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Abstract

In this paper, we propose a semiparametric shock model for two dependent failure
times where the risk indicator of one failure time plays the role of a time-varying
covariate for the other one. Following Hougaard (2000), the dependence between
the two failure times is therefore of event-related type.

To derive our results, we define a joint distribution for the pair of failure times by
means of a pair of parameters and a pair of baseline hazard rates. We then construct
the associated counting processes and their compensators: in particular, we exhibit
a special form of the risk indicators. We then propose a maximal partial likelihood
estimator for the pair of parameters and Breslow estimators for the pair of baseline
cumulative hazard rates. We establish the large sample properties of our estimators,
following Andersen et al. (1992) and we illustrate our results by a short simulation
study and an application to a real data set in demography

Key words: Bivariate censored data, Bivariate survival analysis, Cox model

1 Introduction

The Cox model (see Cox, 1972) is a semiparametric regression model for censored
observations, where the conditional hazard rate of the failure times given the covari-
ate Zi ∈ R

d is given by
αZi

(t) = eθT
0 Ziα0(t),
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where θ0 is a R
d-parameter and α0 is a baseline hazard rate. In many pratical ap-

plications, it is useful to consider time-dependent covariates: the covariates Zi(.) are
then time-varying processes. Kalbfleisch and Prentice (1980) distinguish between
defined time-dependent covariates (when the covariate paths are deterministic, or
fixed up to a F0-measurable random variable), ancillary covariates (as for instance,
the level of air pollution in a study of the occurence of asthma attacks), or inter-
nal covariates (when the covariate is generated by the individual under study, like
typically, disease complications).

In some cases, while considering two non-independent failure times X̃A and X̃B, it
can be interesting to consider 1l

{X̃A<t}
as a covariate for X̃B, and simultaneously,

1l
{X̃B<t}

as a covariate for X̃A. This may happen for instance in the case of infection

within a family: when a member of the family is infected, it increases the risk of
infection for the other members. Another example comes in the field of reliability,
when considering the case of two parallel components: as soon as one of the two
components breaks down, the other one becomes instantaneously more sollicitated,
and thus, its risk of failure increases. In other cases, the risk may decrease: for
instance, after a car accident for one member in a family, we can guess that every
driver in the family will drive more carefully and thus reduce his own risk of accident.
One can also think of two kinds of events happening to one single individual: for
instance, one can guess that marriage will increase the probability to have rapidly
a child, and simultaneously, having a child will probably change the probability to
get married.

Described in such a way, the model is of course not well defined from a mathematical
point of view. Indeed, the likelihood cannot be written simply as the product of the
contributions of each member of the pair, since this would amount to describe the
joint distribution of the pair as the product of the two conditional distributions.
The aim of this paper is to propose a semiparametric bivariate model for the failure
times X̃A and X̃B, in which the indicators 1l

{X̃A<t}
and 1l

{X̃B<t}
will play the role of

covariate for the associated counting processes. The model, called a shock model, is
constructed in such a way that whenever either one of both counting process jumps,
the hazard rate of the other one is instantaneously multiplied by a constant. The
type of dependence between the two failure times X̃A and X̃B can be qualified, after
Hougaard (2000), of event-related dependence, since the risk of one failure time is
changed by the occurence of the other one.

In the next section, we propose a joint distribution for the pair (X̃A, X̃B), we contruct
the associated counting processes (ÑA, ÑB) and their compensators with respect to
the filtration generated by {ÑA(s), ÑB(s), 0 ≤ s ≤ t}.

The joint distribution is described by a pair of parameters ρ0 = (ρA,0, ρB,0) and
a pair of baseline hazard rates (αA,0, αB,0). In Section 3, we develop a maximum
partial likelihood estimator for ρ0 and Breslow estimators for αA,0 and αB,0, and we
study their large sample properties applying Theorems VII.2.1, VII.2.2 and VII.2.3
of Andersen et al.(1993).
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In Section 4, we illustrate our estimation results through a short simulation study
for small sample sizes. In Section 5, we present an application to a data set in
demography. Some theoretical justifications are gathered in Section 6.

2 A shock model for a pair of dependent failure times

2.1 The joint distribution

In this section, we propose a new class of joint distributions for pairs of failure
times (X̃A, X̃B), that cannot be considered as independent. This joint distribution
is defined by means of other random variables, namely XA, XB, X ′

A and X ′
B.

Definition 2.1 Let ρA,0 and ρB,0 be two real numbers, αA,0 and αB,0 be two non-
negative functions. Let

• (XA, XB) be a pair of independent positive random variables with respective hazard
rates αA,0 and αB,0,

• X ′
A be a positive random variable, independent of XA, with conditional hazard rate

given XB, eρA,0αA,0(XB + .),
• X ′

B be a positive random variable, independent of XB, with conditional hazard
rate given XA, eρB,0αB,0(XA + .).

The shock distribution with parameter ρ0 = (ρA,0, ρB,0) and hazard rates αA,0 and

αB,0 is the distribution of the pair of failure times (X̃A, X̃B) defined by

X̃A = min(XA, XB) + X ′
A 1l{XB<XA},

X̃B = min(XB, XA) + X ′
B 1l{XA<XB} .

(2.1)

Another way to define this distribution consists in saying that:

• If XA < XB, then X̃A = XA and X̃B = XA + X ′
B (see Fig. 1).

• If XB < XA, then X̃B = XB and X̃A = XB + X ′
A (see Fig. 2).

X ′
B

αA,0(s) XA = X̃A

X̃B

eρB,0αB,0(XA + s)

Fig. 1. Case XA < XB : X̃B = XA + X ′
B

Such a shock model can also be described as a marked point process with two jumps
at times S1 and S2, and marks J1 and J2: with the notation of Definition 2.1, let us
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eρA,0αA,0(XB + s)

X ′
A X̃A

XB = X̃BαB,0(s)

Fig. 2. Case XB < XA: X̃A = XB + X ′
A

call

• S1 = min(XA, XB),
• J1 = A if XA < XB and J1 = B if XB < XA.

Let us now define the conditional distribution of (S2, J2) given (S1, J1) by

• S2 has conditional hazard rate eρJ̄1,0αJ̄1,0(S1 + .) given (S1, J1),
• J2 = J̄1,

where Ā = B and B̄ = A. The pair (S1, S2) has the same distribution as the pair
(X̃A, X̃B) in Definition 2.1.

Another illustration is given in Fig. 3. From a state 0 where none of both events has
occurred, we can go with hazard rate αA,0 to a state A where only A’s event has
occurred or with hazard rate αB,0 to a state B where only B’s event has occurred.
From these two states, we can go to a state AB where both events have occurred,
and we pass with hazard rate eρA,0αA,0 if we come from state B and with hazard
rate eρB,0αB,0 if we come from state A.

0 A

B AB

αA,0

eρB,0αB,0(XA + .)αB,0

eρA,0αA,0(XB + .)

Fig. 3. A four states-model: state 0: no event has occurred, state A: only A’s event has
occurred, state B: only B’s event has occurred, state AB: both events have occurred.

For the sake of completeness, we give in the next proposition the joint density of
(X̃A, X̃B).

Proposition 2.1 The joint density of (X̃A, X̃B) with shock distribution with pa-
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rameter ρ0 = (ρA,0, ρB,0) and hazard rates αA,0 and αB,0 is given by:

f(s, t) =
eρB,0αA,0(s)αB,0(t)

exp

[∫ s

0
αA,0+

∫ t

0
e
ρB,0 1l{u≥s}αB,0(u)du

] , ∀s < t,

f(s, t) =
eρA,0αA,0(s)αB,0(t)

exp

[∫ s

0
e
ρA,0 1l{u≥t}αA,0(u)du+

∫ t

0
αB,0

] , ∀t < s.
(2.2)

2.2 The associated counting processes

In this section, we consider the basic counting processes Ñh for h = A, B, associated
with the pair (X̃A, X̃B) in a shock model. Let (Nt, t ≥ 0) be the family of the σ-
algebras Nt generated by {ÑA(u), ÑB(u), u ≤ t, (ZA, ZB)}. We want to calculate the
compensators of the counting processes with respect to the filtration (Nt, t ≥ 0).
These counting processes are defined by: Ñh(t) = 1l

{X̃h≤t}
, for t > 0. Let us also

define the functions α̃A and α̃B by

α̃A(t) = e
ρA,0 1l

{X̃B<X̃A,X̃B<t}αA,0(t),

α̃B(t) = e
ρB,0 1l

{X̃A<X̃B,X̃A<t}αB,0(t), for t > 0.
(2.3)

Let us define the risk indicator Ỹh for h = A, B by Ỹh(t) = 1l
{X̃h≥t}

, and

Assumption 1 There exist some sets Th ⊂ [0, τ ], h = A, B such that

∫

Th

αh,0(s)ds > 0, h = A, B.

Furthermore, ∫ τ

0
αh,0(s)ds < ∞, h = A, B.

Proposition 2.2 Under Assumption 1, the counting processes Ñh for h = A, B
have predictable compensators Λ̃h, where Λ̃h(t) =

∫ t
0 α̃h(s)Ỹh(s)ds for any positive t,

with respect to the filtration (Nt, t ≥ 0).

Let denote by M̃h the difference Ñh − Λ̃h. We just need to prove that the processes
M̃h are Nt-martingales, which is done in subsection 6.2.

3 Semi-parametric estimation in the shock model in the presence of

censoring

In practice, the previous counting processes are not observed because of the presence
of the censoring. We now have to define new counting processes that take account
of the censoring. Then, we examine the large sample properties of the maximum log
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partial likelihood of the parameters ρA,0 and ρB,0 and of the cumulative hazard rates
Ah,0 =

∫ .
0 αh,0, h = A, B.

3.1 The censored counting processes

We suppose now that the random variables X̃A and X̃B may be censored: we observe
the random variables in some deterministic time interval [0, τ ] and there exist two
right-censoring times UA and UB verifying the following assumption:

Assumption 2 The random vectors (X̃A, X̃B) and (UA, UB) are independent. The
distribution of (UA, UB) is such that:

P (UA ≥ τ, UB ≥ τ) > 0.

We allow, for instance, the case UA = UB. Instead of observing (X̃A, X̃B), we actually
only observe (TA, TB, δA, δB), where

TA = min(X̃A, UA), TB = min(X̃B, UB),

δA = 1l
{X̃A≤UA}

, δB = 1l
{X̃B≤UB}

.
(3.1)

In order to define the censored counting processes, let us consider individual A. We
expect some counting process of the form δA 1l{TA≤t}, like in the classical Cox model.
So, let us consider the case when δA = 1. Whenever an event of type A occurs before
an event of type B, that is to say whenever TA is smaller than TB, X̃A is necessarily
smaller than X̃B, so that process A cannot have been influenced by process B (see
Fig. 4).

TB = UB

TA = X̃A

X̃B

Fig. 4. Case TA < TB , δA = 1, δB = 0.

This situation is illustrated by the counting process N1 defined by:

N1(t) = δA 1l{TA≤TB ,TA≤t} .

On the contrary, whenever an event of type A occurs after one of type B, if process
B is individually censored (δB = 0), process A must also be considered as censored
because in this case, we do not observe the time X̃B when A’s hazard rate is modified
by the constant eρA,0 (see Fig. 5).
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TB = UB

X̃B? X̃B?

TA = X̃A

Fig. 5. Case TB < TA, δA = 1, δB = 0.

This leads to the counting process N2:

N2(t) = δAδB 1l{TB<TA,TA≤t} .

We can now define the counting process NA corresponding to individual A by NA =
N1 + N2 which implies formula (3.2). In the same manner, we define

N3(t) = δB 1l{TB≤TA,TB≤t},

N4(t) = δAδB 1l{TA<TB,TB≤t},

and NB = N3 + N4.

The two censored counting processes NA and NB resume then in:

NA(t) = δA 1l{TA≤t}(δB 1l{TB<TA} + 1l{TA≤TB}),

NB(t) = δB 1l{TB≤t}(δA 1l{TA<TB} + 1l{TB≤TA}), for any t > 0,
(3.2)

In order to calculate easily the compensator of these counting processes with respect
to the filtration generated by the observations, we can try to interpret NA and NB

as integrals of predictable processes with respect to the previous basic counting
processes ÑA and ÑB.

Recalling the definitions (3.1), we can write

NA(t) =1l
{X̃A≤UA,X̃A≤t}

(1l
{X̃B≤UB ,X̃B<X̃A}

+ 1l
{X̃A≤X̃B,X̃A≤UB}

)

=
∫ t

0
1l{u≤UA}(1l{X̃B≤UB,X̃B<u}

+ 1l
{u≤X̃B,u≤UB}

)dÑA(u),

since Th = X̃h as soon as δh = 1. In the same way, we have

NB(t) =
∫ t

0
1l{u≤UB}(1l{X̃A≤UA,X̃A<u}

+ 1l
{u≤X̃A,u≤UA}

)dÑB(u).
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Define now the censoring processes CA and CB by

CA(u) = 1l{u≤UA}(1l{X̃B≤UB ,X̃B<u}
+ 1l

{u≤X̃B,u≤UB}
),

CB(u) = 1l{u≤UB}(1l{X̃A≤UA,X̃A<u}
+ 1l

{u≤X̃A,u≤UA}
).

(3.3)

Integrating the censoring processes Ch with respect to the compensators Λ̃h, we
define the processes Λh(t) =

∫ t
0 Ch(u)dΛ̃h(u). Recalling the definitions of the Λ̃h

given in Proposition 2.2, we obtain:

ΛA(t) =
∫ t

0
1l{u≤UA}(1l{X̃B≤UB ,X̃B<u}

+ 1l
{u≤X̃B ,u≤UB}

)

eρA,0 1l{XB<XA,XB<u}αA,0(u) 1l
{X̃A≥u}

du

=
∫ t

0
(eρA,0δB 1l{TB<u} + 1l{TB≥u}) 1l{TA≥u} αA,0(u)du,

ΛB(t) =
∫ t

0
(eρB,0δA 1l{TA<u} + 1l{TA≥u}) 1l{TB≥u} αB,0(u)du.

After gathering terms, we can write the processes Λh as

Λh(t) =
∫ t

0
eρh,0Wh(u)Yh(u)αh,0(u)du, (3.4)

with notations

WA(t) = 1l{TB<t},

WB(t) = 1l{TA<t}

YA(t) = 1l{TA≥t}(δB 1l{TB<t} + 1l{TB≥t}),

YB(t) = 1l{TB≥t}(δA 1l{TA<t} + 1l{TA≥t}).

(3.5)

Note the unusual form of the risk indicators Yh, whereas an “intuitive” construction
of the likelihood would have simply led to Yh(t) = 1l{Th≥t}, h = A, B. Here lies the
interest of the long development of the contruction of the likelihood.

Finally, define the filtration Ft as the filtration generated by one observation, namely
by {1l{TA≤u}, 1l{TB≤u}, u ≤ t, δA, δB}.

Proposition 3.1 Under Assumption 1, the counting processes Nh for h = A, B
have predictable compensators Λh with respect to the filtration (Ft, t ≥ 0).

Define first the filtrations Ut as the filtration generated by {1l{UA≥u}, 1l{UB≥u}, u ≤ t}
and Gt as the filtration generated by both Nt and Ut. The censoring processes Ch

are cag-lad and clearly Gt-adapted, so that they are Gt-predictable.

Since the processes Ñt and Λ̃t are independent with respect to the filtration Ut and
since they are Gt-adapted, the Nt-martingales M̃h are also Gt-martingales.
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Since the censoring processes Ch are bounded and Gt-predictable, we can affirm that
the processes Mh(t) =

∫ t
0 Ch(u)dM̃h(u) are also Gt-martingales. Each σ-algebra Ft

is contained in the σ-algebra Gt, and it is clear from formulas (3.2), (3.4) and (3.5)
that these martingales are also Ft-measurable. Thus, they also are Ft-martingales.

3.2 Construction of the likelihood

Suppose now that we observe a n-sample of {1l{TA≤u}, 1l{TB≤u}, u ≤ t, δA, δB}, namely
{1l{TA,i≤u}, 1l{TB,i≤u}, u ≤ t, δA,i, δB,i}. In order to estimate the model parameters, we
shall write the likelihood of the model using Jacod’s formula (see Jacod 1973, 1974-
75 , Andersen et al.1992 ). Since the counting processes Nh,i, h = A, B, 1 ≤ i ≤ n
cannot jump simultaneously, the likelihood is proportional to:

Ln(ρ) =
∏

h=A,B

n∏

i=1

∏

s≤t

(αh,i(s)Yh,i(s))
∆Nh,i(s) exp

(
−
∫ τ

0
αh,i(u)Yh,i(u)du

)

=
n∏

i=1

∏

s≤t

(
eρAWA,i(s)YA,i(s)

)∆NA,i(s)
(
eρBWB,i(s)YB,i(s)

)∆NB,i(s)

(αA,0(s))
∆NA,i(s) (αB,0(s))

∆NB,i(s)

exp
(
−
∫ τ

0
nSn,A(ρ, u)αA,0(u)du

)
exp

(
−
∫ τ

0
nSn,B(ρ, u)αB,0(u)du

)
,

where Sn,A and Sn,B are defined by :

Sn,h(ρ, s) = n−1
n∑

i=1

eρhWh,i(s)Yh,i(s) (3.6)

Maximizing with respect to αA,0 and αB,0 for a fixed ρ = (ρA, ρB)T , we finally find
the log partial likelihood defined by :

ln(ρ) =
∑

h=A,B

n∑

i=1

∫ τ

0
log

(
eρhWh,i(s)

Sn,h(ρ, s)

)
dNh,i(s) (3.7)

A version of this likelihood with added fixed-time covariates can be found in Letué
(2000).

Remark 3.1 Note that in the case where the two individuals are subject to the same
kind of events (think of the case of two twins brothers subject to the same disease),
we may assume that αA,0 = αB,0 and maximizing the likelihood leads to another form
of the log partial likelihood. In that case, just replace the sums Sn,h by Sn,A + Sn,B.

Our estimator ρ̂n is then defined by

ρ̂n = (ρ̂A,n, ρ̂B,n) = argmax
ρ

ln(ρA, ρB). (3.8)
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Estimators for the integrated hazard rates Ah,0(t) =
∫ t
0 αh,0(s)ds, h = A, B are

the Breslow estimators Âh,n(ρ̂n, t) h = A, B, where Âh,n(ρ, t) h = A, B are the
Nelson-Aalen estimators :

Âh,n(ρ, t) = n−1
n∑

i=1

∫ t

0

Jh(s)

Sh,n(ρ, s)
dNh,i(s),

with Jh(s) = 1l{
∑n

j=1
Yh,j(s)>0} .

3.3 Large sample properties for the maximum partial likelihood estimators and the
cumulative hazard rates

At this point, we are exactly in the framework described by Andersen and Gill (1982)
and by Andersen et al.(1992, Chapter VII). Therefore, we can apply their Theorems
VII.2.1 and VII.2.2 in order to establish our results. Recalling the definition (3.8) of
our estimator, we can first state the consistency of our estimator.

Theorem 3.1 Under Assumption 2, the maximal log partial likelihood ρ̂n tends to
the true parameter ρ0, when n tends to infinity.

In the next theorem, the asymptotic behaviour of the estimator is established and
an estimator of the inverse of the asymptotic covariance matrix is proposed.

Let us introduce some notation. Let us denote by DF and D2F the vector of first
derivatives and the matrix of second derivatives of the function F with respect to
ρ. Let Sh, h = A, B be defined by Sh(ρ, s) = E (Sn,h(ρ, s)), let Eh, h = A, B be the
vectors Eh = DSh/Sh and let Vh, h = A, B be the matrices Vh = D2Sh/Sh − (Eh)

⊗2,
where x⊗2 denotes the vector product xxT . Finally, let Στ be the matrix:

∑

h=A,B

∫ τ

0
Vh(ρ0, s)Sh(ρ0, s)αh,0(s)ds. (3.9)

Theorem 3.2 Under Assumptions (1) and (2), the random vector n1/2(ρ̂n−ρ0) con-
verges in distribution to a Gaussian vector N (0, (Στ )

−1) , and the matrix −n−1D2ln(ρ̂n)
tends in probability to Στ .

The proofs of these theorems were first established in Andersen and Gill (1982), they
can also be found in Andersen et al.(1992). In the same paper, the authors propose
some simple conditions to be verified in the special case where the observations are
independent and identically distributed (Theorem 4.1 in Andersen and Gill (1982)).
Since this is our case, we only need checking the assumptions of this theorem (see
section 6.3).

Under the same hypotheses, Andersen and Gill (1982) proved the following results
for the asymptotic joint distribution of ρ̂n and of the Breslow estimators:
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Theorem 3.3 Under Assumptions (1) and (2), the random vector n1/2(ρ̂n−ρ0) and
the processes

Zh,0(.) = n1/2(Âh,0(ρ̂n, .) − Ah,0(.)) + n1/2(ρ̂n − ρ0)
T
∫ .

0
Eh(ρ0, s)αh,0(s)ds, h = A, B

are asymptotically independent. The random process Zh(.) converges in distribution
to a zero-mean Gaussian martingale with variance function

ω2
h(.) =

∫ .

0

αh,0(s)

Sh(ρ0, s)
ds.

The following corollary will enable us to construct confidence interval on Ah,0(t) for
a given h and a given t:

Corollary 3.1 Under Assumptions (1) and (2), the process (n1/2(Âh,0(ρ̂n, .)−Ah,0(.)), h =
A, B) converges weakly to a bivariate Gaussian process with mean zero and covari-
ance function

δh,h′ω2
h(s ∧ t) +

∫ s

0
ET

h (ρ0, u)αh,0(u)duΣ−1
τ

∫ t

0
Eh′(ρ0, u)αh′,0(u)du, h, h′ = A, B,

which can be estimated uniformly consistently by

n
{
δh,h′

∫ s∧t

0
Ŝn,h(ρ̂n, u)−2dNh(u)

+
∫ s

0
DST

n,h(ρ̂n, u)S−1
h,n(u)dNh(u)(−D2ln(ρ̂n))−1

∫ t

0
DSn,h′(ρ̂n, u)S−1

h′,n(u)dNh′(u)
}

,

h, h′ = A, B.

4 A simulation study

We carry out a simulation study in order to illustrate the theoretical properties of
our estimator ρ̂n and to investigate its finite sample properties.

For different sample sizes (n = 30, 50, 100), we simulate a sample of independent
and identically distributed variables (TA,i, TB,i, δA,i, δB,i)1≤i≤n of size n, following the
method indicated in Section 2.1: we begin with simulating a n-sample of indepen-
dent and identically distributed variables (XA,i, XB,i)1≤i≤n such that each pair has
the distribution of two independent exponential random variables with parameter
1. That corresponds to constant hazard rates αA,0 = αB,0 = 1. Then, we simulate
a n-sample of independent and identically distributed variables (X ′

A,i, X
′
B,i)1≤i≤n

such that each pair has the distribution of two independent exponential random
variables with parameters eρA,0 and eρB,0 . Here, both ρA,0 and ρB,0 equal 1. Ran-

dom variables (X̃A,i, X̃B,i)1≤i≤n result from formula (2.1). Right-censoring random
variables (UA,i, UB,i)1≤i≤n are also generated as independent exponential random
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variables with parameter µ taking successively the values 0.0001, 0.1, 0.4 and 1. The
approximate rate of censoring in each case is given in Tab. 1. The duration of study
τ is taken to be 10.

For each experiment, we calculate the estimators following Remark 3.1 (recall that
αA,0 = αB,0), we calculate the estimator of the asymptotic covariance matrix and a
95%-confidence interval. We run L = 500 replications of such an experiment.

Table 1
Approximate rate of censoring with respect to the parameter of the censoring random
variable µ

µ 0.0001 0.1 0.4 1

Approximate rate of censoring 0 0.06 0.21 0.42

For the different values of the sample size n and of the censoring parameter µ, we
give the mean of the estimates over all replications, the approximate bias, the mean
of asymptotic standard deviation, the coverage probabilities of the 95%-confidence
interval calculated with the previous estimates. The results are given in Tab. 2.

Note that in all experiments, the bias is small. Not surprisingly, the asymptotic
standard deviation decreases with the sample size for a given censoring parameter,
and it increases with the censoring parameter for a given sample size. The coverage
probabilities are close to the ones expected (0.025%, 0.950%, 0.025%).

To examine the performance of the estimators, we draw the empirical distribution
functions of the estimates conveniently renormalized and we compare them to the
distribution function of a standard Gaussian random variable. This is shown in Fig.
6 for a sample size equal to 50 and a censoring parameter equal to 0.1. We note that
even with small sample sizes the distribution of the estimators are very close to the
asymptotic distribution.

5 Application to a real data set in demography

We present here the application of our model to a simple demographic data set. The
data were furnished by INED (Institut National d’ Études Démographiques, Paris,
France). They consist on the age at first child’s birth (XA) and age at marriage (XB)
of n = 2830 individuals, born between 1930 and 1950 in the Paris area (see Lelièvre
and Vivier (2001)). The data were collected in 2001, so we observe censored data
for individuals who did not get married or did not have any child at that time, and
the censoring times are then their age in 2001. The censoring variables are the same
for the two processes ”marriage” and ”first child’s birth”. Among the population,
332 individuals never got married in 2001, 317 individuals never had any child and
191 both never got married and had no child. The final time of study was taken as
τ = 70.

12



Table 2
Small sample performance of the estimator for the shock parameters for various values of
the censoring parameter µ and of the sample size n.

µ n ρ̂A ρ̂A − ρA,0 σ̂A < IC ∈ IC > IC

ρ̂B ρ̂B − ρB,0 σ̂B

0.0001 30 0.9862 -0.0138 0.3553 0.024 0.952 0.024

1.0019 0.0019 0.3550 0.026 0.950 0.024

50 1.0135 0.0135 0.2684 0.028 0.948 0.024

0.9885 -0.0115 0.2688 0.028 0.0936 0.036

100 1.0012 0.0012 0.1864 0.030 0.950 0.020

0.9949 -0.0051 0.1868 0.032 0.956 0.012

0.1 30 0.9651 -0.0349 0.3790 0.024 0.950 0.026

0.9879 -0.0121 0.3809 0.028 0.950 0.022

50 0.9875 -0.0125 0.2871 0.040 0.932 0.028

1.0094 0.0094 0.2876 0.026 0.950 0.024

100 0.9857 -0.0143 0.1990 0.032 0.0940 0.028

0.9925 -0.0075 0.1992 0.022 0.944 0.034

0.4 30 1.0155 0.0155 0.4583 0.040 0.938 0.022

0.9785 -0.0215 0.4588 0.030 0.944 0.026

50 0.9985 -0.0015 0.3411 0.026 0.944 0.030

1.0094 0.0094 0.3405 0.038 0.944 0.018

100 0.9974 -0.0026 0.2355 0.042 0.930 0.028

0.9961 -0.0039 0.2360 0.030 0.930 0.040

1 30 0.9669 -0.0331 1.5212 0.040 0.934 0.026

0.9826 -0.0174 1.1174 0.044 0.940 0.016

50 1.0191 0.0191 0.4526 0.022 0.958 0.020

1.0349 0.0349 0.4531 0.034 0.954 0.012

100 1.0017 0.0017 0.3019 0.032 0.948 0.020

0.9993 -0.0007 0.3068 0.034 0.948 0.018

For this data set, we obtain ρ̂A = 2.6465 and ρ̂B = −0.4248 with respective estimated
asymptotic standard deviation 0.0547 and 0.0997. This leads to respective p-values
0 and 2.0204 × 10−5. Hence, these values are significant and seem to indicate that
marriage increases the hazard rate of the age at the first child’s birth whereas having
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Fig. 6. Empirical distribution functions of the estimators in comparison with the standard
Gaussian distribution function

a child decreases the hazard rate of the age at marriage.

We display also in Fig. 7 the plot of the Breslow estimators Âh, h = A, B of the
cumulated hazard rates

∫
αh, h = A, B (truncated to 0) and the associated estimated

survival functions exp(−Âh), h = A, B (truncated to 1) . Recall that these functions
should be interpreted as conditional survival functions given that the other event
did not happen.

As for claiming that the model fits correctly the data, one would need goodness-of-fit
tests, but this is still under investigation and left for future research.

6 Proofs

We regroup in this Section, the proofs of the various assertions and propositions
stated in the main body of the paper.
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Fig. 7. Breslow estimator (above) and estimated survival functions (below) for events A
(left) and B (right).

6.1 Proof of Proposition 2.1

Let us first calculate the bivariate survival function of (X̃A, X̃B), say F , defined by:

F (t, s) = P

(
X̃A ≥ t, X̃B ≥ s

)
.

For t < s, we have on the one hand:

P

(
X̃A ≥ t, X̃B ≥ s, X̃A < X̃B

)
= P (XA ≥ t, XA + X ′

B ≥ s, XA < XB)

= E

(
1l{XA≥t} P (X ′

B ≥ s − XA, XB > XA|XA)
)

= E

(
1l{XA≥t} e

−
∫ s

XA
eρB αB 1l{XA≤s}e−

∫ XA

0
αB

)

=
∫ +∞

t
e−
∫ s

x
eρB αB 1l{x≤s}e−

∫ x

0
αBαA(x)e−

∫ x

0
αAdx

=
∫ s

t
e−
∫ x

0
αA+αB−

∫ s

x
eρB αBαA(x)dx

+
∫ +∞

s
e−
∫ x

0
αA+αBαA(x)dx.

On the other hand,
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P

(
X̃A ≥ t, X̃B ≥ s, X̃B < X̃A

)
= P

(
X̃B ≥ s, X̃B < X̃A

)
= P (XB ≥ s, XB < XA)

= E

(
1l{XB≥s} P (XA > XB|XB)

)

= E

(
1l{XB≥s} e−

∫ XB

0
αA

)

=
∫ +∞

s
e−
∫ x

0
αA+αBαB(x)dx.

Hence, we get, for t < s

F (t, s) =
∫ s

t
e−
∫ x

0
αA+αB−

∫ s

x
eρB αBαA(x)dx +

∫ +∞

s
e−
∫ x

0
αA+αB(αA + αB)(x)dx,

and similarly for s < t

F (t, s) =
∫ t

s
e−
∫ x

0
αA+αB−

∫ t

x
eρAαAαB(x)dx +

∫ +∞

t
e−
∫ x

0
αA+αB(αA + αB)(x)dx.

We retrieve the joint density by deriving once with respect to t and once with respect
to s: f(t, s) = ∂2F

∂t∂s
.

6.2 Proof of Proposition 2.2

The processes Λ̃h are nondecreasing and Nt-adapted, thus they are Nt-predictable.
It suffices to prove that the processes M̃h defined just after Proposition 2.2 are Nt-
martingales, that is to say, for M̃A, that for every s < t, E

(
M̃A(t) − M̃B(s) | Ns

)
=

0. In fact, we have to prove the five following points: for every u ≤ s < t, v ≤ s < t,

i) E

(
|M̃A(t)|

)
< ∞

ii) E

((
M̃A(t) − M̃A(s)

)
1l

{X̃A≤u}

)
= 0

iii) E

((
M̃A(t) − M̃A(s)

)
1l

{X̃B≤v}

)
= 0

iv) E

((
M̃A(t) − M̃A(s)

)
1l

{X̃A≤u}
1l

{X̃B≤v}

)
= 0

v) E

(
M̃A(t) − M̃A(s)

)
= 0

First of all, note the equality of the following events appearing in the definition (2.3)
of the functions α̃H , h = A, B:

{XB < XA, XB < t}= {X̃B < X̃A, X̃B < t},

{XA < XB, XA < t}= {X̃A < X̃B, X̃A < t}.

The direct implication is clear. For the reverse implication, just recall the definition
(2.1). If X̃B < X̃A, then X̃B 1l{XA<XB} < X̃A 1l{XB<XA}, and since only one of both
indicators can equal 1, necessarily XB < XA, and the conclusion follows.

Point i) is fulfilled with Assumption 1.
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Points ii) and iv) result from the equalities (M̃A(t) − M̃A(s)) 1l
{X̃A≤u}

= 0 and

(M̃A(t) − M̃A(s)) 1l
{X̃A≤u}

1l
{X̃B≤v}

= 0.

To prove point iii), by definition of X̃A and X̃B, we have:

(
M̃A(t) − M̃A(s)

)
1l

{X̃B≤v}
=

1l{s<XB+X′
A
≤t,XB≤v}−

∫ t

s
eρA,0αA(x) 1l{XB+XA′≥x,XB≤v} dx.

The expectation of the first term is P (s < XB + X ′
A ≤ t, XB ≤ v) that we calculate

conditioning on XB:

P (s < XB + X ′
A ≤ t, XB ≤ v) =

E

(∫ t

s
eρA,0αA(x) exp

(
−
∫ x

XB

eρA,0αA

)
dx1l{XB≤v}

)
.

For the expectation of the second term, we also condition on XB, and we find:

E

(∫ t

s
eρA,0αA(x) 1l{XB+XA′≥x,XB≤v} dx

)
=

E

(∫ t

s
eρA,0αA(x) exp

(
−
∫ x

XB

eρA,0αA

)
dx1l{XB≤v}

)
,

so that E

((
M̃A(t) − M̃A(s)

)
1l

{X̃B≤v}

)
= 0.

We handle in the same way for point v).

6.3 Verification of Conditions VII.2.1 and VII.2.2 of Andersen et al. (1993)

Since the observations (TA,i, TB,i, δA,i, δB,i)1≤i≤n are independent and identically dis-
tributed, we are typically in the framework given by Theorem 4.1 of Andersen and
Gill (1982) (see also Example VII.2.7 of Andersen et al.(1992)). We only have to
verify the following points:

i)
∫ τ
0 αh,0(s)ds, h = A, B are finite

ii) There exists a neighbourhood R of ρ0 such that for any h = A, B,

E

(
sup

ρ∈R,0≤s≤t
Yh(s)|Wh(s)|

2 exp(ρT
h Wh(s))

)

is finite
iii) For any h = A, B, P (Yh(s) = 1, for any 0 ≤ s ≤ τ) is positive
iv) The asymptotic covariance matrix Στ is positive definite

• Point i) is exactly Assumption 1.
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• For point ii), note that

Yh(s)|Wh(s)|
2 exp(ρT

h Wh(s)) ≤ eρh,

so that any bounded neighbourhood of ρ0 works.
• For point iii), note that in our definition (3.5), the functions Yh,i are nonincreasing

with respect to s, so that the event in the probability is the same as Yh(τ) = 1.

P (YA(τ) = 1) = P

(
X̃A ≥ τ, UA ≥ τ, X̃B ≤ UB, X̃B < τ

)

+ P

(
X̃A ≥ τ, UA ≥ τ, X̃B ≥ τ, UB ≥ τ

)

≥ P

(
X̃A ≥ τ, UA ≥ τ, X̃B ≥ τ, UB ≥ τ

)
.

Thanks to Assumption 2, the latter probability also equals

P (UA ≥ τ, UB ≥ τ) P

(
X̃A ≥ τ, X̃B ≥ τ

)
.

The first probability is positive from Assumption 2. For the second, we can write
that

P

(
X̃A ≥ τ, X̃B ≥ τ

)
= P

(
min(X̃A, X̃B) ≥ τ

)
.

Since min(X̃A, X̃B) = min(XA, XB), this probability also equals

P (XA ≥ τ, XB ≥ τ) = exp(−
∑

h=A,B

∫ τ

0
αh,0(s)ds),

which is positive from Assumption 1. The same arguments hold for YB.
• For point iv), let us recall the expression of Στ (3.9):

Στ =
∑

h=A,B

∫ τ

0
Vh(ρ0, s)Sh(ρ0, s)αh,0(s)ds,

with Sh(ρ, s) = E

(
eρhWh(s)Yh(s)

)
h = A, B, Eh = DSh/Sh h = A, B and Vh =

D2Sh/Sh − (Eh)
⊗2 h = A, B. Let x = (xA, xB) be a two-dimensional vector. We

have :
xT Στx =

∑

h=A,B

∫ τ

0
xT Vh(ρ0, s)xSh(ρ0, s)αh,0(s)ds.

Calculating the derivatives of Sh, h = A, B, we find
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DSA(ρ, s) =




E

(
eρAWA(s)YA(s)WA(s)

)

0


 ,

DSB(ρ, s) =




0

E

(
eρBWB(s)YB(s)WB(s)

)


 ,

D2SA(ρ, s) =




E

(
eρAWA(s)YA(s)WA(s)2

)
0

0 0


 ,

D2SB(ρ, s) =




0 0

0 E

(
eρBWB(s)YB(s)WB(s)2

)


 .

and therefore

VA(ρ, s) =




E(eρAWA(s)YA(s)WA(s)2)
E(eρAWA(s)YA(s))

−
(

E(eρAWA(s)YA(s)WA(s))
E(eρAWA(s)YA(s))

)2

0

0 0


 ,

VB(ρ, s) =




0 0

0
E(eρBWB(s)YB(s)WB(s)2)

E(eρBWB(s)YB(s))
−
(

E(eρBWB(s)YB(s)WB(s))
E(eρBWB(s)YB(s))

)2


 .

Thus,

xT Στx =
∑

h=A,B

∫ τ

0
Vh(ρh,0, s)x

2
hSh(ρ0, s)αh,0(s)ds,

where

Vh(ρh, s)=
E

(
eρhWh(s)Yh(s)Wh(s)

2
)

E (eρhWh(s)Yh(s))
−


E

(
eρhWh(s)Yh(s)Wh(s)

)

E (eρhWh(s)Yh(s))




2

= E


 eρhWh(s)Yh(s)

E (eρhWh(s)Yh(s))

(
Wh(s) − E

(
eρhWh(s)Yh(s)

E (eρhWh(s)Yh(s))
Wh(s)

))2

 .

Therefore, Vh(ρh, s) is the variance of Wh(s) with respect to the probability mea-
sure dPh,s defined by

dPh,s =
eρh,0Wh(s)Yh(s)

E

(
eρh,0Wh(s)Yh(s)

)dP,

where dP is the reference probability measure. Thus, Vh(ρh, s) is clearly positive.
The equation Sh(ρ0, s) = 0, s ∈ [0, τ ] is equivalent to Yh(s) = 0 a.s., s ∈ [0, τ ],
which cannot be true because of iii). From Assumption 1, we deduce that the
integrals

∫ τ
0 Vh(ρh,0, s)Sh(ρ0, s)αh,0(s)ds cannot equal zero, so that we necessarily

have xh = 0, h = A, B, and the matrix Στ is positive definite.
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