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On the influence of selection operators on
performances in cellular Genetic Algorithms

D. Simoncini, P. Collard, S. Verel, M. Clergue

Abstract— In this paper, we study the influence of the selective Finally in section 6 we summarize and discuss the results of
pressure on the performance of cellular genetic algorithms the paper.
Cellular genetic algorithms are genetic algorithms where he

population is embedded on a toroidal grid. This structure m&es . CELLULAR GENETIC ALGORITHMS AND SELECTIVE

the propagation of the best so far individual slow down, and PRESSURE

allows to keep in the population potentially good solutions )
We present two selective pressure reducing strategies in der Several methods have been proposed to tune the selective

to slow down even more the best solution propagation. We pressure and deal with the exploration/exploitation trafle
experiment these strategies on a hard optimization problem in cGA. For instance, the size and shape of the cells neigh-

the Quadratic Assignment Problem, and we show that there borhoods i hich th luti i lied
is a threshold value of the control parameter for both which ~POrMO0GS N which theé evolutionary operators are applied,

gives the best performance. This optimal value does not find has some influence. A bigger neighborhood will induce a
explanation on the selective pressure only, measured eithe stronger selective pressure on the population [10]. When

by takeover time or diversity evolution. This study makes trying to solve complex problems, with numerous local
us conclude that we need other tools than the sole selective optima, one would try to slow down the convergence of
pressure measures to explain the performance of cellular getic - . . .
algorithms. the population. That is why we use in our algorithm a
Von Neumann neighborhood which is the smallest symetric
INTRODUCTION neighborhood that allows the convergence of the population
The selective pressure can be seen as the ability forThe shape of the grid also has an impact on the selective
solutions to survive in the population. When the selectivpressure [1], [3], [4]: thinner grids give a weaker selestiv
pressure is high, only the best solutions survive and cetéonipressure on the population. This solution’s weakness is tha
the population, allowing less time for the algorithm tothere are not enough grid shapes for a fixed size of population
explore the search space. Thus, the selective pressure hasllow an accurate control of the selective pressure.
an impact on the exploration/exploitation trade-off: When  The selective pressure can also be monitored by choosing
is too low, good solutions’ influence on the population isan adequate selection operator.
so weak that the algorithm can’t converge and behave as a
random search in the search space. When it is too strong, e
algorithm converges quickly and as soon as it is stuck in a The stochastic tournament selection proposed by Goldberg
local optimum it won't be able to find better solutions. is a binary tournament selection that doesn’t guarantee the
Cellular Genetic Algorithms (cGA) are a subclass of Evobest solution to be selected. The stochastic tournament of
lutionary Algorithms in which the population is embedded omater chooses two solutions from the neighborhood of a cell
a bidimensional toroidal grid. Each cell of the grid containand selects the best one with probability r (the worst one
one individual (solution) and the stochastic operators amgith probability ). Real parameter should be in[0; 1].
applied within the neighborhoods of each cell. The existenc Given the definition of selective pressure, this selection
of such small overlapped neighborhoods guarantee the prayperator explicitely gives a weaker selective pressure for
agation of solutions through the grid and enhance explorati increasingr values. Asr is getting closer tol, worse
and population diversity [13]. Such a kind of algorithms issolutions increase their chances to be maintained in the
especially well suited for complex problems with multiplepopulation, which means the selective pressure is getting
local optima [6]. To avoid the algorithm to converge towardveaker.
one local optimum, one should apply the right selective
pressure on the population and find the best balance between
exploitation of good solutions and exploration of the skarc The Anisotropic selection is a selection method in which
space. the neighbors of a cell may have different probabilities to
Section 1 presents a state of the art on selective pressurém selected [12]. The Von Neumann neighborhood of a
cGAs and introduces two selection operators. Section 2 corcell C' is defined as the sphere of radiliscentered at”'
pares the influence of the selection operators on the sedectin manhattan distance. The Anisotropic selection assigns
pressure. Section 3 gives a description of the benchmark usdifferent probabilities to be selected to the cells of then Vo
to analyze the algorithms. Section 4 presents a comparatiMeumann neighborhood according to their position. The
study of performance of the algorithms. Section 5 is a studyrobability p. to choose the center cell remains fixed at
on the evolution of the genotypic diversity in the populato % Let us callp,,s the probability of choosing the cells North

Stochastic tournament selection

Anisotropic selection



(N) or South 6) and p.,, the probability of choosing the In order to measure the takeover time, we place one
cells East ) or West (V). Let « € [—1; 1] be the control solution of fitness on a20 x 20 grid. All the other solutions
parameter that will determine the probabilities, andp.,,. have a null fithess. Then we run the process and measure the
This parameter will be called thanisotropic degreeThe time needed for the solution of fithnegsto spread over the

probabilitiesp,,; andp.,, can be described as: whole grid.
i We measured average takeover times oM#0 simula-
Pns = (_72170)(1 +a) tions for a cGA using a stochastic tournament selection,

and for one using the anisotropic selection. The simulation
~ (I=pc) 1 are made on square grids of side. Figure@ shows the
Pew =775 (1-a) results of these simulations. The takeover time increases
Thus, whena = —1 we havep., = 1 — p, andp,s = 0. whena increases in the case of a cGA using the anisotropic
Whena = 0, we havep,,s = pe., and whenn = 1, we have Selection (figure[|2(a)). So the selective pressure is ielers

Pns = 1 — pe andp.,, = 0. In the following, the probability proportional too. On figureDZ(b) we can see that the takeover
p. remains fixed a%. time increases as long as the probabifitp select the worst

solution in the stochastic tournament grows. This means

0250 that thg selective pressure in the populatipn is inversely

N proportional tor for a cGA using a stochastic tournament

selection.
0.2(1-o) 0.2 |0.2(1-a The slope of the curve representing the takeover time as
W c E a function of o (fig. E(a)) for values close td is more

0.2(1+a important than the one of the curve representing the takeove

s time as a function of- (fig. ﬂ(b)). We can also notice that
in the case of a cGA using stochastic tournament selection,
Fig. 1 the takeover time is defined when the probability to select

VON NEUMANN NEIGHBORHOOD WITH PROBABILITIES TO CHOOSE the best solution i$). The best solution still can colonize
EACH NEIGHBOR the population in this case since the two candidates for the

tournament are selected by a random draw with replacement.
_ _ _ In the case of a cGA using anisotropic selection, the takeove
Figure 1 shows a Von Neumann Neighborhood with th&jme is not defined forx = 1.The anisotropic degree is a

probabilities to select each cell as a functionoof continuous parameter and the curve representing the takeov
The Anisotropic Selection operator works as follows. Fofime as a function ofr is not bounded.

each cell it select& individuals in its neighborhoodk( e
[1;5]). The k individuals participate to a tournament and [1. THE QUADRATIC ASSIGNMENTPROBLEM

the winner replaces the old individual if it has a better Thjs section presents the Quadratic Assignment Problem
fitness or with proba_blllty0.5 if the _f|tn§sses are equal. (QAP) which is known to be difficult to optimize. The QAP
When o = 0, the anisotropic selection is equivalent 10 &g an important problem in theory and practice as well. It
standard tournament selection and wher- 1 or a = —1 a5 introduced by Koopmans and Beckmann in 1957 and is
thg anisotropy is maximal apd we have an un|-d|mens.|ongl model for many practical problems [7]. The QAP can be
neighborhood with three neighbors only. In the followinggescribed as the problem of assigning a set of facilities to a
cons.lderlng the grid symmetry, we will considere [0; 1! set of locations with given distances between the locations
only: whena is in the range [-1,0] making a rotation 60° a4 given flows between the facilities. The goal is to place
of the grid is equivalent to consideringin the range [0;1]. the faciliies on locations in such a way that the sum
Il. TAKEOVER TIME of the products between flows and distances is minimal.

. .Given n facilities and n locations, twon x n matrices
A common analytical approach to measure the selectl\]/B -

. ! . = [d;;] and F' = [f;] whered,; is the distance between
pressure 1S the computation of the takgover time [9] [14 bcatiE)njs]i and j an[d fil the rovd between facilitieg and
It is the time needed for the best solution to colonize thF the objective function is:
whole population when the only active evolutionary operato’ '
is selection [5]. When the takeover time is short, it means &= do
that the best solution’s propagation speed in the populatio - ZZ p(0p() fis

? J

is high. So, worse solutions’ life time in the population is

short and thus the selective pressure is strong. On the othenere  p(4) gives the location of fa-
hand, when the takeover time is high, it means that the bestity i in the current permutation p.

solution colonizes slowly the population, giving a longemNugent, Vollman and Ruml proposed a set of problem
lifetime to worse solutions. In that case, the selectivsguee instances of different sizes noted for their difficulty [2].
is low. So the selective pressure in the population is irelgrs The instances they proposed are known to have multiple
proportionnal to the takeover time. local optima, so they are difficult for a genetic algorithm.



TABLE |
AVERAGE PERFORMANCE ANDTAKEOVER TIMES FORa, AND 70

220

Anisotropic selection Stochastic tournament selectign
Instance Perf Val TO Perf Val TO
Nug30 6156.318.6 0.92  65.7 6152.65.5 0.85 79.6
Thod0 | 242788s3.4 0.94 753 | 2431151177.2 0.8 70.4
Sko49 | 23537.25.5 0.92 65.7 23550.358 0.8 70.4

Takeover Time

exchanging those positions. The crossover rate is 1 and we
do a mutation per individual. We perform 200 runs for each
tuning of the two selection operators. An elitism replacetme
procedure guarantees the individuals to stay on the grid if
P mwrywmrewmnd they are fitter than their offspring. Each run stops after®00
apha generations for nug30 and tho40, and after 3000 generations
(a) for sko49.

160

IV. PERFORMANCES

In this section we present performance results on the
Quadratic Assignment Problem for a cGA using stochastic
tournament and anisotropic selection operators. In [1&] th
authors show that there is an optimal valueaoparameter
for the anisotropic selection that gives optimal perforoean
We want to see if the same behaviour is observed with
the stochastic tournament selection and then to compare the
performance obtained for these two operators.

Figures [B,[4 and]5 show performance obtained with
the anisotropic and the stochastic selection operator en th

Takeover Time

n ” " - - ' QAP instances nug30, tho40 and sko49. We measure the
. performance by averaging the best solution found on each
(b) run for each value of anisotropy degree and stochastic rate.
When the rate of the stochastic tournament selection and
Fig. 2 the anisotropic degree are null, the two algorithms are the
AVERAGE TAKEOVER TIMES FOR A (GA USING ANISOTROPIC same : A standard cGA with binary tournament selection.
SELECTION(A) AND STOCHASTIC TOURNAMENT SELECTION(B) The selective pressure drops when the values of the control

parameters of the two algorithms increase. In both cases
we see that as the selective pressure drops, performance
) ) ) increases until a threshold value. Once this value is rehche
We experiment our algorithm on the instances nug30 (3fe performance decreases. These threshold values give the
variables), tho40 (40 variables) and sko49 (49 variablegkst exploration/exploitation trade-off for this problein
from QAPLIB. the following, the threshold values of parametersand
are denotedy, andr,.
: o Table 1 givesa, andr, for each instance of QAP and
We use a population OT 400 |nd!V|duaIs placed on Fheir corresponding takeover times (TO). Best performance
square grid 0 x 20). Each individual is reprensented by a,.q iy 1ol and differences between performances of the
permutation of V- where N is the size of an individual. The v, 450rithms are statistically significant for each imste
algorithm uses a crossover that preserves the permutatlor‘gccording to the Student's t-test. Differences in takeover
« Select two individualg; andp, as genitors. times are also statistically significant. The algorithmngsi
« Choose a random positian stochastic tournament selection is the best for nug30, and
« Find j andk so thatp, (i) = p2(j) andpz(i) = p1(k).  the one using anisotropic selection is the best for tho40
« exchange positionsand j from p; and positions and  and sko49. The threshold values stand in the same ranges

Set up

k from ps. _ _ _ for all instancesa, € {0.92,0.94} andr, € {0.8,0.85}.
« repeat\/3 times this procedure wher¥ is the size of The differences in takeover times indicate that the select
an individual. pressure on the population is different for the two methods

This crossover is an extended version of the UPMXor the settings that give the best average performance.
crossover proposed in [8]. The mutation operator consist ifhese differences can be explained by the way the algorithm
randomly selecting two positions from the individual andexplores the search space and exploits good solutions.
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Fig. 3 Fig. 4
PERFORMANCE OF GGA WITH ANISOTROPIC SELECTION FOR DIFFERENT PERFORMANCE OF GGA WITH ANISOTROPIC SELECTION FOR DIFFERENT
ANISOTROPY DEGREEYA) AND WITH STOCHASTIC TOURNAMENT FOR ANISOTROPY DEGREEYA) AND WITH STOCHASTIC TOURNAMENT FOR
DIFFERENT RATES(B) ON INSTANCE NUG30 DIFFERENT RATES(B) ON INSTANCE THO40
V. DIVERSITY diversity in the population througP000 generations.

In this section, we present statistic measures on the evolu-The vertical/horizontal diversity measures the average di
tion of the genotypic diversity in the population. Threedsn Versity in the columns and in the rows of the grid. The
of measures are performed : The global average diversitgrtical (resp. horizontal) diversity is the sum of the age
the vertical/horizontal diversity and the local diversifthe distance between all solutions in the same column (resp). row
global average diversity measure is made on a setofins  divided by the number of columns (resp. rows):
of one instance of QAP for each kind of algorithm. It consists

in computing the genotypic diversity between each solstion vD ti N — Z Z A(Zyeys Trey)
generation after generation. TR T e

gD ﬂTﬁC TIZTQCIZ“dx71c1)$7202) h ﬂC ﬂ7’2 Erlzrzd $71()$72()
whered(z1, x2) is the distance between solutiansandzs. wherefr andfc are the number of rows and columns in

The distance used is inspired from the Hamming distance:ttie grid.

is the number of locations that differ between two solutions This measure is only made for the cGA with anisotropic

divided by their lengthn. selection. As the stochastic tournament selection previde
The results for each generation are averaged®nuns. an isotropic diffusion of solutions, the difference betwee

We obtain a curve representing the evolution of the globdorizontal and vertical diversities is null.
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Fig. 5 EVOLUTION OF GLOBAL DIVERSITY FOR A CGA USING ANISOTROPIC
PERFORMANCE OF GGA WITH ANISOTROPIC SELECTION FOR DIFFERENT SELECTION(A) AND STOCHASTIC TOURNAMENT SELETION(B) ON
ANISOTROPY DEGREEA) AND WITH STOCHASTIC TOURNAMENT FOR INSTANCE NUG30

DIFFERENT RATES(B) ON INSTANCE SKO49

r,. We can see that the diversity is higher for the algorithm

Figure |]5 shows the evolution of global diversity forusing the stochastic tournament selection. Neverthedesse
different settings of the anisotropic selection (]ﬂg 6(anpa the curve of the stochastic tournament is concave and the
the stochastic tournament selection (flg 6(b)). Curves ccurve of the anisotropic selection convex, the differente o
figure[$(a) represent diversity for increasing values 6fom  diversity starts to decrease around generatiof0 and at
bottom to top. These curves show that the meie high, the generatior2000 the algorithm using anisotropic selection has
more the diversity is maintained in the population. Similapreserved more diversity.
results are obtained in the case of the stochastic tournamenQn figureﬂg, the horizontal diversity is plotted as a function
on figurep(b). These curves represent diversity for inéngas of the vertical diversity for different settings of anisapic
values ofr from bottom to top. The shape of the curves argelection. The straight line is the curve obtained doe 0
different for the two methods: For the stochastic tournamenanda is increasing on curves from the left to the right. As
the curves are concave in a first time and then beconecreases, the algorithm favors the propagation of saistio
convex. For high values of, the concave phase is longerin the columns of the grid and the vertical diversity decesas
and it is not finished at generati@d00 for values abov@.8.  quicker. On the other hand the horizontal diversity deasas
For the anisotropic selection, the convexity does not ceangslower, and is constant for the limit cagse = 1. In the
the curves are convex. latter case, there are no interactions between the columns

The differences in the evolution of genotypic diversity aref the grid and the algorithm behave as several independant
shown on figureﬂ?. This figure present the evolution of the dalgorithms executing in parallel. These algorithms run on
versity for the threshold values of the two algorithms:and grids of width 1 and with 3 solutions in the “vertical”



' anoopc— generation1000 the genotypic diversity on the grid is null

stochastic------

, the population has been colonized by one solution, and
performance will not improve anymore.

Figure represents the local diversity along generations
for a cGA with stochastic tournament selection. The prob-
ability of selecting the best participant to the tournamient
decreasing from top to bottom. The first thing we notice is
that the propagation mode of good solutions is the same as
for the cGA using a standard binary tournament selection.
The only difference is the speed of propagation of good
solutions monitored by the parameter. As long as we
give less chances to the best solution in the neighborhood

Diversity

"m0 w0 w0 w0 100 200 100 100 100 2 to be selected, it will take more time before the algorithm
Genetaons converges. The areas where crossovers can help to explore
the search space and to improve performance are bigger
Fig. 7 when r increases. The crossover operator does not have
EVOLUTION OF GLOBAL DIVERSITY FOR, AND 7, ON INSTANCE any ef-fect in the Whlte zones Of the g”d since there iS no
NUG30 more genotypic diversity in such areas. Foe 1, we see

that at generationi500 the diversity is still very high and
the algorithm does not exploit good solutions because the
selective pressure on the population is too low.

Figure represents the local diversity along generations
for a cGA with anisotropic selection. Values of increase
from top to bottom. By monitoring the anisotropy degree,
we can influence on the dynamics of propagation of good
solutions. For low values ofy, good solutions roughly
propagate in circles as for a cGA using binary tournament
selection. Whena reaches values close tb, the good
solutions tend to colonize the columns of the grid. The
diversity is conserved between the columns, which indicate
that the algorithm converge toward different solutionsante
e o columns. Thus, the anisotropic selection favors the foionat
5 04 05 05 07 08 0 of subpopulations in the columns of the grid [11]. Crossever

Horizontal diversity

Ve duesty between subpopulations then allow the algorithm to explore
_ the search space, as long as the probability of selecting
Fig. 8 participants from different columns for the tournament is

HORIZONTAL DIVERSITY AS A FUNCTION OF VERTICAL DIVERSITY FOR not too IOW (leO[ |S not too h|gh) Whem |S too hlgh, the
DIFFERENT SETTINGS OF A GA USING ANISOTROPIC SELECTION ON Se|eCtIV8 pressure on the populatlon |S too IOW and negﬁtlve
INSTANCE NUG30 affects performance.

VI. DISCUSSION

In this section we summarize and discuss the results on

neighborhoods. takeover time, performance and genotypic diversity and we

The local diversity measure is computed on one singleompare the cGAs using anisotropic selection and stochasti
run for each kind of algorithm. It is the genotypic diversitytournament selection. Two cGAs using different selection
observed in the neighborhood of each cell of the gridgperators have been tested on instances of QAP. The two
It is represented as “snapshots” of the population, wheglection operators allow to control the selective pressur
a dark point represents a high degree of diversity in thghe population. The analysis of takeover time and genotypic
neighborhood, and a clear point represents a low degreeditersity show the influence of the two operators on the
diversity in the neighborhood. selective pressure.

Figure[d represents the local diversity along generations When looking at the performance on QAP, we can see that
for a cGA with standard binary tournament selection. We caon each instance and for both methods, the performance in-
see on snapshots of generatién® and500 the formation of creases as the selective pressure drops down until a thdesho
circles. Each circle contains copies of good solutions €bunvalue of the control parameter. After this value, the perfor
locally. The frontier between the areas from which goodnance decreases as the selective pressure continue to drop
solutions colonize the grid are the only sites on the gridown. The threshold values of the control parameter stand
where the crossover operator still can have some effect. At the same range on all instances for both of the methods.



Nevertheless, we notice from table 1 that the takeover times
are not similar fora, andr,. Consequently, the selective
pressure induced on the population is different for the two
algorithms. The observations on figtme 7 are in adequation
with this: The algorithm with stochastic tournament pressr
more genotypic diversity for the threshold value than the on
with anisotropic selection. The genotypic diversity measu
were made on instance nug30 for which the cGA with
stochastic tournament selection obtains the best perforena
However, results on diversity put in evidence propertiethef
selection operators which are independant from the instanc
tested.

The selective pressure is related to the explo-
ration/exploitation trade-off. We conclude from the
results presented in table 1 and figtﬂe 6 that studying the
exploration/exploitation trade-off is insufficient to dajn
performance of cellular genetic algorithms. In cGAs, the
grid topology structures the search dynamic.
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The overlapped neighborhoods allow to control the diffuthe two methods. A study on the genotypic diversity shows
sion of phenotypic and genotypic informations through théhat the dynamic of diffusion of informations through the

population.
Figured 1P and }1 show that the algorithm with stochastite

grid is different when using the stochastic tournament or

anisotropic selection operator. The anisotropic selec

tournament or anisotropic selection exploit differenthet favors the formation of subpopulations in the columns of the
structure of the grid. When using the anisotropic selegrid, whereas the stochastic tournament selection slows do

tion, the algorithm can favor the propagation of solutionshe
vertically. This structuration creates subpopulationsthie

propagation speed of the good solutions. The selection

operator have some influence on the dynamic of transmission

columns of the grid, and solutions can occasionally shawg the information through the grid and the ratio between
information with adjacent subpopulations. On the othee sid exploration and exploitation is not sufficient to explaire th
the stochastic tournament selection provides an isotropierformance of a cGA.

propagation of solutions. The algorithm can control theegpe

Nevertheless, we show that even if it is different for the

of the propagation by decreasing the probability to seleet t anisotropic selection and the stochastic tournamenttsafec

best participant to the tournament as genitor. The snapshtite

selective pressure has some influence on performances.

and the figureﬂG arﬂ 7 show that the genotypic diversity iRurther works will analyze the dynamic of diffusion of the
the population is influenced by the exploitation of the gridnformation through the grid and explain the existence of

structure.

a threshold value for the two cGAs by studying statistic

The selection operator plays an important role in the expleneasures on the relations between topologic, genotypic and
ration of the search space and in the exploitation of salstio phenotypic distances.

The two operators we compare allow to control the selective
pressure. For, and «, the selective pressure induced on
the population gives the best ratio between exploration anél]
exploitation. But this ratio is dependant of the explomatio 2
and exploitation dynamics of the algorithm. Thus, it is
dependant of the selection operator used. The measures on
genotypic diversity and the snapshots show these diffeenc
whether the algorithm uses the stochastic tournament or the
anisotropic selection. Thus, the selective pressure metde [4]
find the best exploration/exploitation trade-off is depemtd

of the transmission mode of information through the grid.
Furthermore, the existence of a threshold value for the
parameter which controls the selective pressure do not finff
explanation in the statistic measures on genotypic diyersi [s]
and takeover time.

A study of the relations between topologic, phenotypicm
and genotypic distances should give a better explanatiofs)
of performance and as a consequence should explain the
takeover time and diversity during the search process. Ir[b]
order to explain performance of cGAs, we need to study
the transmission mode of the informations through the grid
since the ratio between exploration and exploitation seemg,
to rely on it.

CONCLUSION AND PERSPECTIVES 111

This paper presents a comparative study of two selection
operators, the anisotropic selection and the stochadtic to
nament selection, that allow a cellular Genetic Algorithm
to control the selective pressure on the population. A stud§72]
on the influence of the selection operators on the selective
pressure is made by measuring the takeover time and the
genotypic diversity. We analyse the average performan@eﬂ
obtained on three instances of the well-known Quadratigs)
Assignment Problem. A threshold value for the parameters
of both of the selection operators that gives optimal per-
formance has been put in evidence. These threshold values
give the adequate selective pressure on the population for
the QAP. However, the selective pressure is different for

] J. R. C.E. Nugent, T.E. Vollman.
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