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Abstract

Letr, s > 0. For a given probability measuf@onR?, let (v, ),,>1 be a sequence of (asymp-
totically) L" (P)- optimal quantizers. For all € R? and for every) > 0, one defines the sequence
(%) s by :¥n > 1, al# = p+0(ay, — i) = {u+0(a—p), a € ay}. Inthis paper, we are
interested in the asymptotics of thié-quantization error induced by the sequefieg”),,>1. We
show that for a wide family of distributions, the sequefieé*),,~; is L*-rate-optimal. For the
Gaussian and the exponential distributions, one shows ba@kidose the parametérsuch that
(a91),>, satisfies the empirical measure theorem and probably bepstioally L5-optimal.

1 Introduction

Let (2, A, P) be a probability space and I&f : (2, A,P) — R? be a random variable with distri-
butionPy = P. Leta C RY be a subset (a codebook) of size A Borel partitionC,, () 4o, Of R?
satisfying

Cola) c{z eR: |z —a| = gg(iln |z — b},

where| - | denotes a norm oR? is called a Voronoi partition dR? (with respect tax and| - |).
The random variabl& @ taking values in the codeboakdefined by

X =3 "alixec, (@)

aco

is called a Voronoi quantization df. In other words, it is the nearest neighbour projectiotXabnto
the codebook (also called grid)

Then-L" (P)-optimal quantization problem fdP (or X)) consists in the study of the best approx-
imation of X by a Borel function taking at most values. FotX € L"(P) this leads to the following
optimization problem:

enr(X) =inf {|| X — X, € R, card ) < n}

with
| X — )A(“H; = E(d(X, a))’" = /Rd d(xz,a)"dP(x).



Then we can write

1/r
enr(X) =é€n,(P)= inf </ d(:ﬂ,oz)rdP(:U)> . (1.1)
acR? Rd
carda)<n

We remind in what follows some definitions and results thditlvé used throughout the paper.

e For alln > 1, the infimum in(@l) is reached at one (at least) grd; «* is then called a
L"-optimal n-quantizer. In addition, if card(supp)) > n then carda*) = n (see[d or
[)). Moreover the quantization errar, ,.(X), decreases to zero asgoes to infinity and the
so-called Zador's Theorem mentionned below gives its cgmrece rate provided a moment
assumption orX.

e Let X ~ P andletP = P, + P be the Lebesgue decomposition Bfwith respect to the
Lebesgue measurg;, whereP, denotes the absolutely continuous part &dhe singular part
of P.

Zador Theorem (seefd]) : Suppos€E| X "™ < +oo for somen > 0. Then

lim n"/%e, . (P))" = Q.(P).

n—-+o00

with

d+r

QP) = ga [ 7 00) T = Dall g € 0. 400)

Jra = inf e,  (U([0, 1]%)) € (0, +00),

whereU ([0, 1]¢) denotes the uniform distribution on the $&t1]¢ and f = %. Note that the

moment assumptionE| X |"*" < +oo ensure thaf f|| _«_ is finite. Furthermore Q,.(P) > 0
d+r

if and only if P, does not vanish.

e A sequence ofi-quantizerg ay, ),>1 IS

- L"(P)-rate-optimal (or rate-optimal for X, X ~ P) if

limsupnl/d/ d(x, o) "dP(x) < 400,
Rd

n—-+o00

- asymptotically L"(P)-optimal if
lim n'/ / d(z, an)"dP(z) = Q. (P)
R4

n—-400

- L"(P)-optimal if for all n > 1,

nr(P) = /Rd d(z,an)" dP(x).



e Empirical measure theorem (see[d)) : Let X ~ P. SupposeP is absolutely continuous
with respect to\; andE|X|"*" < +oo for somen > 0. Let (a,,),>1 be an asymptotically
L"(P)-optimal sequence of quantizers. Then

1 > b 5P (1.2)
n

acon
where— denotes the weak convergence and for every BorellstR?, P, is defined by

1

R4 =5

/ F(@)@7 drg(z), with O, = / F(@) T dAg(2). (1.3)
A R4

e In [ is established the following proposition.

Proposition : Let X ~ P, with P, # 0, such thaf£| X |"*" < oo, for somen > 0. Let (a,)
be anL" (P)-optimal sequence of quantizetsc (0,1/2) and lety, : RY — Ry U{+o0} be
the maximal function defined by

Ma(B(x,bd(z, o))

(@) = 89D B B, b, ) 4)
Then for everyr € R,
vn>1, n!ld(@, an) < Cb)y(x)/ @) (1.5)

whereC'(b) denotes a real constant not depending:on

e The next proposition is established [B. It is used to compute the&"-optimal quantizers for
the exponential distribution.

Proposition Letr > 0 and letX be an exponentially distributed random variable with scale
parameter > 0. Then for everyn > 1, the L"-optimal quantizery,, = (an1,-* ,Qnp) IS
unique and given by

n—1

a
ank:7”+_z ai, 1<k<n, (1.6)
i=n+1—k

where(ay),>1 is aR-valued sequence defined by the following implicit recueséguation:
ag := 400, ¢(—ary1) := Plax), k>0

with ¢(z) := OI/Q

Furthermore, the sequen(e;);>; decreases to zero and for evéry 1,

|u|"~tsign(u)e~*du ( convention :0° = 1).

r+1
k

ap = (1+—+O(—))
for some real constant..

NOTATIONS

e Leta, be a set of, points of R? . For everyu € R? and every > 0 we denote
Al = 4 B(an — p) = {pu+0(a—p), a€ oyl
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Let f : RY — R? be a Borel function and lgt € R%, 6 > 0. One notes byfy ,, (or fy if
= 0) the function defined by ,(z) = f(u + 0(x — p)), = € R%

If X ~ P, Py, will stand for the probability measure of the random vasab% + 1, 6 >
0, € RY. In other words, it is the distribution image &f by « — 5+ + . Note that if
P = f . )‘d thenP(m = f@,,u . )\d-

If Aisa matrixA’ stands for its transpose.

d Setl’ = (.%'1,--- ,.Z'd); Yy = (y17”' 7yd) € Rd’ we denthw7y] = [wlvyl] X X [xdvyd]'

Definition 1.1. A sequence of quantizefs,, ), > is called adilatation of the sequencgv,, ), >1 with
scaling number ¢ andtrandlating number 1 if, for everyn > 1, 3, = aﬁ’“, withg > 1. If § < 1,
one defines likewise tlwntraction of the sequencgy,, ), >1 with scaling number ¢ andtransating
number .

2 Lower estimate

Letr,s > 0. Consider an asymptotically” (P)-optimal sequence of quantizes,, ),,>1 . For every

1 € R? and everyd > 0, we construct the sequen(‘@f{“)nzl and try to lower bound asymptotically
the L*-quantization error induced by this sequence. This esitimatrovides a necessary condition of
rate-optimality for the sequencﬁecf;“)nzl. Obviously, in the particular case whete= 1 andy = 0
we get the same result as[#fj, a paper we will essentially draw on.

Theorem 2.1. Letr, s € (0, +00), and letX be a random variable taking valuesf with distribu-
tion P suchthatP, = f.\; # 0. Suppose thaE| X |"*" < oo for somen > 0. Let(«,),>1 be an
asymptoticallyL" ( P)-optimal sequence of quantizers. Then, for every 0 and everyu € R?,

lim inf /| X — X712 > QI (P,6), (2.1)

n—-400
with
u s/d .
QLnL(P7 6) = 68+dJs,d < fCHTd)\d> / f&,ufimd)\d-
’ R {f>0}

Proof. Letm > 1 and

m2™ —1

l
O E: R
fm - om 1Ek NGy
k,1=0

with

s l+1

k k+1

The sequencéfﬁg“)mzl is non-decreasing and

im fo = fo  Aapp

m—-+00



Let
Ly = {(k,1) € {0, ,m2™ — 1}* : \g(E") > 0; \g(G]") > 0}.

For every(k,l) € I, there exists compact sek§ and ;" such that :

1
Then
(By' NGINKE N L) = B 0G0 (K1) U (L")°)
C(BR\KE) U (GI"\L").
Consequently,
Aa(EE O GIMER N L") < Aa(BRA\KE) + Aa(GM\LT")
1 1
< mAo2m+1 + mao2m+1
1
T omim

For everym > 1 and every(k,l) € I,,, set
p =KL,

m2™—1

~ l
67 o— -
fmu = Z om 1A£’fl’
k,1=0
and
~ m2™—1 k
fm = Z Q_mlA;en,l'
k,1=0
We get

(It # foky © U ((EF" NGIM\AR) -

k,1€{0, - ,m2m—1}
Therefore, for everyn > 1,

m2™—1

MU £ oy < 3

k,1=0

11
mi2m — 2

and finally
2 Yoty <00 AP
m>1

As a consequently,(dz)-p.p, fo" () = f%" (x) for large enoughn. Thenfo: *2% £, when
m — +o0. Since in addition4}’, C E;* N G* we obtain

fom < fom < fy . (2.2)



Moreover, for everyn > 1,

nX = R = el [ et Ofan ) Nl2)
R4

> /[ min e (u+ 6(a - )" F(2)Aald2)
Rd a&Qn
> 6°n s/d/ min |(z — u)/0 + 1 — a|’ f(2) Ag(dz).

d acan

Making the change of variable:= (z — ) /6 + u yields:
w0 X = R = 0 [ dw,an)fo@)Naldo)
Rd

m2" —1

gstdps/d Z / (z, o )* Na(da). (2.3)

k,1=0
Letm > 1 and(k, 1) € I,,. Define the closed setﬁ;;”l by A7, = 0 if A4(A;,) = 0 and otherwise by
A = {z e R 1 d(z, AJ) < em}

wheree,,, € (0,1] is chosen so that

m

/ftiirdAdg(1+1/m)/ FEdAg.
e

Since Ay, is compac( Ay, C B(0,m + 1)) V(k, 1), there exists ( ref[I1],emma 4.Ba finite
" firewall” set 3;"; such that

Yn>1, Vaxc AZfl, d(x, o, U Bry) = d(x, (o, U 62’}1) N flgfl).

The last inequality is in particular satisfied for alle A}, since Ay, C A7
Now set3™ = J,,, 8y, and n}", = card(a, U ™) N A}). The empirical measure theorem (see
(D)) yields
. _d_
card o, N A7) fanﬁf&?l farrdAg fAm fd-w dXg

lim sup =

n n ff#rd)\d o ffdJrrd)\d

Moreover _
ni card oy, N A
LT —C( i k’l) whenn — +oo
n n
then
[ faerda m [ farrd
lim inf o > d > d

— — > - e — (2.4)
n—+00 Ny fAZIlfdwd)\d m+ fAZIlfdwd)\d




In the other hand,

/m d(x, o) Ag(dz) > /m d(w, (an U BY) ﬂlefl)s)\d(dx)
1 k.l

= )\d(AZ?l)/d(:U, (anuﬁg?l)ﬁfl?l)slf%l(x)i
> Aa(Ageny, s(U(AR)),

whereU (A) = 14/Xi(A) denotes the uniform distribution in the Borel setvhen);(A) # 0. Then
we can write for everyk,l) € I,,,

s/d
liminfns/d/ d(z, an)*Aa(dz) > Ag(AR) lim inf < 7;) lim inf n®/%e s (U (AR),
m nkl ’

n——+oo n n

since
lim inf n*/%e? s (U(ARD) = Jsa - Aa(AR )S/d

n

Owing to Equation(p.4), one has

, s/d
m [ fardAg

—d_
m+1fAZflfd+rd>\d

liminfns/d/ d(w, ) Na(dz) > Aa(AL) Js.d - N m)s/d

n—-+00

However, on the setd;”,, the statement 1> (";im) holds sincef < ’““ on E;*. Hence

1 s/d (4 1\ @
liminfns/d/ d(z, o) Na(dz) > Ty g (u/fdidd(dx)> <i> ’ (AR
k,l

Y

n—-+oo m 2m

It follows from Equation(R-3) and the super-additivity of the liminf that for eveny > 1,

o 1 [, SITET ] (k1) T
limninfns/d | X —Xo‘z#Hi > 05T, 4 <%/fdir)\d(d$)> Z om <2Lm> Ad(ArY)
k,l=0

d m + 1 _d_ S/d r0 r — — =
> 0 | —— / [ Aa(dz) / S (fm +277) " 3 dAg.
m {r>0}

Finally, applying Fatou’s Lemma yields

s/d .
liminf n®/? | X — Xon” 15> 6%, 4 (/ fdird)\d> / Jouf @ dAg.
R4 {f>0}

n—-+00

3 Upper estimate

Letr,s > 0. Let (a,)n>1 be an (asymptoticallyL” (P) - optimal sequence of quantizers. In this sec-
tion we will provide some sufficient conditions éf (P)-rate-optimality for the sequencﬁaﬁ’“)nzl.



Definition 3.1. Letd > 0, 1 € R? and letP be a probability distribution such tha® = f - \;. The
couple(d, ) is said P-admissible if

{f>0} Ccul—-0)+6{f >0} Aa-p-p. (3.1)

Theorem 3.1. Letr, s € (0,+00),s < r and letX be a random variable taking values Rf' with
distribution P such thatP = f - A\;. Suppose thatd, 1) is P-admissible, fo® > 0;u € R, and
E|X|"+" < oo, for somen > 0. Let(a,),>1 be an asymptotically.”-optimal sequence. If

/ ol fTTRdA < +o0 (3.2)
{r>03

then, (af"),>1 is L*(P)-rate-optimal and

1—
limsup n®/ | X — K |2 < 944 (@, (P))*/" </ é;f*‘“d> NG
{r>0y

n—-+o00

Remark 3.1. Note that ifé = 1 andp = 0 then

/ ngfTSSdAd=/ frrsfrssd)\d:/ fdha=1.
(>0} {£>0} {r>0}

In this case the theorem is trivial singeX — X ||, < || X — X ||,.

Proof. Let P? denotes the distribution of the random variabé. P? is absolutely continuous with
respect to\y, with p.d. f go(x) = efdf(%)_
For everyn > 1,

ns/d HX _ X\—a%ﬂuz _ s/ /Rd d(x’az,u)sdp(x)

= ns/d/{ min |z — p(1 — 0) — 0a|® f(z)d\g(x).

f>0} acany

Making the change of variable:= = — p(1 — 0) yields

el | = X8t [ (2, 000 )* £ (= + (1 — 0))da(2)
{f>0}—p(1-0)
<n*/ / d(z,00,)° f(z + u(1 = 0))g, ' (2)dP’(2) (3.4)
0{f>0}

s/r r
< ps/d < /R Lz, Hozn)rdPe(z)> < /0 ool (f(z+ (1 =0)gy ' () dP 9(2)>

T—s

— Oap, . s/r r —% "
< (wrtjox — X" ) ([ pe+ut-0)7 g T ()
0{f>0}

where we used th&-admissibility of(6, ) in the first inequality. The second inequality derives from
Holder inequality applied wittp = r/s > 1andg =1 — s/r.
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Moreover
— Oa,

[6X — 60X |7 = E(min [0X —fa|") = 67| X — Xon||”. (3.5)

Then

~ 0, ~ s/r - r
WMHX_X%WQSGSGJMWX_Xng (LU(”ﬂz+uﬂ—9»%wer(@dM@)
>

Owing to the asymptotically.” (P)-optimality of («,,) and making again the change of variable=
z/0 yields

T—s
T

n—-4o0o

lim supn®/® | X — X" |[3 < 6° (Q,(P))*/" (e /9 . O}f(erﬂ(l — e>>>r”"sf<z/e>fsdAd<z>>

Whens > r, the next theorem provides a less accurate asymptotic lygperd than the previous
one since, beyond the restriction on the distributionXofwe need now the sequence;,) to be
(exactly) L™ (P)-optimal.

Theorem 3.2. Letr, s € (0,+00), s >r, # > 0 and letX be a random variable taking valuesRf
with distribution P such thatP = f - \4. Suppose thdE|X|"t" < oo for somen > 0 and Py, < P
(i.e Py, is absolutely continuous with respect ) for someu € R?. Let(ay,),>1 be anL"(P)-
optimal sequence of quantizers and suppose that the mafimztion (sed[l.4)) satisfies

Y/ e LN(p,,,) for someb € (0,1/2). (3.6)

Then,
lim sup n®/¢ || X — Xa%ﬂ”i < 93+d0(b)/fg,uf_d-swd)\d < 400 (3.7)

whereC'(b) is a positive real constant not dependingandn.
Notice that this theorem does not require tftat.) is P-admissible.
Proof. One deduces from differentiation of measures that
foEr < 9 Py -as
Then, under Assumptio.4),

/fdirdpg,u — /fg,ufdirdAd < +00.

9



Foralln > 1,
ntld X — RO = el / d(z, %) £ (2)dha(2)
= S/dHS/ néun] z— )0+ p—al’f(z)dA(z)
d acln

We make the change of variable= (z — u)/6 + u. Then
nlX = R = el [ an) S 0o — ) dNala)
R4
= po/dgs / d(x, 0,)*dPy ().
Rd

Besides, the following inequalities are establishefijn

limsupn®/%d(-, a,)* < C(b)f*ﬁ

and n¥ (- o) < C(b )W”T P-a.s(henceP ,-a.s., sincé’ , < P).

Under Assumption(B.§) we can apply the Lebesgues dominated convergence theortéra &bove
inequalities, which yields

limsupns/d/d(m,an)sdP97u(x) < /Hmsupns/dd(:v,an)SdPg#(:U)
b) / fradPy ,(x).
= 0C0) [ fopla)f” T @dNi(o).

IN

O

For a given distribution, Assumptiaf.d) is not easy to verify. But wher # r + d, the lemma
and corollaries below provide a sufficient condition so thasumption(B.4) is satisfied. The next
subject extends the results obtained[f)). For further details we then refer {{]).

Let P = f - \; be an absolutely continous distribution. Lets € (0,+oc0) and (6, ) be a
P-admissible couple of parameters. We will need the follgniypotheses:

(H1) forall M > 0,

sup flp+0(z—p))

Liris < 400. (3.8)
2€B(0,M) f(2) Lr=>0h

(H2) There existd € (0,1/2), M € (0,+oc0) such that

Ma(Bla, 1))
d )
sup ———2= dPy, < +oo. (3.9
/(0 M) <t<2bx P(B(x 7t))> o

(H3) M\4(- NsupP)) < P and suppP) is a finite union of closed convex sets.
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Lemma3.1.LetP = f-\;andr > 0 such that/ |z|" P(dz) < +oco. Assuméa,,),>1 iS a sequence
of quantizers such thaf d(z, o, )"dP — 0. Let (9, 1) be aP-admissible couple of parameters for
which (H1) holds.

(a) If p € (0,1) then for everyy > 0, ¥¥ € L}, .(Pp,,.)-
(b) If p € (1, +0c] and if furthermore(H3) holds then for every > 0,
I € Ligo(P) = 4} € Ligo(Po.p).
Proof. It follows from the P-admissibility of (6, ) that
Py(dz) = 0% (1 + 0(z — ) Aa(dz) = gol2) P(d2),

wheregg(z) = 67 Wl{f@)w}' Thengy is locally bounded by(H1).
(a) If p € (0,1), it follows from Lemma 1 inf] thaty} € L (P). Hencey? € LL (Pp,,) since
g is locally bounded.
(b) If p € (1, +00) it follows from Lemma 2 inf§] that if /=7 € L. (P) theny! € L} (Py,,.)
sincegyy is locally bounded.
U

Corollary 3.1. (Distributions with unbounded supports ) Let> 0, s € (0,+00), s # r + d and
let X be a random variable with probability measufe= f - \; such thate| X |"*" < +oo for some
n > 0. Let(0, 1) be P-admissible and suppose tht1), (H2) hold.

(a) If s € (0,7 + d) then Assumptio(f.q) of Theoren.q holds true.

(b) If s € (r+ d,+0o0), and if furthermore(H3) holds andf 7 ¢ L} _(P) then Assumption
(B.69) of TheorenB.g holds true.

Proof. Letzy € supgP). We know from[d] thatd(zo, a,,) — 0. Then following the lines of the
proof of Corollary 2 inff] one has fotz| > N = |zg|+sup,,>; d(zo, o), d(z, ) < 2|z| for every
n > 1. Thus for everyp > 0, x € B(0, N)<,

N(B(.1))
W@ < S BB

Now, coming back to the core of our proof, it follows frdifd2) that (forb coming from(H2)),

/ G P, | < oo,
B(0,MVN)e

Since
/ /), :/ /@ gp, +/ gl @) gp,
B(0,MVN) B(0,MVN)©

it remains to show that the first term in the right hand sidehif kast equality is finite.

(a) If s € (0,7 + d) it follows from LemmaB.1], (a) that the first term in the right hand side of
the above equality is finite. As a consequen,!z@ € Ll(PW).

(b) If s > r + d, the first term in the right hand side of the above equality fatite owing to
Lemmap.T], (b). Consequently, Assumptiofp.q) of TheoremB.g holds true provideqH3) holds
andf v+ € LL (P).

loc

O
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We next give two useful criterions ensuring that Hypoth€kig) holds. The first one is useful
for distributions with radial tails and the second one fatibutions which does not satisfy this last
assumption.

Criterion 3.1. Let X be a random variable with probability measure such tiiat= f - A\; and
E|X|"™ < +oo for somen > 0.

(a) Letr,s > 0andf = h(|-|) on B(0, N)®with h : (R,+0c0) — Ry, R € Ry, a decreasing
function and| - | any norm onR“. Suppose thatd, ;1) is a couple ofP-admissible parameters such
that

/f(cw)tiirdPgM(x) < 400 (3.10)

for somec > 1. Then(H2) holds.

(b) Letr,s > 0. If supp(P) C [Ry, +o0) for some Ry € R and f|(R67+OO) decreasing folR, > R.
Assume furthermore thd®, ;1) is a couple ofP-admissible parameters such th@10) is satisfied
for somec > 1. Then HypothesigH2) holds.

Note that(b) follows from (a), for d = 1, and that(a) is simply deduced from the proof of
Corollary 3 in[ff] since it has been showed that foe (0,1/2), M := N/(1 — 2b) one has for every
x € B(0,M)¢,

N(B@,t) _ 1
= f(x(1+20))

sup
t<objz| P(B(z,t))

Criterion 3.2. Letr,s >0, P = f-)gand [ |z|"t"P(dz) < +oo for somen > 0. Let(6, ) be a
P-admissible couple such that
sup fu+0(z—p))
z7#0 f(Z)

1{f(z)>0} < 400. (3.11)

Assume furthermore that
o Da(supgP) N B(x,p))
zesupg P),p>0 Aa(B(z,p))

and that f satisfies the local growth control assumption : there existd numberss > 0, n €
(0,1/2), M,C > 0 such that

>0

Va,y € SUpRP), [a| = M, |y —z| < 2nz| = f(y) = Cf(z)"**.

/ f(z)” o dP(z) < 400, (3.12)

then(H?2) holds. If in particular f satisfies the local growth control assumption fo 0 or for every
e € (0,g], withe > 0, and if

/ F@) @t dP(z) = /{ . F@) T () < 4o

then HypothesigH2) holds.

s(14¢)

Notice that Hypothesi¢B.11]) can be relaxed if we suppose thgt:) ™+~ € L1(Pp,,) instead
of (B.19). The criterion follows from Corollary 4 if].
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4 Toward a necessary and sufficient condition for.* ( P)-rate optimality
whens > r

Before dealing with examples, let us make some comments ategualities(R.1) and (B.7). Note
first that the moment assumptidfi| X |"*" < 4-oo for somen > 0, ensure thaf, fﬁd)\d < 400
(cf [B]). Consequently, iff fg,uf’tﬁrd)\d = 400 one derives from inequalit{.])) that

~ 0,
lim || X — X" ||2 = +o0.
n

Then the sequendex,"),,>1 is not L*-rate-optimal.

On the other hand if fs,.f~ @ d\q < oo one derives from Inequalitf7) that (af"),>1
is L5-rate-optimal. Fos > r, this leads to a necessary and sufficient condition so tleasdlquence
(afg“)nzl (in particular the sequende,,),>1 by takingd = 1 andp = 0) is L*-rate-optimal.

Remark 4.1. Lety € R%, 6,7 > 0, s > r and letP be a probability distribution such tha? = f-\,.
Assume(f, 1) is P-admissible. Lefa,,),>1 be anL"(P)-optimal sequence ai-quantizers and
suppose that Assumpti@B.gq) of Theoren.d holds true. Then

(af;“)nzl is L°-rate-optimal <—- /fmfﬁd)\d < +o0. 4.2)

Remark 4.2. If s < r, the inequality(B.d) provides a sufficient condition so that the sequence
(Q%M)nZl is L*-rate-optimal, which is :ffgi_lff’ﬁd)\d < +oo (always satisfied bya,,)n>1
itself).

Now, for s # r, is it possible to find & = 6* for which the sequenc@xﬁ’“)nzl is asymptotically
L*(P)-optimal? (whens < r this is the only question of interest since we know that),>1 is
L#(P)-rate-optimal for every < r).

For a fixedr, b andy, we can write from inequalitie.3) and (B.7) :

limsupn®/? | X — X" |2 < QSU(P,6) (4.2)
n

" d s/r L s 1*% .
Su(P,0) = 0 (@ (P)) (ff>o fo " f T*Sd)\d) if s<r
5 63+dc(b) f f,guufiﬁsrd)\d |f s> 7

One knows that for a given > 0, we have for alln > 1,

~ 0O,n
€n,s(X) <X — X <.

n,s
Then for evenyd > 0,
Qs(P) < QY(P,0).

Consequently for a fixed > 0, in order to have the best estimation of Zador’'s constari‘inwe
must minimize ove#, the quantitnyfép(P, 0). In that way, we may hope to reach the sharp rate of
convergence in Zador Theorem and so construct an asyngilptic’-optimal sequence.

For 1, well chosen, the examples below show that, for the Gaussidithee exponential distribu-
tion, the minimunmg* exists and the sequen(:ef:’“)nzl satisfies the empirical measure theorem and
is suspected to be asymptotically-optimal.
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5 Examples

Let (o, )n>1 be anL” (P)-optimal sequence of quantizers for a given probabilityritistion P, and
consider the sequenc(ezﬁ’“)nzl. For a fixedu ands, we try to solve the following minimization
problem

0* = arg min {Q2P(P,0), (af"),>1 L*(P)-rate-optima}. (5.1)

In all examplesC' will denote a generic real constant (not depending?pwhich may change
from line to line. The choice gf depends on the probability measure and it is not clear howdose
it. In practice, we shall set = E(X) when X is a symmetric random variable otherwise we will
usually setu = 0.

5.1 The multivariate Gaussian distribution
5.1.1 Optimal dilatation and contraction
Proposition 5.1. Letr, s > 0 and letP = N'(m; %), m € RY, ¥ € S*(d,R).

@ If s € (r,r+d) U (r+d,+o00), the sequencéaf;m)nzl is L*(P)-rate-optimal iff 6 €
(v/'s/(d+7),+00) and

0*=+/(s+d)/(r+d) €(1,+00)
is the unique solution of5-1]) on the sef(/s/(d + r), +0).

(b) If s € (0,7), the sequencén%m)nzl is L*(P)-rate-optimal if 6 € (\/s/r, +00)
and
0*=+/(s+d)/(r+d) €(0,1)
is the unique solution of5.1)) on the se{(y/s/r, +o0).

Proof. Since the multivariate Gaussian distribution is symmetie setg. = m. Keep in mind that
the probability density functiorf of P is given for everyr € R? by,

f(x) = ((2r) dets) 23 (emm)= " am)
Note fi_rst that Hypothesi@H1) is obviously satisfied from the continuity Wl{ £(z)>0} ON
everyB(0, M), M > 0.

(@) Lets € (r,d +r). Foreveryd > 0, u € R?, the couplgd, 1) is P-admissible { > 0) and f
is radial sincef (z) = ¢(Jx — m|x) with ¢ : (0, +00) — R defined by

p(€) = ((2m)'det) ™/ exp(— 3 [€]?), with a]s = 5 3al.

Letd > /s/(r +d). Then Assumptior(B.10) holds for everyc € (1, Hﬁ). Consequently, it
follows from CorollaryB.1, (a) that Assumptior(B.g) of Theoren@ holds.

If s > d+r, the requwed additional hypothes@$3) and f~ el Lloc(P) are clearly satisfied
sinceP = f-)\4 (andf~!is continuous ensuring thay(-Nsupg P)) < P) andf’rid is continuous

14



oneveryB(0, M), M > 0. Then it follows from Corollarg.T], (b) that Assumptior{B.6) of Theorem

B9 holds.

In the other hand

/ fom(@)f (@) Trdz = | fm+0(—m))f(x) T dv
Rd R

- C 67%(927d+r)(:vfm)’2_1(:vfm)dx
R4

/Rdf@,m(m)f(x)(ﬁwﬁo L

Now we are in position to solve the problef ). Leto € (y/s/(d + 1), +o0),

so that

93+d/ fom(@)f(x) Trde = ((ZW)ddetE)_%(l_dL”) 93”/ ¢~ 2 =g @—m)'B7 @=—m) g
R4 Rd

ol

—  ((20)det ) arr gstd (g2 _ 5 -
((2m)det )7 ¢ (e -

Ford € (y/s/(d +r),+00), we want to minimize the functioh defined by

h(9) = o5+ (92 N >_

ol

d+r

The functionh is differentiable on(y/s/(d + ), +00) with derivative

—1—d/2

+d
B(0) = spdts—1 HQ_L 92_3 ‘
(6)=s ( d+r r+d

One easily checks thatreaches its unique minimum ¢r/s/(d + r), +oo) atd* = /(s + d)/(r + d).
(b) Let s < r and consider the inequalif§.d). We get

s z)f "7 (z)dr = C e 37 (@ D@m= a—m) g,
fom (@) f
b ]Rd

Soif 6 € (\/s/r,+00) then [ f; % (x)f 7= (x)dz < +oo. This proves the first assertion.
To prove the second assertion, € (/s/r,+oc). Then

r S 1_% T S ! — 1_$
ga+s </ f(fns (x)f:(x)dac> _ O pstd </ 67%r75(927;)($7m) ) l(an)dx>
b Rd

C s+ (92 _ §>2dr(”s) ‘

r

We proceede as before setting

B
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Forall 6 € (\/s/r,+o0),
B (0) = o (92 - ;)6_1 ((a +23)6% — %) .

The sign of#’ depends on the sign ¢fa + 23)0% — <2). Moreovera + 23 = 2(d + r) > 0 then
K vanishes af* = /(s + d)/(r + d), is negative on the sét,/s/r,#*) and positive on(6*, +c0).
Thereforeh reaches its minimum ofw/s/r, +oo) at the unique poing*.

U

Remark 5.1. Let X ~ N(m;X).

If s < r, then * < 1. Hence, (aff’m)nzl is a contraction of(a,),>1 with scaling numbep*
and translating numberm. In the other hand, it > r, then * > 1. In this case the sequence
(af:’m)nzl is a dilatation of(c, ),>1 with scaling numbep* and translating numberm. Also note
that 0* does not depend on the covariance makix

What we do expect from the resulting sequefm%*’m)nzl ? The proposition below shows that it
satisfies the empirical measure theorem (keep in mind tigathtborem is satisfied by asymptotically
optimal quantizers although the converse is not true inigdne

Proposition 5.2. Letr,s > 0 and letP = N (m;X). Assume&a,),>1 iS asymptoticallyL” (P)-
optimal. Then the sequen¢e? ™),,>1 (as defined before with* = /(s + d)/(r + d)) satisfies the
empirical measure theorem.

In other words, for every, b € R,

Leard{z € o™ N [a,B]}) — 1/ F@) T da
n Cf,s [a,b]

Proof. Foralln > 1,
{z € ozf;’m Nla,bl} = {z € ap, N [(a—m)/0" + u, (b —m)/0*] + m}.

Since(ay,),>1 IS asymptoticallyL"-optimal; by applying the empirical measure theorem to e s
quence( oy, ),>1, We obtain:

al

Ctr Ji(a=m)/0*+m,(b—m) /6% +m]

f(:v)ﬁdx.

%car({{x € anNl(a—m)/0*+m, (h—m)/0*+m]}) —

It remains to verify that

! 1
Cyr /[(am)/9*+m7(bm)/9*+m] f(z)atrde = Crs /[avb] x) s dx
Remind that L -
flz) = ((27T)ddet2) 2 o3 (@—m) S z—m)
andsee([.3))
Cpr= [ fl@)Tds.

R4
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Hence, for allr > 0,

d
Cyr = ((27)'dets) 7T7D (d ; T> ’
By making the change of variable= m + 6*(z — m), one gets :

1

/ f(z)#l""dz = (" f((fﬂ—m)/9*+m)d;irdw-
Ctr Ji(a=m) /6% +m,(b—m) /6% +m]

Cf, [a,b]

It is easy to check that

(f((@ = m)/0% +m) T = (f(2)) @5 ((2m)*dets) 2w a5

and that

Nl

C (9*) ((27T)ddem)_7(d7+7"_d+s) — ((27T)ddet2)_2(371d) <d;—8>
fr

The last term is simply equal t@){— We then deduce that

L / f(x)#dx: ! / f(x)ﬁdx.
Cf,r [(a=m)/0*4+m,(b—m)/0*+m] Cf,s [a,b]

O

We have just built a sequen(:aﬁ* "™)>1 Verifying the empirical measure theorem. The question
we ask know is : is this sequence asymptoticdlfiroptimal? The next proposition shows that the
lower bound in(R-1]) is in fact reached by considering the sequefide ™) Jn>1-

Proposition 5.3. Lets > 0 and letd = 6* = /(s + d)/(r + d). Then, the constant in the asymptotic
lower bound for thel.® error induced by the sequen(;af;’m)nzl (see(R.1))) satisfies :

Qi (P.607) = Qs(P). (5.2)

Proof. Keep in mind that ifP ~ N (m; %) then, for allr > 0,

d+r

(@ (P = () "V () T (o)

QlH

We have in one hand

(/Rd fdir(m)d(x)>s/d _ <((27r)ddet2)§d .

_ (((2W)ddet2)%

and in the other hand

/f9*7u(£6)fdir($)d(£ﬂ) = ((27T)ddet2 5 / 1l (a- yEt@em) g,
Rd
+ %

= ((2m)%dets) @ (211 y 0z,
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Combining these two results yields

s/d
_d_ _ s
Q'”f(P 0*) = (0°)F T, ( / fd+rd)\d> / ) for pf " dAg
R R

d+s
= Jua <$;d> " ((2n)idets)

= QS(P)

O

After some elementary calculations, it follows from thegwsition above and inequaliti€B.1)), ({.2),
the corollary below :

Corollary 5.1. LetX ~ N (m;X) and 6* = \/(s+d)/(r + d). Then,

Q.(P)Y* < liminfn/4 | X — X% ™|, < limsupn'/? || X — X 7|, < QSU(P,0*)V/* (5.3)
n—od ’

with y 1
QSUp(P 9*)1/8 _ (%i) , thd (( )ddetz)j ) ifs<r
T (=54)% . [ C(b) ((2n)dets) T ifs >,

Remark 5.2. (a) If s > r, we cannot prove the asymptotically (P)-optimality of(aﬁ*’m)nzl using
(B.7) since the constant'(b) is not explicit.

(b) Whens < r, the corollary above shows that the upper boundfi]) does not reach the
Zador constant. Then our upper estimate does not allow usdw shat the sequenc(eyff’m)nzl is
asymptoticallyL* ( P)-optimal.

Moreover, usingd élder inequality (withp = r/(r — s) andg = r/s), we have for every > 0,

/ fou@) [T ()dAalx) = / Jou@)f = (@) [T () dha(e)
Rd

( NG <w>dxd<x>) - ( 5 fdi"(m)cud)

IN

and (forf = 6*)

L tesas = @ansto) = ([ fiior @) " ([ r@an)

Hence, according t5.9), one gets for every < r,

r—s

Oy ea ([ frpor S @i ) A% = Q) 55)
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Thus, to reach the Zador constant(fh3) we must rather havd, 4 instead ofJ,. ; (which will be
coherent since for all < r, Jslff < Jrlg"), that is,

r—
T

Sab s -5 : s/r
limsupn!/? [ X — X", < 07, q ( /R i @ <w>dxd<m>) 1A%
—+r

n—oo

5.1.2 Numerical experiments

For numerical example, supppose that 1 andr € {1,2,4}. Let X ~ N(0,1) and, for a fixed
n,letay, , = {z1,, -+ ,z,,} be then-L"-optimal grid for X (obtained by a Newton-Raphson zero
search). For every. € {20,50,---,900} and for (s,r) = (1,2) and (4,2), we make a linear
regression oty, , ontoa, s :

Tjs ™ UspXiyp + bspy, =1, ,n.

Tablefl] provides the regression coefficients we obtain for diffexetues ofn. We note that when
increases, the coefficients, tend to the valug/(s + 1)/(r + 1) = 6* whereas the coefficients,
almost vanish. For example, far= 900 and for(r, s) = (2,1) (resp.(2,4)) we geta,, = 0.8170251
(resp. 1.2900417). The expected values asg2/3 = 0.8164966 (resp. \/5/3 = 1.2909944). The
absolute errors are thém85 x 10~ (resp.9.527 x 10~*). We remark that the error mainly comes
from the tail of the distribution.

n a12 b12 € G4 bsz €
20 | 0.8250096| 1.826E-14 | 0.0003025 1.2761027| - 3.650E-12| 0.0008607
50 | 0.8211387| - 1.021E-13| 0.0006870 1.2828110| 3.733E-10 | 0.0020110
100 | 0.8193424| 8.693E-14 | 0.0009909 1.2859567| 4.059E-09 | 0.0029445
300 | 0.8177506| - 1.045E-11| 0.0013601 1.2887640( 0.0000004 | 0.0041021
700 | 0.8171428| - 7.219E-11| 0.0015111 1.2898393| - 0.0000089| 0.0048006
800 | 0.8170775| - 6.725E-11| 0.0015247 1.2900041| 0.0000216 | 0.0040577
900 | 0.8170251| 4.564E-11 | 0.0015346 1.2900417| - 0.0000141| 0.0048182

The previous numerical results, in addition to Equatipa), strongly suggest that the sequence

Table 1:Regression coefficients for the Gaussian.

(af:’m)nzl is in fact asymptotically.®( P)-optimal. This leads to the following conjecture.

Conjecture 1. Let P ~ N(m;X) and let(«,),>1 be anL"(P)-optimal sequence of quantizers.
Then, for every > 0, the sequenc(aaff’m)nzl (with 0* = /(s +d)/(r + d)) is asymptotically

L#(P)-optimal.

5.2 Exponential distribution

5.2.1 Optimal dilatation and contraction

Proposition 5.4. Letr,s > 0 and X be an exponentially distributed random variable with rate

parameterh > 0. Sety = 0.
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(@ Ifse (rr+1)U(r+1,+00), the sequencén’’), >, is L*-rate-optimal iff 6 € (s/(r+
1),+00) and
0 = (s +1)/(r + 1)

is the unique solution of5-1)) on the se(s/(r + 1), +o0).
(b) If s € (0,7), the sequencény’),,>; is L*-rate-optimal for all § € (s/r, +oc) and
0 =(s+1)/(r+1)

is the unique solution df.1]) on (s/r, +00).
Proof. (a) Lets € (r,r +1). Foralld > 0,u € R, the couple(d, 1) is P-admissible and the
function f is decreasing oif0, +00). Foré > s/(r + 1), Assumption(B.1() holds true for every
c € (1,6(1 4+ r)/s). Moreover, HypothesigH1) is clearly satisfied. Consequently, if follows from
CorollaryB.1), (a) that Assumptior(B.6) holds true.

If s > r+ 1, Assumption(B.g) still holds since the additionnal assumpticiit3) andf’r%1 €

Ll

L .(P) required to apply the corollafy.], (b) are satisfied.
In the other hand, one has

“+o00
/ F(0) f(2)/ 0Dy = C/ e MO/ gy « 400 =0 > s/(r +1).
R 0
Now, let us solve the probleifp.1) For all § > s/(r + 1),

s +OO s
R 0

—1
cotl(g- 2 .
r+1

Let

Then

—2

|

o) = s6° (6 — —2 -t
r+1 r—+1

Hence,h reaches its unique minimun c(@/(r +1),400)atf* = (s+1)/(r +1).
(b) Lets < r. Then

A

/ frs(0a)f s (a)de =C [ e TS0y,
R Ry

Then, for alld > s/r, fRfﬁ(az)f’ﬁ(:c)dm < +4o0. This gives the first assertion.
Foralld > s/r, then

r—s

r s 1= -
g5+t < / fgi,f(x)f‘m(:c)dx> = Cot! < / e—$ris<r0—8>dx>
R Ry

= COT(ro—s)T .
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We easily check that the functidr(¢) = 65+! (r6 — s) + reaches its minimum ofs/r, +-0c) at the
unique pointt* = (s +1)/(r + 1).
U

Remark 5.3. Let X ~ E(\). If s < r, then 6* = (s + 1)/(r + 1) < 1. Hence, the sequence
(aﬁ*’o)nzl is a contraction of o, ),>1 With scaling numbeé*. In the other hand, i§ > r, then 6* >
1and then(aﬁ*’o)nzl is a dilatation of(c, ),>1 with scaling numbe#*. Note tha®* does not depend
on the parametei of the exponential distribution.

One shows below that the sequeriaé *°),,>1, with 6* = (1 + s)/(1 4 r), satisfies the empirical
measure theorem.

Proposition 5.5. Letr, s > 0 and letX be an exponentially distributed random variable with rate
parameter\ > 0. Assuméa,, ), > is an asymptotically.”-optimal sequence of quantizers f&rand

let (o *),,>1 be defined as before, with* = (s + 1)/(r + 1). Then, the sequende’, ) satisfies
the empirical measure theorem.

Proof. Since(al ),>1 = (#*a,)n>1, It amounts to show that

carda, N [a/0*,b/6*))

1 b 1
N m/a f(x)mdx
i.e that for alla, b € R,

1 1 [ oLl 1 b 1
Cf,rﬁ/a f(z/0")+rde = Cf,S/a f(z) s dx.

Elementary computations show that > 0,

Crr =\ (147).

so that

1 1 /[° 1 1 147 [/ e\
JR— H*I'rd — )\ xls Td
Cf,re*/(lf(x/ Jrrde Cfm1+s/a(e +) “’”

b 1
_ L i+ ATH T TEs / (Ae*M) Y d
Cf,r 1+s o

1 b %d
= +s .
o / f(@) e da

O

Is the sequenceaf:’o)nzl asymptoticallyL*-optimal? The remark.d is also valid for the ex-
ponential distribution. Our upper bounds (.3) and (B.7) do not allow us to show tha¥*«,,) is
asymptoticallyL*-optimal because of the corollary below. But the numeriealits strongly suggest
that it is.
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Corollary 5.2. LetX ~ &(\) and 6*

Q4(P)Y* < liminf n¥4| X — X ||, < limsupn'/? || X — X% °|, < QS(P,6*)/* (5.6)
n—oo ’

with

Proof. We easily prove, like in propositiop 5.2, th@ﬂ,er(P, 0*) = Qs(P). The corollary follows
then from(R-1)) and (-3) (keep in mind that for allr > 0,

Qigp(P’ 9*)1/5 — {

5.2.2 Numerical experiments

n—oo

(s+1)/(r+

1). Then,

gx(s+ D))
(s + D)IFYs((r + DATT) LO®)Ys i s>

Jr,l =

ifs<r

T )

For numerical examples, Tabfegives the regression coefficients we obtain by regressiag.th
grids onto the grids we get with the' and L* norms, for different values af. The notations are
the same as in the previous example. We note that for largegbng the coefficientsi,, tend to
(s+1)/(r+1) = 6*. For example, ifx = 900, we geta 2 = 0.6676880; a4 = 1.6640023 whereas
the expected values are respectivefip = 0.66666667 and5/3 = 1.6666667. The absolute errors
are in the order ol0—3. Like the Gaussian case, we remark that the error of the aitimresults
mainly from the tail of the exponential distribution.

n a2 b12 € 42 bs2 €
20 | 0.6765013| - 0.0104881| 0.0019489 1.6396807| 0.0288348| 3.081E-33
50 | 0.6726145| - 0.0082123| 0.0045310 1.6502245| 0.0225246| 1.149E-28
100 | 0.6706176| - 0.0062439| 0.0070734 1.6556979| 0.0172020| 1.573E-27
300 | 0.6686428| - 0.0036234| 0.0114628 1.6611520| 0.0100523| 1.508E-27
700 | 0.6677864| - 0.0022222| 0.0146186 1.6635261| 0.0061356| 1.222E-25
800 | 0.6676880| - 0.0020482| 0.0150735 1.6638043| 0.0057199| 2.020E-26
900 | 0.6676079| - 0.0019043| 0.0154634 1.6640023| 0.0053173| 9.683E-25

Table 2: Regression coefficients for exponential distribution.

Conjecture 2. Let X be an exponentially distributed random variable with ratggmeter) and let
(am)n>1 be anL”-optimal sequence of quantizers f&r. Then fors > 0 and 6* = (s +1)/(r + 1)
the sequenceocff’o)nzl is asymptoticallyl*-optimal.

These exampless could suggest that a contraction (or atiblax parametef™, solution of the
minimisation problenif.]), always leads to a sequence of quantizers satisfying theieaipneasure
theorem. The following example shows that this can fail.

5.3 Gamma distribution

5.3.1 Optimal dilatation and contraction

Proposition 5.6. Letr, s > 0 and let X be a Gamma distribution with parameteisand A : X ~
L(a,A), a >0, A>0.
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(@) if s € (r,r + 1), the sequencény,”),,>; is L*-rate-optimal iff 6 € (s/(r + 1), +oc) and for
all a > 0,
0* = (s+a)/(r+a)

is the unique solution of5-1)) on the se(s/(r + 1), +o0).

(b) if s > r+1andifa € (0,2tH), the sequencén?’), >, is Li-rate-optimal for every
0 € (s/(r+1),+o00) and
0 =(s+a)/(r+a)

is the unique solution off.1) on the set(s/(r + 1), +oo) (Note that the assumptions imply
a € (0,2)).

() if s < r, the sequencey”),,>, is L*-rate-optimal for everyd e (s/r,+00) and for alla > 0,
0 =(s+1)/(r+1)

is the unique solution of5-1)) on the se{(s/r, +00).

Proof. We sety = 0. Keep in mind that the density function is written

)\a
I'(a)

—+00
flx) = x“ilef)‘ml{xw}, with I'(a) = / v e % d.
0

(@) and(b). Lets € (r,r + 1) and setRy = max(0, (e — 1)/\). The functionf is decreasing
on (Ry, +o0) and for everyd > 0, u, the couple(d, ) is P-admissible. Fof > s/(r + 1), As-
sumption(B.10) holds true for every: ¢ (1, 0(1 + 7‘)/8). Moreover, HypothesigH1) clearly holds.
Consequently, it follows from Corollafy.1, () that Assumptior(B.6) of Theoremds.3 holds true.

Whens > r + 1, the additionnal hypothesig 71 € L},.(P) holds fora < ™t + 1. Note that
if P = f-\;then\g(supdP) N{f = 0}) = 0 implies that\;(- N supd P)) < P. It follows that
(H3) holds. In this case Assumptidfi.g) of TheoremeB.q holds true.

Forallg > 0,

s a \ 1=s/(r+1) ptoo . .
/ f(0x)f(x)” T+rdr = <>\—)> / 2@ DA 57) o= (0= 57)Az g
R 0

I'(a

and then
/f(@x)f(x)rildm<+oo iff 0>s/(r+1) anda(r+1—s)+s>0.
R

Letd > s/(r +1). Then

s Ao\ e/ e 11— 2 0—T5-)A
98+1/f(9$)f($)_1+_7"d$ _ < > 98+19a1/ ZC(a_ )( _1+_7")6_( 1) Z o
R [(a) 0

s -8
= CG”(@— ) )
147

y=s+aandf=(a—-1)(1—-s/(r+1))+1.

with
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We define orR* the functionh by

h(0) = 07 <9— > >_ﬁ.

1+7r

The functionh is differentiable for alp > s/(1 + r) and

B (0) = 67 <9— i >_ﬁ_1 <(’y—ﬁ)9— itk >

1+7r 1+r

Hence, the minimum of is then unique orfs/(r + 1), +-00) and is reached &k".

Notice that the condition required fgf ++1 to be in L} .(P)isa < ™2 +1 and for every
s > r+1onehasl + 1 < Combined to the condition(r + 1 — s) > 0 yields the
condition fora.
(c) Lets < r. Then

L AG [ g
f'rfs 93; f r—s(xq d(E — —/ xa—le r—s(r S)dﬂ?
|15 e @) o

s—(7s"+1) )

ThereforefRfﬁ(ax)f’ﬁ(a:)d:n < +oo iff 6> s/r.
Let® > s/r. Then

1—= T—s

_r_ s r +0o0 z T
g1+s </ fo, (@f”(@dm) = Ot </ % te” rAs(T@s)dm)
R 0

s—r

= C 9““(7"9 — s)aT.

Considering the functioh defined byh(6) = 05 (rf — s)a¥ we show that reached its minimum
on (s/r,+oc) at the unique point* = (s + a)/(r + a).
O

Remark 5.4. Let X ~ I'(a,\). If s < r, then * = (s + a)/(r + a) < 1. Then the se-
quence (aﬁ*’o)nzl is a contraction of(a;,),>1 with scaling numbeg*. On the other hand, if
s > r, then §* > 1 and the sequence(aff’o)nzl is a dilatation of (a;,),>1 with scaling num-
ber 0*. Moreover there is no constraint on the parameieas long ass < r + 1. In this case when
we seta = 1 (exponential distribution with parametey) we retrieve the result of the exponential
distribution. Note that* does not depend on the parametefThat is expected sindg1, \) = &(\)

and, in the exponential case we know that the scaling numbes dot depend ok.

Let0* = (s + a)/(r + a) and consider now the sequer(@&*’o)nzl defined as previously. Does
this sequence verify the empirical measure theorem?2 # 1 we boil down to the exponential
distribution. On the other hand, when+# 1, one shows below that there exists> 1, s > 0 and
r > 0 such that the sequen(:eﬁ*’o)nzl does not verify the empirical measure theorem.

Suppose tha(aﬁ*’o)nzl satisfies the empirical measure theorem. Then we must havell f

U €R+,
! 1/“f( (09 e = /“f( yd (5.7)
- x radr = €T sax. .
Crr 0" Jo Cts Jo
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with f(z) = ¢ %x e,y and C, = [ f(z)Trda forall r > 0.
Moreover, letr > 0. Then,

)

a 1 +oo A
Crr = Mmelw/ = D/D) = 22 gy
0

a 1 +oo A
_ Au_rf(a)u_r/ x(r—l—a)/(r-{—l)—lefu—rxdx
0

a 1 r+a r+a r+a
= i+ [ i+ [ A\ 1 r+1
AT+ D (a)” T+ <r+1> + (7“+ )

r+a 1 _r r+a
- F<r+1>r(a) AT (r 1)

Equation(p.7) is written down for allu € R,

r+a

r+a)rt [ a1 __AMrta) R

C(r) + / rrite FDG+a) dx—C(s)/ xstle s+1%dy
sS+a 0 0

with C(r) =T (=2) A (r 1) veso

Letm € N anda > 0. We show by induction that, far > 0,

/“ xhe ¥y = — <lu” + %u”*1 + Mu”*Q 4+ llu + L) e Yt n!
0 (6%

o a3 am an—i—l an—i—l
ConS|dera > 1 such that—; and“— are integers. Set = 2, m = %=, a = % andg =
=21 Then Equatior(5.7) is flnaIIy ertten down
+ Ea 1 ( 1) ! ! |
r+a\r n o, nn-— _9 n! n! _ n!
“”<&m> [@“+$“ T +W+5”Hwﬂew‘am}
1 m .1 mm-—1) ., m! m! 3 m!

Seta=7 s=1,r=2, A=1andu = 1. Thenn =2,m = 3,a« = 3/8,3 = 1/2 and this lead,

after some calculations to :
185 55 79 i 511
o9 _ e _ .

128° 48 ~ 512’

which is clearly not satisfied. We then deduce that(for-, s) = (7,2, 1), the sequenceaﬁ*’o)nzl
does not satisfy the empirical measure theorem. Hence, wedumstructed ah® (P)-rate-optimal
sequence which does not satisfy the empirical mesure timeore
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