On points at infinity of real spectra of polynomial rings

Abstract : Let R be a real closed field and A=R[x_1,...,x_n]. Let sper A denote the real spectrum of A. There are two kinds of points in sper A : finite points (those for which all of |x_1|,...,|x_n| are bounded above by some constant in R) and points at infinity. In this paper we study the structure of the set of points at infinity of sper A and their associated valuations. Let T be a subset of {1,...,n}. For j in {1,...,n}, let y_j=x_j if j is not in T and y_j=1/x_j if j is in T. Let B_T=R[y_1,...,y_n]. We express sper A as a disjoint union of sets of the form U_T and construct a homeomorphism of each of the sets U_T with a subspace of the space of finite points of sper B_T. For each point d at infinity in U_T, we describe the associated valuation v_{d*} of its image d* in sper B_T in terms of the valuation v_d associated to d. Among other things we show that the valuation v_{d*} is composed with v_d (in other words, the valuation ring R_d is a localization of R_{d*} at a suitable prime ideal).
Type de document :
Article dans une revue
The Michigan Mathematical Journal, Michigan Mathematical Journal, 2008, 57, pp.587-599. 〈10.1307/mmj/1220879425〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00162963
Contributeur : Daniel Schaub <>
Soumis le : lundi 16 juillet 2007 - 18:43:57
Dernière modification le : vendredi 14 septembre 2018 - 09:16:05
Document(s) archivé(s) le : mardi 21 septembre 2010 - 13:40:05

Fichiers

unbounded-sans.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

François Lucas, Daniel Schaub, Mark Spivakovsky. On points at infinity of real spectra of polynomial rings. The Michigan Mathematical Journal, Michigan Mathematical Journal, 2008, 57, pp.587-599. 〈10.1307/mmj/1220879425〉. 〈hal-00162963v2〉

Partager

Métriques

Consultations de la notice

210

Téléchargements de fichiers

43