Optimized Schwarz method for solving time-harmonic Maxwell's equations discretized by a discontinuous Galerkin method

Abstract : The numerical solution of the three-dimensional time-harmonic Maxwell equations using high order methods such as discontinuous Galerkin formulations require efficient solvers. A domain decomposition strategy is introduced for this purpose. This strategy is based on optimized Schwarz methods applied to the first order form of the Maxwell system and leads to the best possible convergence of these algorithms. The principles are explained for a 2D model problem and numerical simulations confirm the predicted theoretical behavior. The efficiency is further demonstrated on more realistic 3D geometries including a bioelectromagnetism application.
Type de document :
Article dans une revue
IEEE Transactions on Magnetics, Institute of Electrical and Electronics Engineers, 2008, 44 (6), pp.954 -- 957. 〈10.1109/TMAG.2008.915830〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00164838
Contributeur : Ronan Perrussel <>
Soumis le : mardi 10 juin 2008 - 17:10:32
Dernière modification le : vendredi 26 octobre 2018 - 10:29:18
Document(s) archivé(s) le : jeudi 23 septembre 2010 - 16:48:27

Fichier

ieee_tmag_44_dolean.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Victorita Dolean, Stephane Lanteri, Ronan Perrussel. Optimized Schwarz method for solving time-harmonic Maxwell's equations discretized by a discontinuous Galerkin method. IEEE Transactions on Magnetics, Institute of Electrical and Electronics Engineers, 2008, 44 (6), pp.954 -- 957. 〈10.1109/TMAG.2008.915830〉. 〈hal-00164838v3〉

Partager

Métriques

Consultations de la notice

492

Téléchargements de fichiers

283