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A comparison of multiple regression and neural
network techniques for mapping in situ pCO2 data

By NATHALIE LEFÈVRE∗†, ANDREW J. WATSON and ADAM R. WATSON, University of East
Anglia, School of Environmental Sciences, Norwich NR4 7TJ, UK

(Manuscript received 20 September 2004; in final form 18 May 2005)

ABSTRACT
Using about 138 000 measurements of surface pCO2 in the Atlantic subpolar gyre (50–70◦N, 60–10◦W) during 1995–
1997, we compare two methods of interpolation in space and time: a monthly distribution of surface pCO2 constructed
using multiple linear regressions on position and temperature, and a self-organizing neural network approach. Both
methods confirm characteristics of the region found in previous work, i.e. the subpolar gyre is a sink for atmospheric
CO2 throughout the year, and exhibits a strong seasonal variability with the highest undersaturations occurring in spring
and summer due to biological activity. As an annual average the surface pCO2 is higher than estimates based on available
syntheses of surface pCO2. This supports earlier suggestions that the sink of CO2 in the Atlantic subpolar gyre has
decreased over the last decade instead of increasing as previously assumed. The neural network is able to capture a
more complex distribution than can be well represented by linear regressions, but both techniques agree relatively well
on the average values of pCO2 and derived fluxes. However, when both techniques are used with a subset of the data,
the neural network predicts the remaining data to a much better accuracy than the regressions, with a residual standard
deviation ranging from 3 to 11 µatm. The subpolar gyre is a net sink of CO2 of 0.13 Gt-C yr−1 using the multiple linear
regressions and 0.15 Gt-C yr−1 using the neural network, on average between 1995 and 1997. Both calculations were
made with the NCEP monthly wind speeds converted to 10 m height and averaged between 1995 and 1997, and using
the gas exchange coefficient of Wanninkhof.

1. Introduction

The North Atlantic subpolar gyre (>50◦N) is a highly dynamic
region where the North Atlantic Deep Water forms, with the
main sources of this water mass being located in the Nordic and
Labrador seas. This region is also biogeochemically important
because it is one of the strongest sinks of carbon in the world’s
oceans, but it is complex due to its heterogeneity. In winter, deep
convective mixing occurs. In spring, when the water stratifies,
the spring bloom can cause surface pCO2 to change rapidly. For
example, Schneider et al. (1992) reported an opposite gradient
of pCO2 along 20◦W in June 1991 from that of Watson et al.
(1991) in May 1989. Shifting patterns of phytoplankton blooms
(Lochte et al., 1993) are responsible for the patchiness of the
chlorophyll concentrations and hence, the pCO2 distribution.

In addition to the strong spatial variability of pCO2, little is
known about the variability of the CO2 sink over time. The clima-
tology of Takahashi et al. (1997) and its update (Takahashi et al.,
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e-mail: nathalie.lefevre@lodyc.jussieu.fr
†Now at: LOCEAN, UMR 7159 CNRS/IRD/UPMC/MNHN, Université
Pierre et Marie Curie, Tour 45-46 5ème étage, BP 100, 4 Place Jussieu,
75252 Paris cedex 05, France.

2002) have been used by modellers to assess model performance
in reproducing the seasonal variability and the annual averages
in different regions of the oceans (J. Orr, personal communica-
tion/unpublished results). In order to produce such climatologies,
data collected over several decades have to be combined into a
single reference year. In the process, assumptions must be made
about how ocean pCO2 is changing in response to rising atmo-
spheric CO2. In low-latitude regions oceanic pCO2 is assumed
to follow the atmospheric pCO2 increase. In subpolar regions
it was assumed that surface pCO2 would increase more slowly,
or not at all, because of dilution with older water which has not
previously been exposed to the atmosphere due to deeper mixing
and wind-driven upwelling. Takahashi et al. (2002) assumed that
surface pCO2 did not change over time in the subpolar regions,
based on observations at station P (50◦N, 145◦W) in the Pacific.
No relevant observations were available in the subpolar Atlantic
to check this assumption in that location.

There is a recognized need to be able to specify the air–sea flux
of CO2 over large areas of the ocean and on a seasonal or monthly
basis. Such estimates are of value both in validating ocean carbon
models and as input to atmospheric inversions which aim to con-
strain both land and ocean fluxes. To achieve accurate estimates
of pCO2 over ocean regions, however, requires some technique
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376 N. LEFÈVRE ET AL.

for interpolation of relatively sparse measurements both in time
and space. In this paper we present and compare monthly sur-
face pCO2 maps for the subpolar gyre (restricted to 50–70◦N,
60–10◦W) for 1995 to 1997, derived by two techniques both us-
ing as input a data set of pCO2, sea surface temperature (SST),
time and position. The first technique uses multiple linear re-
gressions of surface pCO2 on SST and position, with separate
regressions for each month; the second is a self-organizing neu-
ral network algorithm. Both types of algorithm are then used to
produce maps of pCO2 for each month and over the subpolar
gyre, using reanalysed SST fields as input.

2. Materials and methods

2.1. Multiple linear regressions

As part of the CAVASSOO (Carbon Variability Studies by
Ships of Opportunity) project, a relational database including
all CO2 data available in the North Atlantic ocean has been
constructed (see http://tracer.env.uea.ac.uk/e072). The database
contains over 138 000 data points in the subpolar gyre prior to
2001, of which 104 000 measurements were made between 1995
and 1997. As these CO2 data are unevenly distributed in both
time and space, we investigated robust linear regressions that
allow interpolation in space and in time. Given the complexity
of the oceanic pCO2 variability these relationships are unlikely
to be valid over the entire gyre. Thus, we divided the subpo-
lar gyre into smaller regions where the pCO2 distribution can
be considered relatively uniform. We used the biogeochemical
provinces defined by Longhurst et al. (1995) for this purpose. For
the subpolar gyre they identify three main provinces: the North
Atlantic Drift (NADR, between 44 and 58◦N and 42 and 10◦W),
the sub-Arctic (SARC, between 58 and 66◦N and 24 and 10◦W)
and the Arctic (ARCT, the remaining area between 50 and 70◦N
and 60 and 10◦W) regions (Fig. 1). Processes occurring in the
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Fig 1. Map of the different regions of the
subpolar gyre (>50◦N): the North Atlantic
Drift Region (NADR), the sub-Arctic region
(SARC) and the three Arctic regions
(ARCT1, ARCT2, ARCT3).

ARCT region are supposed to be valid for a wide range of lati-
tudes (50–70◦N) according to the definition of the province by
Longhurst et al. (1995). However, the temperature range is quite
large. We therefore divided this province into three by defining
ARCT1 (50–58,◦N, 60–42◦W) as an extension in longitude of
the NADR province, ARCT2 (58–66◦N, 60–24◦W) as an ex-
tension of SARC, and ARCT3 (>66◦N) as the most northern
province. The NADR is by far the most sampled region, but in
each region most of the data were collected between 1995 and
1997 (Fig. 2). In each biogeochemical province we sought to
compute a linear relationship expressing sea water pCO2 as a
function of longitude, latitude, SST and year, for each month.
First, the thermodynamic influence on sea surface pCO2 was
removed by normalizing to a constant temperature, (pCO2)T ,
using the relationship suggested by Takahashi et al. (1993). This
temperature was chosen to be the monthly average temperature.
Then we performed the multivariable linear regression

(pCO2)T = A + B + C + D + E . (1)

The coefficients A (intercept), B (longitude), C (latitude), D
(SST), E (year), the reference temperature, T , and the square
of the correlation coefficient, r 2, are given in Table 1. In some
cases there were not enough measurements over time to include
the year as a variable but linear regressions were still performed
without the year when the data were collected between 1995 and
1997. The seawater pCO2 was then calculated at the in situ tem-
perature and compared with the original data. Figure 3 shows
an example of the comparison. The minimum and the maximum
of the difference between the calculated pCO2 and the origi-
nal data are shown in Table 2. A mean error is also calculated
by dividing the sum of the absolute value of the difference by
the number of observations. The largest errors and variability
are usually in spring and summer. The patchiness of the bio-
logical activity and its strong variability observed in this re-
gion (Schneider et al., 1992; Watson et al., 1991) makes it more
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Fig 2. Monthly distribution of pCO2 data as a function of year for the NADR, SARC and ARCT regions. For better clarity we show the number of
data up to 1000 for the NADR region and up to 500 for the SARC and ARCT regions. Data collected in 1981 correspond to the TTO cruises and are
located exclusively in the ARCT region. Most of the data were collected in the 1990s with a data record of 75 781 in 1997.

difficult to reproduce pCO2 with a linear relationship and ex-
plains the larger discrepancy between the relationships and the
original data for these seasons. Using the empirical relationships
developed and the temperature from the NCEP/NCAR reanal-
ysis project (see http://www.cdc.noaa.gov/cdc/reanalysis) from
1995 to 1997, pCO2 fields were then constructed for each month
of the year on a 1◦ by 1◦ spatial grid. The climatology is the av-
erage pCO2 from 1995 to 1997. When observations are limited
to a small area, the latitude and longitude coefficients are poorly
constrained in the regression. In this case, we applied the em-
pirical relationship to a limited location, for example in August
the pCO2 field was limited to the ARCT2 region because no
measurements were available in ARCT1 and ARCT3. In order to
produce maps for the whole subpolar gyre (50–70◦N, 60–10◦W)
we reconstructed the missing regions by interpolating the pCO2

distributions of the adjacent months. For example, in August the
pCO2 distribution in ARCT1 is obtained by averaging the pCO2

distributions for the months July and September. However, we

could not interpolate the SARC province in September from ad-
jacent months because of the abrupt change in the pCO2 due to
the breakdown of stratification in October. This would lead to
unrealistically high pCO2 values in September compared with
the surrounding provinces. Therefore, the SARC province was
masked in September.

2.2. Neural network: self-organizing maps

Neural networks are often well-suited to generalizing tasks. The
advantage of a neural network approach is that it can recog-
nize and exploit relationships in the data which are not pre-
defined (as in regression techniques) and need not to be ex-
pressible by any equation. This makes them particularly suited
to mapping relationships that are non-linear and empirical, pro-
vided sufficient data are available to ‘train’ the network. A self-
organizing network (Kohonen, 1984) was developed to exam-
ine the relationships between temperature, position and time in
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378 N. LEFÈVRE ET AL.

Table 1. Coefficients of the regression of (pCO2)T at the reference temperature as a function of longitude, latitude, SST and year, and
coefficient of determination of the regression, for each month and region. The reference temperature is the monthly average
temperature of the observations

Region Month T Intercept Longitude Latitude SST Year r2

A B C D E

NADR Jan 14 565.748 −0.19009 0.540655 −18.5982 0 0.91
Feb 13 −2488.39 −0.42224 4.976368 −12.2267 1.382684 0.90
Mar 12 741.9574 −0.11432 −2.21914 −24.1972 0 0.86
Apr 12 655.6648 −0.42368 −1.47395 −21.6593 0 0.72
May 12 −7641.63 −0.90473 −1.74153 −20.7719 4.143123 0.90
Jun 14 −4873.04 −0.8504 1.299685 −15.641 2.660618 0.82
Jul 15 −7012.59 −0.02493 3.65915 −7.07028 3.635682 0.89

Aug 15 −3160.22 −0.68692 0.841897 −11.3147 1.799032 0.95
Sep 16 −1297.09 0.429922 −4.18782 −17.0603 1.054572 0.85
Oct 15 83.44259 −0.80749 4.810524 −10.9162 0.076253 0.96
Nov 14 747.2378 0.199037 −0.7298 −17.3013 −0.06186 0.98
Dec 14 −4306.02 0.381974 −0.21887 −17.1293 2.453443 0.90

SARC May 10 −2304.21 −1.99439 −7.11173 −27.2612 1.644646 0.88
Jun 9 −6627.51 −8.05424 −14.9856 −22.7798 3.950624 0.67
Jul 12 714.0046 0.905402 −2.34237 −19.0055 0 0.31
Oct 10 917.1003 3.096269 −3.44246 −27.8699 0 0.97
Nov 8 −15.4489 −1.05598 6.555539 −7.11285 0 0.97

ARCT Feb 3 453.758 0.055869 −1.44727 −5.99434 0 0.60
Mar 3 330.6054 −1.05773 0.108788 −11.5004 0 0.59
May 9 −77.2792 0.318916 8.334795 −8.48854 0 0.76
Jul 8 217.0376 1.121123 3.135003 −5.79794 0 0.53

Aug 10 775.5434 −0.46273 −6.23804 −10.8788 0 0.58
Sep 10 1504.744 0.541596 −2.61486 −14.3116 −0.44159 0.84
Oct 8 246.2779 −0.87876 2.801472 −11.761 0 0.95
Nov 5 152.0971 −1.26037 2.721852 −5.05919 0 0.95
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Fig 3. Comparison of estimated pCO2 from
the regressions with the observations for
(a) NADR in November and (b) ARCT in
August.
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Table 2. Minimum and maximum of the difference between the
calculated pCO2 and the original data, number of data used for the
regression, sum of the absolute value of the residual and mean error for
each month in each province where a regression was performed

Region Month Min Max No. of data Sum(|Res|) Error

NADR Jan −21 17 1042 4216 4
Feb −16 17 3021 7699 3
Mar −37 16 196 2007 10
Apr −29 37 378 4549 12
May −54 44 12 493 113 319 9
Jun −44 91 17 079 265 859 16
Jul −31 46 7125 59 784 8

Aug −32 71 9646 71 109 7
Sep −32 51 16 467 97 226 6
Oct −52 35 8936 71 003 8
Nov −52 17 9602 30 976 3
Dec −30 23 3324 18 412 6

SARC May −20 51 1394 4537 3
Jun −95 38 442 6228 14
Jul −10 11 2569 5908 2
Oct −52 18 1732 6546 4
Nov −11 16 184 874 5

ARCT Feb −24 61 1991 14 595 7
Mar −24 17 1387 4060 3
May −20 17 2453 13 958 6
Jul −128 72 17 756 205 096 12

Aug −70 40 7590 120 249 16
Sep −74 16 3562 20 439 6
Oct −56 27 6855 27 896 4
Nov −35 12 781 2987 4

this region, and to assign pCO2 values to combinations of these
inputs.

A self-organizing network is usually composed of a set of neu-
rons or nodes which is organized in a one-layer two-dimensional
lattice. The algorithm organizes the nodes in the lattice into local
neighbourhoods that act as feature classifiers on the input data.
The input data are compared with the vectors stored at each node,
and when there is some similarity to the input this similarity is
increased at this node and in its neighbourhood. After several cy-
cles, the random set of nodes becomes organized into a feature
or topographic map. The algorithm and its equations are briefly
described below.

The inputs are all connected to the nodes. The connections
between the nodes are associated with weights, where w ij(t) is
the weight from input i to node or neuron j at time t. They
are initialized from the n inputs to the nodes to small random
values, and iteratively adjusted during the training phase of the
network. The inputs are normalized to have values between −1
and 1 to avoid unit problems as different variables are considered.
For the month we use cosine and sine functions. For example,
January is represented by cos (1 × 2π/12) and sin (1 × 2π/12).

This reinforces the importance of the seasonality (two inputs
to represent one month) and also allows January to be close to
both February and December. During the training phase, each
data point is applied to the network, and the Euclidean distance
d j between the input i and each output node j is calculated as
follows:

d j =
n−1∑
i=0

(xi (t) − wi j (t))
2 (2)

where xi is the input pattern (temperature, position and month).
A “winning neuron” is defined as the one with the shortest Eu-
clidian distance between its weight and the input pattern. The
weight of this neuron and those in its neighbourhood are then
updated according to the following equation:

wi j (t + 1) = wi j (t) + η(t)(xi (t) − wi j (t)). (3)

The gain η(t), between 0 and 1, decreases with time to slow the
weight adaptation. The size of the neighbourhood decreases with
time too to increase the resolution of the feature map.

After several passes of the data through the network, we obtain
a classification of the input patterns. This algorithm was written
in Fortran 90 and is described in the flow chart of Fig. 4.

2.3. Assessment of the performance
of the neural network

In order to compare with the regression approach we used month,
latitude, longitude and in situ temperature as input patterns to
the network, made of 70 × 70 neurons. After training with these
data, the network classified the input patterns that are then as-
sociated with the corresponding pCO2 values. To measure the
performance of the network, we ran it with all the data we used
to train it, and calculated the residual standard deviation (RSD)
between the data and the network output:

RSD =
√∑

i (Yi − Xi )2

N − 2

where N is the number of data, Y is the network pCO2 and X is the
associated pCO2 observation. The NADR province is the most
sampled region of the subpolar gyre and the network was trained
both in the NADR and in the subpolar gyre (50–70◦N, 60–10◦W)
where the data distribution is not so good (Fig. 5). The monthly
RSD values for each month (Table 3) were used as an estimate of
the network error. The errors were usually larger in the subpolar
gyre than in NADR but they still remained acceptable, so maps
could be generated for the subpolar gyre. The monthly means
were exactly reproduced by the network (Table 3).

Using this trained network, the NCEP SST dataset was pre-
sented to the network as new input patterns to provide monthly
maps of pCO2 in the subpolar gyre.

Tellus 57B (2005), 5
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Fig 4. Flow chart of the algorithm of the neural network.

Fig 5. Monthly data distribution of pCO2 in
the subpolar gyre.

Tellus 57B (2005), 5
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Table 3. Comparison of the network pCO2 output with the data. The network was trained with 100% of the data used for determining
the algorithms in the NADR province (44–58◦N, 42–10◦W, 1.86 × 1012 m2). The residual standard deviation (RSD) is used as a
measure of the performance of the network. The monthly means of pCO2 (in µatm) calculated from the observations (Obs. mean) and
the neural network (NNet mean) are also compared. N is the number of observations. The neural network was also trained with all the
subpolar region data and RSD and N are given for the subpolar gyre (50–70◦N, 60–10,◦W, 6.15 × 1012 m2) in bold.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

RSD NADR 6.5 4.3 6.3 14 6.4 7.1 5.4 4.9 4.8 4.2 2.6 5.6
Obs. mean 336.9 355.3 352.9 329.6 315.9 307.7 320.0 327.1 311.0 331.6 337.7 345.3
NNet mean 336.9 355.3 352.9 329.6 315.9 307.7 320.0 327.1 311.0 331.6 337.7 345.3
N 1042 3021 196 378 12 493 17 079 7125 9646 16 467 8936 9602 3324
RSD subp. 6.9 9.8 4.8 15.8 8 9 8.9 6.9 5.3 3.9 3.7 7
N subpol. 1042 5012 1583 378 16 340 17 521 27 450 17 236 20 029 17 523 10 567 3324

Table 4. Residual standard deviation (RSD) of the network output and the regression equations. NNET is the RSD of the network,
REG is the RSD of the regressions and N is the number of observations. A subset of the data was used to train the network and to
determine the regressions. The predicted pCO2 form both techniques is compared with the remaining dataset

Jan Feb Mar May Jun Jul Aug Sep Oct Nov Dec

NNET 6.3 10.6 4.3 7.5 9.9 9.0 6.2 5.3 4.5 2.9 6.4
REG 5.4 88.1 4.1 53 19.4 22.0 48.9 27.3 19.2 23.1 7.0
N 521 2505 693 8053 8539 13 724 8604 9986 8761 4796 1662

2.4. Prediction of pCO2 using regressions
and the neural network

In order to assess which technique would predict pCO2 more
accurately, we use the same subset of data to determine multiple
regressions and to train the neural network. We then compared
the pCO2 predicted by both techniques for the remaining data.
The working data set was chosen by randomly sampling the total
data set to divide the data into two roughly equal sets: one set
of 69 611 data values was used while the remaining 66 182 data
values were the values for prediction. The coefficients of the re-
gressions were not very different from the ones determined on
the total dataset. Using the new regression equations, pCO2 was
calculated at the temperature, year and location of the remaining
data. The temperature, month and location of these data were
presented to the neural network to determine pCO2. The RSD
was calculated for both techniques to estimate how well they
predicted the pCO2 of the remaining data (Table 4). This test
was not done in April because there were too few data to make
a subset. The neural network predicts the remaining pCO2 data
with a better accuracy than the regressions. Except in January,
March and December, the RSD given by the regressions is sig-
nificantly higher. The regressions are much more dependent on
the data than the neural network.

3. Monthly CO2 climatology

Monthly pCO2 maps based on linear regressions and using the
neural network for the years 1995 to 1997 in the subpolar gyre

are shown in Figs 6 and 7. Both methods reproduce the broad
features seen in the data. The highest pCO2 are observed in
winter and autumn, and are associated with the lowest tempera-
tures. The vertical mixing breaks the summer stratification down
from October, and brings more CO2 to the surface explaining the
abrupt change of the pCO2 distribution between September and
October. The highest pCO2 are in February and March. In April,
at the onset of stratification and biological activity, the surface
pCO2 starts decreasing. Although the water warms up during
that time to reach a maximum temperature in August, the CO2

drawdown due to biological activity dominates the pCO2 dis-
tribution and the lowest pCO2 values are usually encountered
during the summer in this region (Peng et al., 1987; Takahashi
et al., 1993).

One problem of the multiple linear regression approach is that
the ocean must be divided into subregions and no attempt has
been made to remove discontinuities between them, therefore
the transition between the different provinces is not smooth, i.e.
in January and February the pCO2 changes quite abruptly at
24◦W between SARC and ARCT. By contrast, when the neural
network was run in the subpolar gyre all the data were presented
together regardless of the province. The maps obtained by the
neural network approach show more small-scale features than the
maps based on multiple regression relationships. For example
the pCO2 distribution in June is patchier with a small area of
pCO2 of less than 280 µatm. Also, it tends to produce southeast
to northwest bands of uniform pCO2 (particularly pronounced
in March and October) which corresponds to the temperature
patterns. However, the pCO2 distribution is more complex than
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Fig 6. Monthly surface pCO2 maps for the years 1995 to 1997 in the subpolar gyre obtained using empirical relationships.

Fig 7. Monthly surface pCO2 maps for the years 1995 to 1997 in the subpolar gyre obtained using the neural network.

the temperature field, as similar temperatures can be associated
with very different pCO2 values.

In a few regions the neural net and linear regression ap-
proaches differ substantially. For example, in July the James
Clark Ross 1996 cruise data strongly affected the pCO2 distri-
bution north of Iceland when used in the neural network. This
cruise was not used in the regression approach because of the
paucity of data in this region, so the pCO2 distribution was ob-
tained by interpolation between March and September north of
66◦N (ARCT3). In this region the temperature fields are similar
in July, August and September so the impact of the James Clark
Ross 1996 data also affects the neural network maps for these
months. In June the temperature field is different, so the neural

network maps this region with higher pCO2 values similar to
those in February and March where temperatures are closer to
the June values. 1996 was an anomalous year in the Greenland
and Icelandic seas, with extensive summer-time sea ice originat-
ing from the Arctic. The current distribution includes very few
data north of 66◦N (Fig. 5).

Another region of high discrepancy between the two ap-
proaches is found in the SARC province, south of Iceland, in
August. Again, there are not enough data available for deter-
mining a regression so the pCO2 distribution is an interpolation
between July and October where pCO2 is around 340 µatm.
However, there is a single, restricted set of data in the region
in August, which shows pCO2 values down to 300 µatm and

Tellus 57B (2005), 5



MAPPING in situ pCO 2 DATA 383

280

290

300

310

320

330

340

350

360

370

1 2 3 4 5 6 7 8 9 10 11 12

Month

M
ea

n 
pC

O
2 

( µ
at

m
)

Regressions

Network using NCEP

Takahashi et al., 2002

Atmospheric pCO2

Mace Head

Fig 8. Mean surface pCO2 in the subpolar gyre plotted as a function of
month. Open circles are estimates from the empirical relationships
maps, open squares are estimates from the neural network, black
triangles are the estimates of Takahashi et al. (2002).

which can be included in the neural network approach. Accord-
ingly, the neural network shows a large undersaturation, although
the temperature reaches its maximum in August.

4. Mean seasonal cycle of surface pCO2
and CO2 flux in the subpolar gyre

Figure 8 shows the monthly mean pCO2 calculated in the sub-
polar gyre (50–70◦N, 60–10◦W) from the maps based on algo-
rithms and neural networks compared with the climatology of
Takahashi et al. (2002). The error bars on the neural network
estimates are the RSD given in Table 3 for the subpolar gyre.

Despite the spatial differences between the regression and
the neural network based maps, the monthly means agree well.
The regressions give higher pCO2 values than the other ap-
proaches but the subpolar gyre remains below the atmospheric
level throughout the year. Winter is the least-sampled season, and
the linear relationships are based on few data that might not be
representative of the region. Thus, if some heterogeneity in the
pCO2 distribution occurs during these months it is not captured
by the empirical relationships, whereas the network will infer it
from the temperature distribution. This might explain the highest
discrepancy observed at this season between the two techniques.
As an annual average, the regressions give a value of 331 µatm
whereas the neural network gives 328 µatm, both higher than
the climatology of Takahashi et al. (2002) (316 µatm). The main
differences between our estimates and those of Takahashi et al.’s
climatology are in summer when both the neural network and
the regressions give significantly higher pCO2 with a difference
>10 µatm from the monthly mean. The surface pCO2 has in-
creased significantly in this season in recent decades (Lefèvre
et al., 2004), perhaps because of the decrease in primary pro-
duction at high latitudes (Gregg et al., 2003) so the discrepancy
between the regressions and the climatology of Takahashi et al.
could be due to the use of more recent measurements. Takahashi

et al. assume no change in surface pCO2 which would affect the
pCO2 distribution more strongly in summer as the increase of
pCO2 is >2 µatm yr−1 for this season (Lefèvre et al., 2004).

As the methods applied to map pCO2 are different, it is pos-
sible that other factors could contribute to our weaker sink than
solely the year correction. However, not correcting the data for
the year of measurement, and hence assuming no increase of sea
water pCO2 over time, will lead to an overestimate of the carbon
uptake in the Atlantic subpolar gyre. The neural network tech-
nique appears promising. Furthermore, it should be applicable
to other types of input data as well, notably ocean colour, which
we would expect to have some predictive power in relation to
surface pCO2, but will not be linearly related to it. However,
validating the output of a neural network is a difficult task which
we have only just begun here, and which requires independent
data with wide spatial and temporal coverage. The neural net-
work technique can, in principle, be used to interpolate from
very scattered data, extracting the maximum information from
a sparse database. This same property may be a disadvantage,
however, if some of the input data are in fact unrepresentative of
normal conditions.

The increase in sea water pCO2 means has implications for
the carbon uptake in this region. The higher pCO2 values ob-
served with the regressions and the neural network suggest that
the carbon uptake is lower than previous estimates have implied.
However, the winds are stronger in winter and, since the main
differences in pCO2 are observed in summer, this might not lead
to a significantly different CO2 uptake for the region. Using the
surface pCO2 maps we calculated the CO2 flux as follows. At-
mospheric xCO2 (molar fraction of CO2) measured at the Mace
Head Station (53◦N, 9◦W) were downloaded from the World
Data Centre for Greenhouse Gases (http://gaw.kishou.go.jp/
wdcgg). CO2 fluxes were calculated using the gas exchange
coefficient of Wanninkhof (1992) and the average monthly
wind speed between 1995 and 1997 calculated from the NCEP
monthly surface wind speed converted to a 10 m height. The
neural network gives an annual oceanic uptake of CO2 of
5.68 mmol m−2 d−1, which corresponds to 0.15 Gt-C yr−1 for
the region 50–70◦N, 60–10◦W. The maps based on the lin-
ear relationships give a smaller uptake of 4.72 mmol m−2 d−1

(0.13 Gt-C yr−1). We obtain similar results when using wind
speed for 1995 only so the average between 1995 and 1997 is
not significantly different from the wind field in 1995 for this
region.

In order to compare with the estimates of Takahashi et al.
(2002) we also computed the CO2 flux using their 41-yr wind
field at 10 m height and calculated the average for the three tech-
niques in the area 50–70◦N, 60–10◦W. Although the 41-yr wind
speed is stronger than the mean wind speed averaged between
1995 and 1997, this does not lead to a significantly stronger
uptake with 0.14 versus 0.13 Gt-C yr−1 for the regressions and
0.17 versus 0.15 Gt-C yr−1 for the neural network. As our annual
means, compared for the same region with the same wind field,
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are significantly lower than the Takahashi et al. (2002) average of
0.22 Gt-C yr−1, this means that the discrepancy between the flux
estimates is caused by the difference in the pCO2 distributions.

5. Conclusions

We have constructed a sea water pCO2 climatology for the sub-
polar gyre (50–70◦N, 60–10◦W) for the years 1995 to 1997 by
developing multiple linear regression relationships based on over
108 000 measurements. A self-organizing neural network ap-
proach has also been investigated. Most of the data were col-
lected between 1995 and 1997. Only 35%, 11% and 3% of the
data were collected in the NADR, SARC and ARCT regions re-
spectively, at other periods. The subpolar gyre is a sink of CO2

in agreement with previous estimates. However, the mean sur-
face pCO2 is higher than in the climatology of Takahashi et al.
(2002) implying that the CO2 sink is actually weaker. The neural
network and the regression relationships provide higher pCO2

in summer, which is consistent with the recent observation of a
decadal decrease of primary productivity at high latitudes. Both
approaches, regressions and neural network, suggest a weaker
sink of CO2 in the subpolar gyre compared with the climatology
of Takahashi et al. (2002). A correction for the increase of sea
water pCO2 with year should be applied to estimate the oceanic
sink of CO2 in the Atlantic subpolar gyre. The encouraging re-
sults of the neural network approach open the prospect of us-
ing temperature and ocean colour from satellite data to generate
maps of pCO2. However, although it is a good tool for gen-
eralizing a limited set of pCO2 observations, the technique will
still require careful validation using comprehensive in situ pCO2

data.
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