it can handle. The fingerprint of these correlations is

also observed in the behavior of the average weight as a function of the end points

degrees 〈wij〉 ∼ (kikj)
θ with an exponent θNA = 0.7± 0.1. for the North-American

network and θWAN = 0.5±0.1 for the WAN [7] (a simple argument presented in [7]

suggests that in most cases, the exponents θ and βw are related by βw = 1 + θ).

The topological clustering [45] is defined as the fraction of connected neighbors

C(i) =
2Ei

ki(ki − 1)
(5)

where Ei is the number of links between the neighbors of node i and ki(ki − 1)/2

is the maximum number of such links (ki is the degree of node i).

The topological clustering however doesn’t take into account the fact that some

neighbors are more important than others. We thus have to introduce a measure of
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Fig. 3. Weight and distance strengths versus degree for the North-American network. The dashed
lines correspond to the power-laws βd ' 1.4 and βw ' 1.7.

the clustering that combines the topological information with the weight distribu-

tion of the network. The weighted clustering coefficient is defined as [7]

Cw(i) =
1

sw
i (ki − 1)

∑

j,h

(wij + wih)

2
aijaihajh. (6)

This quantity Cw(i) is counting for each triple formed in the neighborhood of the

vertex i the weight of the two participating edges of the vertex i. The normalization

factor sw
i (ki − 1) ensures that 0 ≤ Cw

i ≤ 1 and that Cw
i recovers the topological

clustering coefficient in the case that wij = const. It is customary to define Cw and

Cw(k) as the weighted clustering coefficient averaged over all vertices of the network

and over all vertices with degree k, respectively. The ratio Cw/C (and similarly

Cw(k)/C(k) which allow an analysis with respect to the degree k) indicates if the

interconnected triples are more likely formed by the edges with larger weights.

Another quantity used to probe the networks’ architecture is the behavior of

the average degree of nearest neighbors, knn(k), for vertices of degree k [44]. This

last quantity is related to the correlations between the degree of connected ver-

tices since it can be expressed as knn(k) =
∑

k′ k′P (k′|k), where P (k′|k) is the

conditional probability that a given vertex with degree k is connected to a vertex

of degree k′. In the absence of degree correlations, P (k′|k) does not depend on k

and neither does the average nearest neighbors’ degree; i.e. knn(k) = const. [44]. In

the presence of correlations, the behavior of knn(k) identifies two general classes of

networks. If knn(k) is an increasing function of k, vertices with high degree have

a larger probability to be connected with large degree vertices. This property is

referred in physics and social sciences as assortative mixing [40]. On the contrary, a

decreasing behavior of knn(k) defines disassortative mixing, in the sense that high

degree vertices have a majority of neighbors with low degree, while the opposite

holds for low degree vertices.
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Along with the weighted clustering coefficient, we can measure the weighted

average nearest neighbors degree, defined as

kw
nn(i) =

1

si

N
∑

j=1

aijwijkj . (7)

This definition implies that kw
nn(i) > knn(i) if the edges with the larger weights are

pointing to the neighbors with larger degree and kw
nn(i) < knn(i) in the opposite

case. The kw
nn(i) thus measures the effective affinity to connect with high or low

degree neighbors according to the magnitude of the actual interactions. As well,

the behavior of the function kw
nn(k) (defined as the average of kw

nn(i) over all ver-

tices i with degree k) marks the weighted assortative or disassortative properties

considering the actual interactions among the system’s elements. Figure 4 displays

for the North-American airport network the behavior of these various quantities

as a function of the degree. An essentially flat kw
nn(k) is obtained and a slight dis-

assortative trend is observed at large k for the knn(k), due to the fact that large

airports have in fact many intercontinental connections to other hubs which are

located outside of North America and are not considered in this “regional” net-

work. The clustering is very large and slightly decreasing at large k. This behavior

is often observed in complex networks and is here a direct consequence of the role

of large airports that provide non-stop connections to different regions which are

not interconnected among them. Moreover, weighted correlations are systematically

larger than the topological ones, signaling that large weights are concentrated on

links between large airports which form well inter-connected cliques (see also [7] for

more details).
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Fig. 4. Assortativity and clustering for the North-American network. Circles correspond to topo-
logical quantities while squares are for affinity and weighted clustering.

For a given node i with connectivity ki and strength sw
i different situations

can arise. All weights wij can be of the same order sw
i /ki. In contrast, the most

heterogeneous situation is obtained when one weight dominates over all the others.
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A simple way to measure this “disparity” is given by the quantity Y2 introduced in

other context [16, 12]

Y2(i) =
∑

j∈V(i)

[

wij

si

]2

(8)

If all weights are of the same order then Y2 ∼ 1/ki (for ki � 1) and if a small

number of weights dominate then Y2 is of the order 1/n with n of order unity.

This quantity was recently used for metabolic networks [3] which showed that for

these networks one can identify dominant reactions. For the WAN and the North

American network, we observe a behavior consistent with a decay for large degrees

of the form Y2 ∼ 1/k which indicates that for large airports, all connections carry

essentially the same number of passengers (even if there are obviously differences

among these connections).

2.3. Spatial analysis

The spatial attributes of the North American airport network are embodied in

the physical spatial distance, measured in kilometers or miles, characterizing each

connection. Fig. 5 displays the probability distribution P (dij) of the distances dij

of the direct flights. These distances correspond to Euclidean measures of the links

between airports and clearly show a fast decaying behavior reasonably fitted by an

exponential. The exponential fit gives a value for a typical scale of the order 1000

kms. The origin of the finite scale can be traced back to the existence of physical

and economical restrictions on airline planning in a continental setting.
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Fig. 5. Distribution of distances (in kms) between airports linked by a direct connection for the
North-American network. The straight line indicates an exponential decay with scale of order 1000
km.

Since space is an important parameter in this network, another interesting quan-
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tity is the distance strength of i

sd
i =

∑

j∈V(i)

dij (9)

where dij are the Euclidean distances of the connections departing from the airport

i. This quantity gives the cumulated distances of all the connections from (or to)

the considered airport. Similarly to the usual weight strength, uncorrelated random

connections would lead to a linear behavior of sd(k) ∝ k while we observe in the

North-American network a power law behavior

sd(k) ∼ kβd (10)

with βd ' 1.4 (Fig. 3). This result shows the presence of important correlations

between topology and geography. Indeed, the fact that the exponents appearing

in the relations (4) and (10) are larger than one have different meanings. While

Eq. (4) means that larger airports have connections with larger traffic, (10) implies

that they have also farther-reaching connections. In other terms, the traffic (and

the distance) per connection is not constant but increases with k. As intuitively

expected, the airline network is an example of a very heterogeneous network where

the hubs have at the same time large connectivities, large weight (traffic) and long-

distance connections [7], related by super-linear scaling relations.

3. The model

Early modeling of weighted networks just considered weight and topology as uncor-

related quantities [48]. This is not the case in real world networks where a complex

interplay between the evolution of weights and topological growth does exist as well

as spatial constraints. In the following, we discuss the effects of these ingredients

on a simple model of an evolving network.

3.1. The weight-topology coupling ingredient

Previous approaches to the modeling of weighted networks focused on growing

topologies where weights were assigned statically, i.e. once for ever, with differ-

ent rules related to the underlying topology [48, 50]. These mechanisms, however,

overlook the dynamical evolution of weights according to the topological variations.

We can illustrate this point in the case of the airline network. If a new airline con-

nection is created between two airports it will generally provoke a modification of

the existing traffic of both airports. In the following, we review a model that takes

into account the coupled evolution in time of topology and weights. The model dy-

namics starts from an initial seed of N0 vertices connected by links with assigned

weight w0. At each time step, a new vertex n is added with m edges (with initial

weight w0) that are randomly attached to a previously existing vertex i according

to the probability distribution

Πn→i =
si

∑

j sj
. (11)
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This rule of “busy get busier” relaxes the usual degree preferential attachment,

focusing on a strength driven attachment in which new vertices connect more likely

to vertices handling larger weights and which are more central in terms of the

strength of interactions. This weight driven attachment (Eq. (11)) appears to be a

plausible mechanism in many networks [8].

The presence of the new edge (n, i) introduces variations of the existing weights

across the network. In particular, we consider the local rearrangements of weights

between i and its neighbors j ∈ V(i) according to the simple rule

wij → wij + ∆wij , with ∆wij = δ
wij

si
. (12)

This rule considers that the establishment of a new edge of weight w0 with the vertex

i induces a total increase of traffic δ that is proportionally distributed among the

edges departing from the vertex according to their weights (see Fig. 6), yielding

si → si + δ + w0. We will focus on the simplest model with δ = const, but one can

consider different choices [9, 10, 41] of ∆wij depending on the specific properties of

each vertex (wij , ki, si). After the weights have been updated the growth process

is iterated by introducing a new vertex with the corresponding re-arrangement of

weights.

s       s + w  + i i 
i

n

δ0

0w

Fig. 6. Illustration of the construction rule. A new node n connects to a node i with probability
proportional to si/

P

j sj . The weight of the new edge is w0 and the total weight on the existing
edges connected to i is modified by an amount equal to δ.

The model depends only on the dimensionless parameter δ (rescaled by w0),

that is the fraction of weight which is ‘induced’ by the new edge onto the others.

If δ ≈ 1, the traffic generated by the new connection will be dispatched in the

already existing connections. In the case of δ < 1 we face situations where a new

connection is not triggering a more intense activity on existing links. Finally, δ > 1

is an extreme case in which a new edge generates a sort of multiplicative effect that

is bursting the weight or traffic on neighbors.

The network’s evolution can be inspected analytically by studying the time

evolution of the average value of sw
i (t) and ki(t) of the i-th vertex at time t, and
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by relying on the continuous approximation that treats k, sw and the time t as

continuous variables [2, 17, 7]. One obtains sw
i (t) = (2δ+1)ki(t) which implies βw =

1 and a prefactor different from < w > which indicates the existence of correlations

between topology and weights. The fact that sw ∝ k is also particularly relevant

since it states that the weight-driven dynamics generates in Eq. (11) an effective

degree preferential attachment that is parameter independent. This highlights an

alternative microscopic mechanism accounting for the presence of the preferential

attachment dynamics in growing networks. The behavior of the various statistical

distribution can be easily computed and one obtains in the large time limit P (k) ∼

k−γ and P (s) ∼ s−γ with

γ =
4δ + 3

2δ + 1
. (13)

This result shows that the obtained graph is a scale-free network described by an

exponent γ ∈ [2, 3] that depends on the value of the parameter δ. In particular, when

the addition of a new edge doesn’t affect the existing weights (δ = 0), the model

is topologically equivalent to the Barabasi-Albert model [6] and the value γ = 3

is recovered. It is also possible to show analytically [8] that P (w) ∼ w−α where

α = 2 + 1/δ. The exponent α has large variations as a function of the parameter δ

and this feature clearly shows that the weight distribution is extremely sensible to

changes in the microscopic dynamics ruling the network’s growth.

3.2. The spatial ingredient

Space is an important ingredient in many systems and it is crucial to understand

its effect on the formation of networks. We consider this problem on a simple model

of a growing weighted network whose nodes are embedded in a two-dimensional

space. As in the weighted model above, it is reasonable to think that a newly

created node n will establish links towards pre-existing nodes with heavy traffic

or strength (hubs). Costs are however usually associated with distances and there

is a trade-off between the need to reach a hub in a few hops and the connection

costs. The cost naturally increases with the distance implying that the probability

of establishing a connection between the new node n and a given vertex i decays

as a function of the increasing Euclidean distance dni. As in the case of topological

preferential attachment (i.e. connecting probability proportional to the degree [6]),

this trade-off can be expressed in two different ways: the connecting probability can

decrease either as a power-law of the distance [33, 47, 49] or as an exponential with a

finite typical scale [13] as it seems more natural for networks such as transportation

networks (see Fig. 5) or technological networks [46]. All the effects described here

are obtained in the case of an exponential decay exp(−dni/rc) but are also present

in the case of a power-law d−a
ni (the effect of a decreasing scale rc is qualitatively

the same as the effect of an increasing exponent a). Eventually, the creation of new

edges will introduce new traffic which will trigger perturbations in the network.

This model therefore consists of two combined mechanisms:
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(1) Growth. We start with an initial seed of N0 vertices randomly located (with

uniform distribution) on a 2-dimensional disk (of radius L) and connected by

links with assigned weight w0. At each time step, a new vertex n is placed on

the disk at a randomly assigned position xn (still according to a uniform distri-

bution). This new site is connected to m previously existing vertices, choosing

preferentially nearest sites with the largest strength. More precisely, a node i is

chosen according to the probability

Πn→i =
sw

i e−dni/rc

∑

j sw
j e−dnj/rc

, (14)

where rc is a typical scale and dni is the Euclidean distance between n and i.

This rule of strength driven preferential attachment with spatial selection, gener-

alizes the preferential attachment mechanism driven by the strength to spatial

networks. Here, new vertices connect more likely to vertices which correspond

to the best interplay between Euclidean distance and strength.

(2) Weights dynamics. The weight of each new edge (n, i) is fixed to a given value

w0 (this value sets a scale so we can take w0 = 1). The creation of this edge will

perturb the existing interactions and we consider local perturbations for which

only the weights between i and its neighbors j ∈ V(i) are modified

wij → wij + δ
wij

sw
i

. (15)

After the weights have been updated, the growth process is iterated by introducing

a new vertex, i.e. going back to step (1.) until the desired size of the network is

reached.

The previous rules have simple physical and realistic interpretations. Equa-

tion (14) corresponds to the fact that new sites try to connect to existing vertices

with the largest strength, with the constraint that the connection cannot be too

costly. This adaptation of the rule “busy get busier” allows to take into account

physical constraints. The weights’ dynamics Eq. (15) expresses the perturbation

created by the addition of the new node and link. It yields a global increase of

w0 + δ for the strength of i, which will therefore become even more attractive for

future nodes.

The model contains two relevant parameters: the ratio between the typical scale

and the size of the system η = rc/L, and the ability to redistribute weights, δ.

Depending on the value of η and δ we obtain different networks whose limiting

cases are summarized in Figure 7. More precisely, we expect:

• For η � 1, the effect of distance is negligible and we recover the properties of

the weighted model discussed above. The effect of the redistribution parameter

δ is to broaden the various probability distributions, and to increase the cor-

relations between topology and weights. Moreover, in this case, no correlations

are introduced between the topology of the network and the underlying two-

dimensional space, so that the distance strength sd grows simply linearly with
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Fig. 7. Different limiting regimes of the model depending on the value of its parameters δ and η.

the degree sd ∼ k.

• When η decreases, additional constraints appear and have consequences that

we will investigate numerically in the following. Unless otherwise specified, the

simulations correspond to the parameters m = 3 (i.e. an average degree 〈k〉 =

6), and δ = 1.0. We consider networks of size up to N = 10, 000, and the results

are averaged over up to 100 realizations. All the observed dependences in η are

essentially the same for other investigated values of δ.

4. Model’s simulation

4.1. Topology and weights

At a purely topological level, the principal effect of a typical finite scale rc in the

creation of new connections is to introduce a cut-off in the scale-free degree distri-

butions [13]. In Fig. 8 we report the degree distribution for a fixed value of δ and

decreasing values η. A more pronounced cut-off appears at decreasing value of η

signaling the onset of a trade-off between the number of connections and their cost

in terms of Euclidean distance. The small-world properties of the network are as

well modified [13]: on the one hand, the increasing tendency to establish connections

in the geographical neighborhood favors the formation of cliques and leads to an

increase in the clustering coefficient (see inset of Fig. 9). On the other hand, this

same tendency leads to an increase in the diameter of the graph, measured as the

average shortest path distances between pairs of nodes. The diameter however still

increases logarithmically with the size of the graph, as shown in Fig. 9: the con-

structed networks do display the small-world property, even if strong geographical

constraints are present.

The correlations appearing between space, traffic and topology of the network

are affected by the presence of spatial constraints. Strikingly, the effect of the spatial

constraint is to increase both exponents βw and βd to values larger than 1 and

although the redistribution of the weights [Eq. (15)] is linear, non-linear relations

sw(k) and sd(k) as a function of k appear. For the weight strength the effect is not

very pronounced with an exponent of order βw ≈ 1.1 for η = 0.01, while for the

distance strength the non-linearity has an exponent of order βd ≈ 1.27 for η = 0.02
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η, with m = 3 and δ = 1. Inset: clustering coefficient as a function of η for N = 104, δ = 1 (circles)
and δ = 5 (squares). The data are averaged over 50 networks.

(the value of the exponents βw and βd depend on η; see also [36] for a spatial model

with βd > 1). We show on Fig. 10 the distance strength for two extreme situations

for which spatial constraints are inexistent (η = 10.0) or on the contrary very strong

(η = 0.02).

The nonlinearity induced by the spatial structure can be explained by the fol-

lowing mechanism affecting the network growth. The increase of spatial constraints

affects the trend to form global hubs, since long distance connections are less prob-

able, and drives the topology towards the existence of “regional” hubs of smaller

degree. The total traffic however is not changed with respect to the case η = ∞, and

is in fact directed towards these “regional” hubs. These medium-large degree ver-

tices therefore carry a much larger traffic than they would do if global “hubs” were

available, leading to a faster increase of the traffic as a function of the degree, even-

tually resulting in a super-linear behavior. Moreover, as previously mentioned, the
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Fig. 10. Distance strength versus k for η = 0.02 and η = 10.0 (the networks are obtained for
δ = 1, N = 104 , 〈k〉 = 6, and averaged over 100 configurations). When η is not small, space
is irrelevant and there are no correlations between degree and space. When spatial effects are
important (η = 0.02 � 1), non-linear correlations appear. We observe a crossover for k ' 10 − 20
to a power-law behavior and the power-law fit over this range of values of k is shown (full lines).

increase in distance costs implies that long range connections can be established

only towards the hubs of the system: this effect naturally lead to a super-linear

accumulation of sd(k) at larger degree values.

Spatial constraints have also a strong effect on the correlations between neigh-

boring nodes (Fig. 11). At large η, a disassortative network is created, as is the

case in most growing networks [11]; as η decreases, knn decreases, and an increas-

ing range of flat knn(k) appears: the tendency for small nodes to connect to hubs

is contrasted by the need to use small-range links. For small enough η, a nearly

neutral behavior more similar to what is actually observed in the airport network

is reached. Moreover, the affinity of nodes to establish strong links to large nodes,

measured by kw
nn(k), goes from a flat behavior at large η to a slightly assortative one

at small η. In all cases, the weighted correlation kw
nn(k) remains clearly larger than

the unweighted knn(k), showing that links to busier nodes are typically stronger.

A non-trivial clustering hierarchy is already displayed by the model without

spatial constraints. As previously mentioned, the decrease of η leads to an increase

of clustering. Moreover, the weighted clustering is always significantly larger than

the unweighted one, showing that the cliques carry typically an important traffic

(see Fig. 11). These effects are a general signature of spatial constraints as also

observed in a non weighted network [13].

4.2. Spatial constraints and betweenness centrality

The spatial constraints act at both local and global level of the network structure

by introducing a distance cost in the establishment of connections. It is therefore

important to look at the effect of space in global topological quantities such as the

betweenness centrality. The betweenness centrality of a vertex is determined by its

ability to provide a path between separated regions of the network. Hubs are natural

crossroads for paths and it is natural to observe a marked correlation between g
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〈k〉 = 6, η = 0.02 (circles) and η = 1 (squares). Data are averaged over 100 configurations. Empty
symbols refer to topological correlations while full symbols correspond to the weighted quantities
kw

nn and Cw .

and k as expressed in the general relation g(k) ∼ kµ. The exponent µ depends on

the characteristics of the network and we expect this relation to be altered when

spatial constraints become important. In the present model, Fig. 12 clearly shows

that this correlation in fact increases when spatial constraints become large (i.e.

when η decreases). This can be understood simply by the fact that the probability

to establish far-reaching short-cuts decreases exponentially in Eq. (14) and only the

large traffic of hubs can compensate this decay. Far-away geographical regions can

thus only be linked by edges connected to large degree vertices, which implies a

more central role for these hubs.

In order to better understand the effect of space on the properties of betweenness

centrality, we have to explicitly consider the geometry of the network along with

the topology. In particular, we need to consider the role of the spatial position

by introducing the spatial barycenter of the network. Indeed, in the presence of

a spatial structure, the centrality of nodes is correlated with their position with

respect to the barycenter G, whose location is given by xG =
∑

i xi/N . For a

spatially ordered network—the simplest case being a lattice embedded in a one-

dimensional space—the shortest path between two nodes is simply the Euclidean

geodesic. In a limited region, for two points lying far away, the probability that the

shortest path passes near the barycenter of all nodes is very large. In other words,

this implies that the barycenter (and its neighbors) will have a large centrality. In
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Fig. 12. Betweenness centrality versus degree for different values of η. Inset: Exponent µ (obtained
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averaged over 50 configurations). For strong spatial constraints long-range shortcuts are very rare
and hubs connect regions which are otherwise almost disconnected which in turn implies a larger
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Fig. 13. (a) Betweenness centrality for the (one-dimensional) lattice case. The central nodes are
close to the barycenter. (b) For a general graph, the central nodes are usually the ones with large
degree.

a purely topological network with no underlying geography, this consideration does

not apply anymore and the full randomness and the disordered small world structure

are completely uncorrelated with the spatial position. It is worth remarking that

the present argument applies in the absence of periodic boundary conditions that

would destroy the geometrical ordering. This point is illustrated in Fig. 13 in the

simple case of a one-dimensional lattice.

The present model defines an intermediate situation in that we have a random

network with space constraints that introduces a local structure since short distance

connections are favored. Shortcuts and long distance hops are present along with

a spatial local structure that clusters spatially neighboring vertices. In Fig. 14 we

plot the average distance d(G, C) between the barycenter G and the 10 most central

nodes. As expected, as spatial constraints become more important, the most central

nodes get closer to the spatial barycenter of the network.
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Fig. 14. Average Euclidean distance between the barycenter G of all nodes and the 10 most central
nodes (C) versus the parameter η (Here δ = 0, N = 5, 000 and the results are averaged over 50
configurations). When space is important (ie. small η), the central nodes are closer to the gravity
center. For large η, space is irrelevant and the average distance tends to the value corresponding
to a uniform distribution 〈r〉unif = 2/3 (dotted line).

Another effect observed when the spatial constraints become important are the

large fluctuations of the BC. Fig. 15a displays the relative fluctuation

δg(k) =

√

〈δg2(k)〉

〈g(k)〉
, (16)

where 〈δg2(k)〉 is the variance of the BC and 〈g(k)〉 its average (computed for

each value of k). The value of η modifies the degree cut-off and in order to be

able to compare the results for different values of η we rescale the abscissa by its

maximum value kmax. This plot (Fig. 15a) clearly shows that the BC relative fluc-

tuations increase as η decreases and become quite large. This means that nodes

with small degree may have a relatively large BC (or the opposite), as observed

in the air-transportation network (see Fig. 2 and [25]). In order to quantify these

“anomalies” we compute the fluctuations of the betweenness centrality ∆RN (k)

for a randomized network with the same degree distribution than the original net-

work and constructed with the Molloy-Reed algorithm [35]. We consider a node

i as being “anomalous” if its betweenness centrality g(i) lies outside the interval

[〈g(k)〉−α∆RN (k), 〈g(k)〉+α∆RN (k)], where we choose α ' 1.952 so that the con-

sidered interval would represent 95% of the nodes in the case of Gaussian distributed

centralities around the average.

In Fig. 15b, we show the relative number of anomalies versus k/kkmax for differ-

ent values of η. This plot shows that the relative number of anomalies Na(k)/N(k)

increases when the degree increases and more interestingly strongly increases when

η decreases. Note that since for increasing k the number of nodes N(k) is getting

small, the results become more noisy.

The results of Figs. (12-15) can be summarized as follows. In a purely topo-

logical growing network, centrality is strongly correlated with degree since hubs

have a natural ability to provide connections between otherwise separated regions

or neighborhoods [14]. As spatial constraints appear and become more important,

two factors compete in determining the most central nodes: (i) on the one hand

hubs become even more important in terms of centrality since only a large traffic
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Fig. 15. (a) Relative fluctuations of the betweenness centrality versus k/kmax for two values of
η (N = 5, 000 and the results are averaged over 50 configurations and binned). The fluctuations
increase when η decreases (i.e. when spatial constraints increase). (b) Number of anomalies Na(k)
rescaled by the number N(k) of nodes of degree k versus k/kmax for different values of η. The
relative number of anomalies is larger when spatial constraints are large, especially for large k.

can compensate for the cost of long-range connections which implies that the corre-

lations between degree and centrality become thus even stronger; (ii) on the other

hand, many paths go through the neighborhood of the barycenter, reinforcing the

centrality of less-connected nodes that happen to be in the right place; this yields

larger fluctuations of g and a larger number of “anomalies”.

We finally note that these effects are not qualitatively affected by the weight

structure and we observe the same behavior for δ = 0 or δ 6= 0.

5. Conclusions

In this article we have reviewed the main empirical characteristics of the airline

network. In particular, we have shown that weight-topology correlations as well as

geographical effects are essential features of this system. We also have reviewed a

simple model of growing weighted networks which introduces the effect of space

and geometry in the establishment of new connections. When spatial constraints

are important, the effects on the network structure can be summarized as follows:

• Effect of spatial embedding on topology-traffic correlations

Spatial constraints induce strong nonlinear correlations between topology and

traffic. The reason for this behavior is that spatial constraints favor the forma-

tion of regional hubs and reinforces locally the preferential attachment, leading

for a given degree to a larger strength than the one observed without spatial con-

straints. Moreover, long-distance links can connect only to hubs, which yields a

value βd > 1 for small enough η. The existence of constraints such as spatial dis-

tance selection induces some strong correlations between topology (degree) and

non-topological quantities such as weights or distances.

• Effect of space embedding on centrality

Spatial constraints also induce large betweenness centrality fluctuations. While

hubs are usually very central, when space is important central nodes tend to get

closer to the gravity center of all points. Correlations between spatial position

and centrality compete with the usual correlations between degree and centrality,
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leading to the observed large fluctuations of centrality at fixed degree.

• Effect of space embedding on clustering and assortativity

Spatial constraints implies that the tendency to connect to hubs is limited by the

need to use small-range links. This explains the almost flat behavior observed for

the assortativity. Connection costs also favor the formation of cliques between

spatially close nodes and thus increase the clustering coefficient.

Including spatial effects in a simple model of weighted networks thus yields a

large variety of behavior and interesting effects. This study sheds some light on the

importance and effect of different ingredients such as the geographical distribution

of nodes or the diversity of interaction weights in the structure of large complex

networks. We believe that this attempt of a network typology could be useful in

the understanding and modeling of real-world networks. We finally note that the

distance is here a simple measure of the cost of a connection but that the model

we proposed could be easily generalized to more complex cost functions that can

be found in economic systems.
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