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Sharp adaptive estimation in sup-norm for d-dimensional

Hölder classes

KARINE BERTIN

Departamento de Estadística, Universidad de Valparaíso, Casilla 5030, Avenida Gran Bretaña
1091, Valparaíso, Chile. Tel: 0056322508324 . Email: karine.bertin@uv.cl

Abstract: In this paper, our aim is to estimate an anisotropic function in the framework of the
Gaussian white noise model. We suppose that the function belongs to an unknown d-dimensional
Hölder class. We evaluate the performance of an estimator by the sup-norm risk. We find the
exact asymptotics of the adaptive minimax risk and construct asymptotically adaptive estima-
tors.
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1 Introduction

Minimax adaptive estimation of a non-parametric function f from noisy data is the subject
of many papers. Assuming that f belongs to a smoothness class Σβ , where β is an unknown
smoothness parameter, the aim is to find an estimator of f independent of β and which attains
asymptotically optimal behaviour on all the classes Σβ , for β given in a known set B. In this
article, we study the problem of adaptive estimation in the Gaussian white noise model in sup-
norm, assuming that the function f satisfies a Hölder condition. We observe

{
Yt, t ∈ R

d
}
, where

Yt is a random process defined by the stochastic differential equation

dYt = f(t)dt +
σ√
n

dWt, t ∈ R
d, (1)

where f is an unknown function, n ∈ N, σ > 0 is known and W is a standard Brownian sheet
on [0, 1]d. We want to estimate the function f on R

d given a realization y =
{
Yt, t ∈ R

d
}
.

We suppose that f belongs to a d-dimensional anisotropic Hölder class Σ(β, L) where L =
(L1, . . . , Ld) ∈ (0, +∞)d is known, β = (β1, . . . , βd) ∈ (0, 1]d is unknown and belongs to a finite
set B ⊂ (0, 1]d known. The class Σ(β, L) is defined by

Σ(β, L) =
{

f : R
d → R : |f(x) − f(y)| ≤ L1|x1 − y1|β1 + · · · + Ld|xd − yd|βd , x, y ∈ R

d
}

,

where x = (x1, . . . , xd) and y = (y1, . . . , yd). In the following, Pf is the distribution of y under the
model (1) and Ef is the corresponding expectation. An estimator θn of f is a random function
on [0, 1]d taking its values in R, measurable with respect to y. We will evaluate the quality of an
estimator θn by the maximal risk in sup-norm on B

Rn(θn) = sup
β∈B

sup
f∈Σ(β,L)

Ef

{(‖θn − f‖∞
ψn(β)

)p}
, (2)

1
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where ‖g‖∞ = supt∈[0,1]d |g(t)|, p > 0 and ψn(β) has the form ψn(β) = Cβ

(
log n

n

) β

2β+1 for

β = (β1, . . . , βd) ∈ B, β =
(∑d

i=1 1/βi

)−1
, Cβ being a constant depending on β. In the non-

adaptive case, i.e. when B contains only one vector, it has been proved that ψn(β) is the minimax
rate of convergence for sup-norm estimation: for d = 1, it was done by Ibragimov and Hasminskii
(1981); for multidimensional case, this fact was shown by Stone (1985) and Nussbaum (1986)
for isotropic setting (β1 = · · · = βd) and in Bertin (2004) for anisotropic setting considered
here. In other set-ups, some results on rate of convergence can be found in Barron et al. (1999),
Neumann and von Sachs (1997) and Kerkyacharian et al. (2001). In an adaptive set-up, Lepski
(1992) proved that ψn(β) is the adaptive rate of convergence (cf. Tsybakov (1998) for precise
definition of adaptive rate of convergence) for the problem considered here when d = 1.

Our goal is to study the asymptotics of the minimax risk in sup-norm on B (i.e. the adaptive
minimax risk), in others words to study the asymptotics of

inf
θn

Rn(θn).

We want to prove that there exist optimal rate adaptive estimators on the scale of classes
{Σ(β, L)}β∈B for the L∞ norm and to find an estimator f̃n and the constant Cβ with ψn(β) =

Cβ

(
log n

n

) β

2β+1 , such that we have

lim
n→∞

inf
θn

Rn(θn) = lim
n→∞

Rn(f̃n) = 1, (3)

where infθn
stands for the infimum over all the estimators. To obtain that there exist optimal

rate adaptive estimators, it is enough to have that there exist an estimator θ̃n and a positive
constant C such that

lim sup
n→∞

Rn(θ̃n) ≤ C.

An estimator f̃n that satisfies (3) is called asymptotically exact adaptive estimator on the scale
of classes {Σ(β, L)}β∈B for the L∞ norm, and Cβ is called exact adaptive constant.

In the non-adaptive case (cf. Bertin (2004)), the relation (3) is satisfied by a constant C0(β)
which depends on β, L and σ2, and for f̂β a kernel estimator with kernel close to the kernel Kβ .
The kernel Kβ is defined for u = (u1, . . . , ud) ∈ R

d by

Kβ(u1, . . . , ud) =
β + 1

α(β)β
2 (1 −

d∑

i=1

|ui|βi)+,

with

α(β) =
2d

∏d
i=1 Γ( 1

βi
)

Γ( 1
β
)
∏d

i=1 βi

,

Γ denotes the gamma function and (x)+ = max(0, x). The constant C0(β) satisfies

C0(β) =


σ2βL∗(β)

(
β + 1

α(β)β
3

)β



1
2β+1
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and

L∗(β) =

(
d∏

i=1

L
1/βj

j

)β

.

In this article, we prove that there exist optimal rate adaptive estimators on {Σ(β, L)}β∈B

for the L∞ norm. We give precise upper and lower bounds for any finite set B. When B contains
only two vectors, we improve the upper bound.

For particular forms of the set B (including sets B of isotropic classes), we prove it exist an
estimator f̃n and a constant Cβ satisfying (3). The constant Cβ we have found is equal to the
constant C0(β)(which was the solution of (3) in Bertin (2004)) multiplied by a constant larger
than 1, depending on the set B and p. As a consequence, for this case, we lose efficiency in the
constant under adaptation. We will see that the estimator satisfying (3) is obtained using the
Lepski method. This method is introduced in Lepski (1992) for the problem considered here with
d = 1 and it has been studied by many authors. In particular, for d > 1, Klemelä and Tsybakov
(2001) have used it for the estimation of linear functionals in isotropic settings. Tsybakov (1998)
used this method to study pointwise and sup-norm estimation on Sobolev classes.

For more general forms of the set B, we construct optimal rate adaptive estimators using o
generalization of the Lepski method proposed in Lepski and Levit (1998).

2 Main results

In this section, we introduce the notation and the assumptions about the set B, we define three
families of estimators and we give our results.

2.1 The set B

We suppose that the set B =
{
β(1), . . . , β(l)

}
contains l vectors belonging to (0, 1]d. The coordi-

nates of β(i) are denoted by β
(i)
j , j = 1, . . . , d:

β(i) = (β
(i)
1 , . . . , β

(i)
d ) ∈ (0, 1]d. (4)

We define the real β
(i)

by

β
(i)

=




d∑

j=1

1

β
(i)
j




−1

(5)

and we denote by B the set:

B =
{

β
(1)

, . . . , β
(l)

}
.

We suppose that β
(i) 6= β

(j)
for all i, j ∈ {1, . . . , l} such that i 6= j. As a consequence, a β ∈ B

is matched to a unique β ∈ B via the relations (4) and (5). We define the following relation of
order in B: the vectors β and γ satisfy

β ≤ γ if and only if β ≤ γ.

This is a relation of total order in B, thus the notion of maximum and minimum in B are well-
defined. We denote βmax = max{β(i), i = 1, · · · , l} (respectively βmin = min{β(i), i = 1, · · · , l})
and βmax (respectively βmin) the associated real number in B via (5).
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Remark. In the isotropic setting (i.e. for all β = (β1, . . . , βd) ∈ B, β1 = · · · = βd), this order is
the order β = (β1, . . . , βd) ≤ γ = (γ1, . . . , γd) if and only if β1 ≤ γ1.

2.2 Three families of estimators

Here we define three families of kernel estimators (f̂β,1)β∈B, (f̂β,2)β∈B and (f̂β,3)β∈B. They are
close to the asymptotically exact estimator of Bertin (2004), but the kernel is somewhat different
at the boundary. This is a consequence of the fact that the observations here are for t ∈ R

d

whereas they were for t ∈ [0, 1]d in Bertin (2004). The estimators are defined in the following
way. For β ∈ B and j ∈ {1, 2, 3},

f̂β,j(t) =

∫

Rd

Kβ,j (t − u) dYu,

defined for t = (t1, . . . , td) ∈ [0, 1]d, where for u = (u1, . . . , ud) ∈ R
d

Kβ,j (u) =
1

h1,j(β) · · ·hd,j(β)
Kβ

(
u1

h1,j(β)
, . . . ,

ud

hd,j(β)

)
.

For j ∈ {1, 2, 3}, the bandwidth hj = (h1,j(β), . . . , hd,j(β)) satisfies for i ∈ {1, . . . , d}

hi,j(β) =

(
Cβλj(β)

Li

(
log n

n

)β/(2β+1)
)1/βi

,

where

λj(β) =





1 for j = 1,

2
− 2β

2β+1

(
c2(β)
c1(β)

) β

2β+1 for j = 2,

2
− 2β

2β+1 for j = 3,

Cβ =


σ2βL∗(β)

(
c1(β)(β + 1)

α(β)β
3

)β



1
2β+1

, (6)

c1(β) = 1 +
p(βmax − β)

2βmax + 1
,

c2(β) = 1 + pµ(β)(2β + 1)

and

µ(β) = max
λ>β

(
λ

2λ + 1
− min

γ<λ,i=1,...,d

{
γ

2γ + 1
,

λiγ

γi(2γ + 1)

})
,

where the maximum is taken for λ = (λ1, . . . , λd) ∈ B, and the minimum for γ = (γ1, . . . , γd) ∈
B.

Lemma 1. The kernel Kβ satisfies
∫
[−1,1]d Kβ(u)du = 1 and

∫
[−1,1]d K2

β(u)du = 2(β+1)

βα(β)(2β+1)
.
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This a consequence of formula of Gradshteyn and Ryzhik (1965) (cf Appendix of Bertin (2004))
For t ∈ [0, 1]d, j ∈ {1, 2, 3} and for a function f belonging to one of the classes Σ(β, L), define
the bias of f̂β,j

bβ,j(t, f) = Ef (f̂β,j(t)) − f(t) = Kβ,j ∗ f(t) − f(t)

and the stochastic term of the error

Zβ,j(t) = f̂β,j(t) − Ef (f̂β,j(t)) =
σ√
n

∫
Kβ,j(t − u)dWu.

The symbol ∗ stands here the convolution of functions defined on R
d. The quantity Kβ,j ∗ f is

well-defined since Kβ,j is continuous with compact support and f is continuous.

2.3 A lower bound for anisotropic classes

In the following, we will use the maximal risk in sup-norm on B defined in (2) with ψn(β) =

Cβ

(
log n

n

) β

2β+1 , Cβ defined in (6) and p > 0. We have the following lower bound which is valid

for any finite set B satisfying the conditions of Subsection 2.1.

Theorem 1. The minimax risk in sup-norm on B satisfies

lim inf
n→∞

inf
θn

Rn(θn) ≥ 1.

2.4 Exact asymptotics for particular forms of the set B

For β ∈ B and j ∈ {1, 2, 3}, we consider

ηj(β) =

(
2‖Kβ‖2

2σ
2cj(β)

n
∏d

i=1 hi,j(β)(2β + 1)
log n

)1/2

,

where c3(β) = c1(β). We select the vector β̂(p) ∈ B defined by

β̂(p) = max
{

β ∈ B : ∀γ < β, ‖f̂β,1 − f̂γ,1‖∞ ≤ η1(γ)
}

We have the following theorem for particular forms of the set B, which include the sets B of
isotropic classes.

Theorem 2. We suppose that the set B satisfies the property (P ):

(P ) For all β = (β1, . . . , βd), γ = (γ1, . . . , γd) ∈ B, if β ≤ γ then for all i = 1, . . . , d βi < γi.

Then, the estimator f̃(p) = f̂β̂(p),1
is asymptotically exact adaptive, i.e. it satisfies the condition

(3) with the constant Cβ defined in (6):

lim
n→∞

inf
θn

Rn(θn) = lim
n→∞

Rn(f̃(p)) = 1

Remark. The estimator f̃(p) is obtained using the method of Lepski. The constant Cβ has the

form of the constant obtained by Lepski (1992) in the case d = 1 where we replace β by β.
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2.5 Upper bounds for anisotropic classes

If the set B does not satisfy Condition (P), Theorem 2 is not true anymore. In this subsection,
Theorem 3 gives an upper bound for any finite set B ⊂ (0, 1]d and Theorem 4 improves this
upper bound when B contains only two vectors.

We consider new estimators defined for β and γ ∈ B and t ∈ [0, 1]d by

f̂β∗γ,2(t) =

∫
Kβ∗γ,2(t − u)dYu

where
Kβ∗γ,2 = Kβ,2 ∗ Kγ,2.

We consider the vector β̂ani ∈ B defined by

β̂ani = max
{

β ∈ B : ∀γ < β, ‖f̂β∗γ,2 − f̂γ,2‖∞ ≤ η2(γ)
}

.

Theorem 3. The estimator f̃ani = f̂β̂ani,2
satisfies for p > 0

lim sup
n→∞

sup
β∈B

sup
f∈Σ(β,L)

Ef

{
‖f̃ani − f‖p

∞ (ψn(β)M2(β))−p
}
≤ 1, (7)

where, for j ∈ {2, 3} and β ∈ B,

Mj(β) =

(
cj(β)

c1(β)

) β

2β+1

(
21/(2β+1) + β22β/(2β+1)

2β + 1

)
.

The relation (7) imply that f̃ani is an optimal rate adaptive estimator on {Σ(β, L)}β∈B for the
L∞ norm, for any finite set B ⊂ (0, 1]d.

For l = 2, we have a better result. We suppose that B = {γ, β} with γ < β. We consider a
new estimator defined for t ∈ [0, 1]d by

f̂β∗γ,1(t) =

∫
Kβ∗γ,1(t − u)dYu

where
Kβ∗γ,1 = Kβ,1 ∗ Kγ,3.

We select the estimator f̃ani2 defined by

f̃ani2 =

{
f̂β,1 if ‖f̂β∗γ,1 − f̂γ,3‖∞ ≤ η3(γ) or ‖f̂β∗γ,1 − f̂β,1‖∞ ≥ λ3(γ)ψn(γ)

2γ+1 (1 + ρn)

f̂γ,3 otherwise,

where ρn = ψn((β+γ)/2)
ψn(γ) and ψn(λ), for λ = (λ1, . . . , λd) ∈ (0, 1]d ∩ Bc, is defined by ψn(λ) =

(
log n

n

) λ

2λ+1 with λ =
(∑d

i=1 1/λi

)−1
. Here Bc denotes the complement of the set B. Then we

have the following theorem

Theorem 4. The estimator f̃ani2 satisfies for p > 0

lim sup
n→∞

sup
f∈Σ(β,L)

Ef

{
‖f̃ani2 − f‖p

∞ψ−p
n (β)

}
≤ 1 (8)

and
lim sup

n→∞
sup

f∈Σ(γ,L)
Ef

{
‖f̃ani2 − f‖p

∞ψ−p
n (γ)

}
≤ (M3(γ))p . (9)
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2.6 Some remarks

1. In the model here, we choose to have observations in R
d to simplify the calculations. To

obtain the results, it is enough to have observations in a neighborhood in [0, 1]d.

2. These results can be generalized to others models such regression with regular design. This
can be done by following the same proofs with minor modifications.

3. In this article, we have considered a finite set B such that its cardinality, card(B), does
not depend on n. We could have considered a set B such that card(B) grows as n →
∞ and there exists M > 0 such that, for all β ∈ B, β > M . In Theorems 2 and 4,
following the same proofs, it is possible to have the same results taking B such card(B) ≤
(log n)

1
2(2βmax+1) (The last condition is necessary to have limn→∞ R1(β) = 0 in Section 5

and the relation (49)). A weaker condition is possible on B. If, for j ∈ {1, 2, 3}, we replace
cj(β) by cj(β) + 1

log log n in ηj(β), the results of Theorem 2, Theorem 3 and Theorem 4 can
be obtained for B such that card(B) ≤ (log n)a with a > 0.

4. For d = 1, in the Lepski method, for a given family of estimators (f̂β)β∈B, we choose β̂, the

largest β ∈ B ⊂ R+ such that ‖f̂β − f̂γ‖∞ ≤ cψn(γ) for all γ ≤ β, with a constant c > 0.

This choice is based on the fact that, if f ∈ Σ(βv, L) and γ ≤ β ≤ βv, the bias of f̂β − f̂γ is
upper-bounded by a term of order ψn(γ). This property is still valid for anisotropic settings
when B satisfies Condition (P ), but it does not work for general anisotropic settings.
Indeed, for anisotropic settings, we do not have such a property on the bias of f̂β − f̂γ and
this bias can be very large. Kerkyacharian et al. (2001) give a new criteria which permits to
obtain results in anisotropic Besov classes. Rather than comparing f̂β to f̂γ for γ ≤ β, they

compare, for γ ≤ β, f̂γ to a kernel estimator f̂βγ with bandwidth (h1(β, γ), . . . , hd(β, γ))
where hi(β, γ) = max(hi(β), hi(γ)) and (h1(β), . . . , hd(β)), respectively (h1(γ), . . . , hd(γ)),
is the bandwidth of f̂β , respectively f̂γ . This comparison permits to have a new criteria

for selecting β̂. In Theorem 3 and Theorem 4, we use another estimator f̂β∗γ,j to do this

kind of comparison. The different choice of f̂β∗γ,j is motivated by our goal to have better
constants.

5. Our results are adaptation with respect to β and we suppose that L is fixed and known.
To use our method of estimation, the statistician need to know L. Here we suppose the
statistician does not know L. We suppose that β belongs to B and L ∈ {L(1), . . . , L(l)} ⊂
]0, +∞[d. We note for j = 1, . . . , l, L(j) = (L

(j)
1 , . . . , L

(j)
d ). Our method can be applied to

select β ∈ B with L̃ = (maxj=1,...,d L
(j)
1 , . . . ,maxj=1,...,d L

(j)
d ).

6. Theorem 2 gives a result of exact estimation. In Theorem 3 and in Theorem 4 in the case
f ∈ Σ(γ, L), the difference between the lower bound and the upper bound is the factor
(M2(β))p and (M3(γ))p respectively. The following plot represents the quantity M3(β)(on
the vertical axis) as a function of β ∈ (0, 1/2].
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We can see that, for β ∈ (0, 1/2], 1.06 ≤ M3(β) ≤ 2 and then it implies that

1.06 ≤ 1.06

(
c2(β)

c1(β)

) β

2β+1

≤ M2(β) ≤ 2

(
c2(β)

c1(β)

) β

2β+1

.

The following sections are devoted to preliminary results and to the proofs of the theorems.

3 Some preliminary results

In the following, Di, with i = 1, 2, . . ., denote positive constants, except otherwise mentioned.
These constants can depend on β ∈ B but we do not indicate explicitly the dependence on β.
This does not have consequences on the proofs since B is a finite set. The quantity ηj(β) satisfies
the following lemma which will be proved in Section 8.

Lemma 2. For β ∈ B and j ∈ {1, 2}, we have

ηj(β) +
jψn(β)λj(β)

2β + 1
= Mj(β)ψn(β),

where M1(β) = 1. Moreover, for β ∈ B, we have

η3(β) +
2ψn(β)λ3(β)

2β + 1
= M3(β)ψn(β).

We have the following results for the families of estimators (f̂β,1)β∈B, (f̂β,2)β∈B and (f̂β,3)β∈B.

Proposition 1. For β ∈ B and j ∈ {1, 2, 3}, we have

sup
f∈Σ(β,L)

‖bβ,j(·, f)‖∞ ≤ ψn(β)λj(β)

2β + 1
.

Proposition 2. For β ∈ B, j ∈ {1, 2, 3} and t ∈ [0, 1]d, we have

Ef

(
Z2

β,j(t)
)
≤ σ2‖Kβ‖2

2

nh̃j(β)
,
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and for b ≥ D0√
nh̃j(β)| log(h̃j(β))|

, we have

Pf [‖Zβ,j‖∞ ≥ b] ≤ D1

h̃j(β)
exp

{
− b2nh̃j(β)

2‖Kβ‖2
2σ

2

}
exp





D2(β)b
√

nh̃j(β)

(log(h̃j(β)))1/2



 ,

where h̃j(β) =
∏d

i=1 hi,j(β).

Proposition 3. For p > 0, β ∈ B and j ∈ {1, 2, 3}, we have

lim sup
n→∞

sup
f∈Σ(β,L)

Ef

[(
‖f̂β,j − f‖∞(Mj(β)ψn(β))−1

)p]
≤ 1 (10)

lim
n→∞

sup
f∈Σ(β,L)

Ef

[(
‖f̂β,j − f‖∞ψ−1

n (β)
)p

I{‖f̂β,j−f‖∞≥(1+ε(n))Mj(β)ψn(β)}

]
= 0, (11)

where ε(n) satisfies ε(n) ≥ (log n)−1/4, and IA denotes the indicator function of a set A.

Proposition 1, respectively Proposition 2, can be obtained following the proof of Proposition 1,
respectively Lemma 4, of Bertin (2004). The proof of Proposition 3 can be deduced from the
proofs of Bertin (2004) and we add some elements of proof in Section 8.

Define for t ∈ [0, 1]d, j ∈ {1, 2} and a function f the bias term of f̂β∗γ,j

bβ∗γ,j(t, f) = Ef (f̂β∗γ,j(t)) − f(t),

and the stochastic term of f̂β∗γ,j

Zβ∗γ,j(t) = f̂β∗γ,j(t) − Ef (f̂β∗γ,j(t)) =
σ√
n

∫
Kβ∗γ(t − u)dWu.

The estimator f̂β∗γ,j satisfies the two lemmas.

Lemma 3. For β, γ ∈ B, we have

sup
f∈Σ(β,L)

‖bβ∗γ,2(·, f) − bγ,2(·, f)‖∞ ≤ sup
f∈Σ(β,L)

‖bβ,2(·, f)‖∞ ≤ ψn(β)λ2(β)

2β + 1
.

When B = {γ, β} with γ < β we have

sup
f∈Σ(β,L)

‖bβ∗γ,1(·, f) − bγ,3(·, f)‖∞ ≤ sup
f∈Σ(β,L)

‖bβ,1(·, f)‖∞ ≤ ψn(β)

2β + 1

and

sup
f∈Σ(γ,L)

‖bβ∗γ,1(·, f) − bβ,1(·, f)‖∞ ≤ sup
f∈Σ(γ,L)

‖bγ,3(·, f)‖∞ ≤ ψn(γ)λ3(γ)

2γ + 1
.
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Lemma 4. For β, γ ∈ B such that γ < β and j ∈ {1, 2}, we have for all t ∈ [0, 1]d

Ef

(
(Zβ∗γ,j)

2 (t)
)
≤ σ2‖Kβ‖2

2

nh̃j(β)
,

and for b ≥ D3√
nh̃j(β)| log(h̃j(β))|

Pf [‖Zβ∗γ,j‖∞ ≥ b] ≤ D4

h̃j(β)
exp

{
− b2nh̃j(β)

2‖Kβ‖2
2σ

2

}
exp





D5b
√

nh̃j(β)

(log(h̃j(β)))1/2



 . (12)

Lemma 5. Let j ∈ {1, 2, 3}. We have, for γ, β ∈ B such γ < β,

lim
n→∞

sup
f∈Σ(β,L)

Ef

{
‖Zγ,j‖p

∞ψ−p
n (β)I{‖Zγ,j‖∞>τn,j(γ)}

}
= 0,

where

τn,j(γ) =

(
2‖Kγ‖2

2σ
2(1 + pβmax) log n

n
∏d

i=1 hi,j(γ)(2γ + 1)

)1/2

.

Remark: τn,j(γ) is of the same order of ψn(γ).

These three lemmas will be proved in Section 8.

4 Proof of Theorem 1

The proof of the lower bound is similar to the proof of lower bounds in Tsybakov (1998)The
difficulties consist in finding a good subclass of Σ(β, L) and good parameters to apply Theorem
6 of Tsybakov (1998). We have

∆n = inf
Tn

sup
β∈B

sup
f∈Σ(β,L)

Ef

{
‖Tn − f‖p

∞ψ−p
n (β)

}
≥ max

β∈B
{∆n(β)},

where
∆n(β) = inf

Tn

sup
f∈Σ(β,L)

Ef

{
‖Tn − f‖p

∞ψ−p
n (β)

}
.

By Theorem 1 of Bertin (2004), we know that lim infn→∞ ∆n(βmax) ≥ 1. This comes from
the fact that the loss function w(x) = xp satisfies the conditions required in this theorem (i.e.
w is a non-decreasing function which admits a polynomial majorant and such that w(0) = 0),
and the exact constant Cβmax

in the rate of convergence is the same as the exact constant
in the non-adaptive case. Now, in order to prove the theorem, it is enough to prove that
lim infn→∞ ∆n(β) ≥ 1 for all β ∈ B\βmax

.

Let 0 < ε < 1/2. Let β ∈ B\βmax
. In the following several quantities depend on β, but we do

not indicate this dependence to simplify the notations. We consider the set of functions fj,β(·)
defined, for j ∈ {0, · · · , M}, by

{
fj,β = ψn(β)(1 − ε)

(
1 − ∑d

i=1

∣∣∣ ti−aj,i

hi,1(β)

∣∣∣
βi

)

+

, j = 1, . . . , M

f0,β = 0,
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where the aj = (aj,1, . . . , aj,d) form a grid of points in [0, 1]d. This grid is defined in the following
manner. For

mi =

[
1

2hi,1(21/β + 1)
− 1

]

with [x] the integer part of x and M =
∏d

i=1 mi, we consider the points a(l1, . . . , ld) ∈ [0, 1]d for
li ∈ {1, . . . ,mi} and i ∈ {1, . . . , d}, such that:

a(l1, . . . , ld) = 2(2
1
β + 1) (h1,1l1, . . . , hd,1ld) .

To simplify the notation, we denote these points a1, . . . , aM and each aj takes the form:

aj = (aj,1, . . . , aj,d).

The functions fj,β satisfy the following lemma which can be proved as in Bertin (2004).

Lemma 6.
1- fj,β ∈ Σ(β, L),

2- ‖fj,β‖2
2 = σ2c1(β) log n(1−ε)2

n(2β+1)

3- the functions fj,β have disjoint support.

Here we come back to the study of ∆n. Let j ∈ {1, . . . ,M} and Tn an estimator. We have,
since fj,β(ak) = (1 − ε)ψn(β)δj,k,

ψ−1
n (β)‖Tn − fj,β‖∞ ≥ψ−1

n (β) max
1≤k≤M

|Tn(ak) − fj,β(ak)|

≥(1 − ε) max
1≤k≤M

∣∣∣θ̂k − δj,k

∣∣∣ ,

where δj,k is the Kronecker delta and θ̂k = Tn(ak)ψ−1
n (β)

1−ε . As a consequence

ψ−1
n (β)‖Tn − fj,β‖∞ ≥ d(θ̂, θj),

where θ̂ = (θ̂1, . . . , θ̂M ), θj = (δ1,j , . . . , δM,j), and d(u, v) = (1 − ε)max1≤k≤M |uk − vk| for two
vectors u = (u1, . . . , uM ) and v = (v1, . . . , vM ) of R

M .
In the same way

ψ−1
n (β)‖Tn − f0,β‖∞ ≥ψ−1

n (β) max
1≤k≤M

|Tn(ak)|

≥ψ−1
n (βmax) max

1≤k≤M
|Tn(ak)|

≥ ψn(β)

ψn(βmax)
d(θ̂, θ0),

where θ0 is the null-vector of R
M . Then we have

∆n(β) ≥ inf
Tn

max
0≤k≤M

Ek

(
‖Tn − fk,β‖p

∞ψ−p
n (β)

)

≥ inf
θ̂∈Rd

max

{
E0

((
ψn(β)

ψn(βmax)

)p

dp(θ̂, θ0)

)
, max
1≤k≤M

Ek

(
dp(θ̂, θk)

)}
, (13)
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where Ek is the expectation Ek = Efk,β
. We denote also Pk = Pfk,β

.
Here we apply Theorem 6 of Tsybakov (1998) to the relation (13). We consider the M + 1
parameters {θ0, . . . , θM} ⊂ [0, 1]M , the family of probability measures {Pθj

= Pj}, the loss
function w(x) = xp and the distance d previously defined. The parameters θj satisfy d(θi, θk) ≥
1 − ε for i, k ∈ {0, . . . ,M} and i 6= k. We are now going to prove that there exists αn, with
0 ≤ αn ≤ 1 and limn→∞ αn = 0, such that

Q

(
dP0

dQ
≥ τn

)
≥ 1 − αn, (14)

where Q = 1
M

∑M
k=1 Pk, τn = n−ν , ν = pβmax

2βmax+1
− pβ

2β+1
− εc1(β)

2β+1
(1 − ε/2) and ε is chosen small

enough to have ν > 0.
Indeed, if we prove (14), Theorem 6 of Tsybakov implies that

∆n(β) ≥
(1 − αn)τn(1 − 2ε)p

(
ψn(β)ε

ψn(βmax)

)p

(1 − 2ε)p + τn

(
ψn(β)ε

ψn(βmax)

)p .

We have limn→∞ τn

(
ψn(β)ε

ψn(βmax)

)p
= +∞. Then

lim inf
n→∞

∆n(β) ≥ (1 − 2ε)p.

Since ε can be arbitrarily small, we obtain that lim infn→∞ ∆n(β) ≥ 1 and it proves the theorem.

Here we prove (14). In the same way as Tsybakov (1998), we have that under Pi

dPk

dP0
=

{
exp

{
ξkvn + v2

n

}
k = i

exp
{
ξkvn − v2

n

}
k 6= i,

where the ξk are i.i.d. N (0, 1) variables and v2
n = n

σ2 ‖fk,β‖2
2 = 2 log n

2β+1
c1(β)(1 − ε)2. Now, by the

independence of the ξi, we have

Pi

(
1

M

M∑

k=1

dPk

dP0
< 1/τn

)
≥ Pi


 1

M

M∑

k=1,k 6=i

dPk

dP0
<

1

2τn


Pi

(
1

M

dPi

dP0
<

1

2τn

)
. (15)

The probabilities above satisfy, since the ξk are N (0, 1) variables,

Pi


 1

M

M∑

k=1,k 6=i

dPk

dP0
<

1

2τn


 =Pi


 1

M

M∑

k=1,k 6=i

exp
{
ξkvn − v2

n

}
<

1

2τn




=1 − Pi




M∑

k=1,k 6=i

exp
{
ξkvn − v2

n

}
≥ M

2τn


 (16)

≥1 − 2τn(M − 1)

M
Ei

[
exp

{
ξkvn − v2

n

}]

=1 − 2τn(M − 1)

M
, (17)
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and

Pi

(
1

M

dPi

dP0
<

1

2τn

)
=Pi

(
exp

{
ξivn + v2

n

}
<

M

2τn

)

=1 − Φ

(
1

vn

(
− log M + log(2τn) + v2

n/2
))

, (18)

where Φ is the Gaussian c.d.f. By replacing M , τn and vn by their values in terms of n and β,

since c1(β)

2β+1
= 1

2β+1
+ pβmax

2βmax+1
− pβ

2β+1
, we obtain that

1

vn

(
− log M + log(2τn) + v2

n/2
)

=
log n

vn

(
− 1

2β + 1
− pβmax

2βmax + 1
+

pβ

2β + 1
+

εc1(β)

2β + 1
(1 − ε/2) +

c1(β)

2β + 1
(1 − 2ε + ε2) + o(1)

)

= − log n

vn

(
c1(β)ε

2β + 1
(1 − ε/2) + o(1)

)
. (19)

Using the relations (15), (17), (18), (19), noting that 2τn(M−1)
M tends to 0 and that

− log n
vn

(
c1(β)ε

2β+1
(1 − ε/2) + o(1)

)
tends to −∞, as n tends to ∞, we deduce that

lim
n→∞

Q

(
dP0

dQ
≥ τn

)
= 1.

This implies the existence of a sequence αn that satisfies (14) and limn→∞ αn = 0, which con-
cludes the proof of the lower bound.

5 Proof of Theorem 2

Since Theorem 1 is true, in particular for set B satisfying Condition (P ), to prove Theorem 2,
it is enough to show that

lim sup
n→∞

sup
β∈B

sup
f∈Σ(β,L)

Ef

{
‖f̃(p) − f‖p

∞ψ−p
n (β)

}
≤ 1. (20)

Here we prove (20). Since the cardinal of B is finite, we are going to prove that for all β ∈ B,

lim sup
n→∞

∆(β, n) ≤ 1,

where
∆(β, n) = sup

f∈Σ(β,L)
Ef

{
‖f̃(p) − f‖p

∞ψ−p
n (β)

}
≤ R1,n(β) + R2,n(β),

with
R1,n(β) = sup

f∈Σ(β,L)
Ef

{
‖f̃(p) − f‖p

∞ψ−p
n (β)I{β̂(p)<β}

}

and
R2,n(β) = sup

f∈Σ(β,L)
Ef

{
‖f̃(p) − f‖p

∞ψ−p
n (β)I{β̂(p)≥β}

}
.
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This will be obtained by proving that

lim
n→∞

R1,n(β) = 0 (21)

and that
lim sup

n→∞
R2,n(β) ≤ 1. (22)

•Proof of (21)
Let β ∈ B. We have

R1,n(β) ≤
∑

γ∈B,γ<β

sup
f∈Σ(β,L)

Ef

{
‖f̂γ,1 − f‖p

∞ψ−p
n (β)I{β̂(p)=γ}

}
.

We fix now γ ∈ B with γ < β. The event
{

β̂(p) = γ
}

satisfies

{
β̂(p) = γ

}
⊂

⋃

β′∈B,β′<γ′

{
‖f̂γ′,1 − f̂β′,1‖∞ > η1(β

′)
}

,

where γ′ = min{λ ∈ B such that λ > γ}. Then we have

sup
f∈Σ(β,L)

Ef

{
‖f̂γ,1 − f‖p

∞ψ−p
n (β)I{β̂(p)=γ}

}
≤

∑

β′∈B,β′<γ′

sup
f∈Σ(β,L)

Ef

{
‖f̂γ,1 − f‖p

∞ψ−p
n (β)IA1,n(β′)

}
,

with
A1,n(β′) =

{
‖f̂γ′,1 − f̂β′,1‖∞ > η1(β

′)
}

.

We do not indicate the dependence of the set A1,n(β′) on γ′ because we argue for fixed γ in B
and then for fixed γ′. To prove the result (21), since the cardinal of B is finite, it is enough to
prove that the following quantity, for β′ ∈ B with β′ < γ′,

sup
f∈Σ(β,L)

Ef

{
‖f̂γ,1 − f‖p

∞ψ−p
n (β)IA1,n(β′)

}
, (23)

tends to 0 as n → ∞.

Here we study the quantity (23). Let f ∈ Σ(β, L). We fix β′ ∈ B such that β′ < γ′. We have

Ef

{
‖f̂γ,1 − f‖p

∞ψ−p
n (β)IA1,n(β′)

}
≤ 2pψ−p

n (β)
(
‖bγ,1(·, f)‖p

∞Pf (A1,n(β′)) + Ef

{
‖Zγ,1‖p

∞IA1,n(β′)

})
.

To study the quantity above, we need the following lemma which will be proved in Section 8.

Lemma 7. We have for n large enough

sup
f∈Σ(β,L)

Pf

[
A1,n(β′)

]
≤ D6(log n)

− 1

2β
′
+1 n

−
p(βmax−β

′
)

(2βmax+1)(2β
′
+1) .
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The bias bγ,1 satisfies, for all f ∈ Σ(β, L),

‖bγ,1(·, f)‖∞ ≤
∫

Kγ(u)
d∑

i=1

Li|uihi,1(γ)|βidu.

Since for all i ∈ {1, · · · , d}, γi < βi, we have that

sup
f∈Σ(β,L)

‖bγ,1(·, f)‖ = o(ψn(γ)),

as n → ∞. As a consequence, we deduce from Lemma 7 that

sup
f∈Σ(β,L)

ψ−p
n (β)‖bγ,1(·, f)‖p

∞Pf (A1,n(β′)) ≤ D7(log n)
− 1

2β
′
+1

+ pγ
2γ+1

− pβ

2β+1 n
−

pβmax
2βmax+1

+ pβ
′

2β
′
+1

− pγ
2γ+1

+ pβ

2β+1 .

(24)
Moreover,

Ef

{
ψ−p

n (β)‖Zγ,1‖p
∞IA1,n(β′)

}
≤ (τn,1(γ))pψ−p

n (β)Pf (A1,n(β′))

+ Ef

{
‖Zγ,1‖p

∞ψ−p
n (β)I{‖Zγ,1‖∞>τn,1(γ)}

}
. (25)

From Lemma 7, we know that Pf (A1,n(β′)) is at most of order (log n)
− 1

2β
′
+1 n

−
pβmax

2βmax+1
+ pβ

′

2β
′
+1 thus

(τn,1(γ))pψ−p
n (β)Pf (A1,n(β′)) ≤ D8(log n)

− 1

2β
′
+1

+ pγ
2γ+1

− pβ

2β+1 n
−

pβmax
2βmax+1

+ pβ
′

2β
′
+1

− pγ
2γ+1

+ pβ

2β+1 .

Since β′ ≤ γ < β ≤ βmax, we obtain that

lim
n→∞

sup
f∈Σ(β,L)

ψ−p
n (β)‖bγ,1(·, f)‖p

∞Pf (A1,n(β′)) = 0 (26)

and
lim

n→∞
sup

f∈Σ(β,L)
(τn,1(γ))pψ−p

n (β)Pf (A1,n(β′)) = 0.

Using Lemma 5, we deduce that

lim
n→∞

sup
f∈Σ(β,L)

Ef

{
ψ−p

n (β)‖Zγ,1‖p
∞IA1,n(β′)

}
= 0. (27)

From (26) and (27), we conclude that the quantity (23) tends to 0 as n → ∞.

•Proof of (22)

Let δn =
(

1
log n

)1/4
and β ∈ B. We have

R2,n(β) ≤ (1 + δn)p + sup
f∈Σ(β,L)

Ef

{
‖f̃(p) − f‖p

∞ψ−p
n (β)I

{β̂(p)≥β}∩{‖f̃(p)−f‖∞ψ−1
n (β)>1+δn}

}

≤ (1 + δn)p +
∑

γ∈B,γ≥β

sup
f∈Σ(β,L)

Q2,n(β, γ, f),
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where
Q2,n(β, γ, f) = Ef

{
‖f̂γ,1 − f‖p

∞ψ−p
n (β)I{β̂(p)=γ}∩{‖f̂γ,1−f‖∞ψ−1

n (β)>1+δn}

}
.

By Proposition 3, we have limn→∞ supf∈Σ(β,L) Q2,n(β, β, f) = 0. To prove (22), since the cardinal
of B is finite and limn→∞ δn = 0, it is enough to prove, for γ ∈ B with γ > β, that

lim
n→∞

sup
f∈Σ(β,L)

Q2,n(β, γ, f) = 0. (28)

Here we prove the result (28). Let γ ∈ B such that γ > β and f ∈ Σ(β, L). If β̂(p) = γ, since

γ > β, we have ‖f̂γ,1 − f̂β,1‖∞ ≤ η1(β). Then,

‖f̂γ,1 − f‖∞I{β̂(p)=γ} ≤
(
‖f̂γ,1 − f̂β,1‖∞ + ‖f̂β,1 − f‖∞

)
I{β̂(p)=γ}

≤
(
η1(β) + ‖f̂β,1 − f‖∞

)
I{β̂(p)=γ}. (29)

The quantity Q2,n(β, γ, f) is upper bounded by

(
Ef

{
‖f̂γ,1 − f‖2p

∞ψ−2p
n (β)I{β̂(p)=γ}

})1/2 (
Pf

(
{β̂(p) = γ} ∩ {‖f̂γ,1 − f‖∞ψ−1

n (β) > 1 + δn}
))1/2

.

Then, (29) and Proposition 3 imply that

sup
f∈Σ(β,L)

(
Ef

{
‖f̂γ,1 − f‖2p

∞ψ−2p
n (β)I{β̂(p)=γ}

})1/2

is bounded above by a positive constant for n large enough and we deduce that

sup
f∈Σ(β,L)

Q2,n(β, γ, f) ≤ D9

[
Pf

(
{β̂(p) = γ} ∩ {‖f̂γ,1 − f‖∞ψ−1

n (β) > 1 + δn}
)]1/2

, (30)

for n large enough. Now we are going to prove that the right hand side of inequality (30) tends
to 0 as n → ∞. We have

‖f̂γ,1 − f‖∞I{β̂(p)=γ} ≤ (‖bγ,1(·, f) − bβ,1(·, f)‖∞ + ‖bβ,1(·, f)‖∞ + ‖Zγ,1‖∞) I{β̂(p)=γ}

≤
(
‖bγ,1(·, f) − bβ,1(·, f)‖∞ +

ψn(β)

2β + 1
+ ‖Zγ,1‖∞

)
I{β̂(p)=γ}, (31)

where the last line is a consequence of Proposition 1.

We have ‖bγ,1(·, f)−bβ,1(·, f)‖∞ =
∥∥∥Ef

(
f̂γ,1

)
− Ef

(
f̂β,1

)∥∥∥
∞

. The function φ : t 7−→ Ef

(
f̂γ,1(t)

)
−

Ef

(
f̂β,1(t)

)
is a continuous function on [0, 1]d which admits a non-random maximum x0 satis-

fying

‖bγ,1(·, f) − bβ,1(·, f)‖∞ = φ(x0)

≤
∣∣∣f̂γ,1(x0) − f̂β,1(x0)

∣∣∣ + |ϕ1|

≤ ‖f̂γ,1 − f̂β,1‖∞ + |ϕ1| ≤ η1(β) + |ϕ1|, (32)
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where ϕ1 = f̂γ,1(x0) − f̂β,1(x0) − Ef

[
f̂γ,1(x0) − f̂β,1(x0)

]
. Since ϕ1 is a N (0, π2

n) variable, by

Proposition 2, we deduce that its variance π2
n satisfies

π2
n ≤ 2Ef

(
(Zβ,1(x0))

2
)

+ 2Ef

(
(Zγ,1(x0))

2
)
≤ 2‖Kβ‖2

2σ
2(1 + o(1))

nh̃1(β)
. (33)

Then using (31) and (32) we deduce that

‖f̂γ,1 − f‖∞I{β̂(p)=γ} ≤
[
η1(β) +

ψn(β)

2β + 1
+ ‖Zγ,1‖∞ + |ϕ1|

]
I{β̂(p)=γ}

≤ (ψn(β) + ‖Zγ,1‖∞ + |ϕ1|) I{β̂(p)=γ},

the last line being a consequence of Lemma 2. Thus,

Pf

(
{β̂(p) = γ} ∩ {‖f̂γ,1 − f‖∞ > (1 + δn)ψn(β)}

)

≤Pf (‖Zγ,1‖∞ + |ϕ1| > δnψn(β))

≤Pf

(
‖Zγ,1‖∞ >

δn

2
ψn(β)

)
+ Pf

(
|ϕ1| >

δn

2
ψn(β)

)
. (34)

As ϕ1 is a N (0, π2
n) variable and using (33), we have

Pf

(
|ϕ1| >

δn

2
ψn(β)

)
≤ exp

{
−ψ2

n(β)δ2
nnh̃1(β)

16‖Kβ‖2
2σ

2

}
.

The quantity ψ2
n(β)δ2

nnh̃1(β) is of order
√

log n, and then

lim
n→∞

Pf

(
|ϕ1| >

δn

2
ψn(β)

)
= 0. (35)

Using Proposition 2, we have

Pf

(
‖Zγ,1‖∞ >

δn

2
ψn(β)

)
≤ D1

h̃1(γ)
exp

{
−ψ2

n(β)δ2
nnh̃1(γ)

8‖Kβ‖2
2σ

2

}
exp





D2δnψn(β)
√

nh̃1(γ)

2(log h̃1(γ))1/2



 .

The quantity ψ2
n(β)δ2

nnh̃1(γ) is of order ψ2
n(β)ψ−2

n (γ)(log n)D10 with some D10 ∈ R and h̃1(γ) is

of order
(

log n
n

)1/(2γ+1)
. Hence, since β < γ, this implies that

lim
n→∞

Pf

(
‖Zγ,1‖∞ >

δn

2
ψn(β)

)
= 0. (36)

Using (35), (36) and that the fact that the right hand side of inequality (34) does not depend on
f , we deduce that

lim
n→∞

sup
f∈Σ(β,L)

Pf

(
{β̂(p) = γ} ∩ {‖f̂γ,1 − f‖∞ > (1 + δn)ψn(β)}

)
= 0.

Then we obtain the result (28) which implies (22).
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6 Proof of Theorem 3

The scheme of proof is similar to the proof of relation (20) in the proof of Theorem 2. To prove
Theorem 3, we will prove that, for all β ∈ B,

lim
n→∞

R3,n(β) = 0 (37)

and
lim sup

n→∞
R4,n(β) ≤ (M2(β))p, (38)

where
R3,n(β) = sup

f∈Σ(β,L)
Ef

{
‖f̃ani − f‖p

∞ψ−p
n (β)I{β̂ani<β}

}
,

R4,n(β) = sup
f∈Σ(β,L)

Ef

{
‖f̃ani − f‖p

∞ψ−p
n (β)I{β̂ani≥β}

}
.

•Proof of (37)

Let β, γ ∈ B such that γ < β.

The event
{

β̂ani = γ
}

satisfies

{
β̂ani = γ

}
⊂

⋃

β′∈B,β′<β

A2,n(β′),

where
A2,n(β′) =

{
‖f̂β∗β′,2 − f̂β′,2‖∞ > η2(β

′)
}

.

Following the same reasoning as in the proof of relation (20), to prove (37), it is enough to prove
that, for all β′ ∈ B with β′ < β,

lim
n→∞

sup
f∈Σ(β,L)

Ef

{
‖f̂γ,2 − f‖p

∞ψ−p
n (β)IA2,n(β′)

}
= 0. (39)

The event A2,n(β′) satisfies the following lemma:

Lemma 8. We have for n large enough

sup
f∈Σ(β,L)

Pf

[
A2,n(β′)

]
≤ D11(log n)

− 1

2β
′
+1 n−pµ(β′).

The bias bγ,2 satisfies for all f ∈ Σ(β, L)

‖bγ,2(·, f)‖∞ ≤
∫

Kγ(u)
d∑

i=1

Li|uihi,2(γ)|βidu,

then supf∈Σ(β,L) ‖bγ,2(·, f)‖∞ is at most of order

(
log n

n

)min
(

βiγ

γi(2γ+1)

)

,
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where the minimum is taken on i = 1, . . . , d. Therefore

sup
f∈Σ(β,L)

ψ−p
n (β)‖bγ,2(·, f)‖p

∞Pf (A2,n(β′))

is upper bounded by

D12(log n)
−pω(β,γ)− 1

2β
′
+1 n−p(µ(β′)−ω(β,γ))

where

ω(β, γ) =
β

2β + 1
− min

i=1,...,d

βiγ

γi(2γ + 1)
.

If B satisfies Condition (P ), then

ω(β, γ) <
β

2β + 1
− γ

2γ + 1
.

Since β > γ and µ(β′) > 0, this implies that

lim
n→∞

sup
f∈Σ(β,L)

ψ−p
n (β)‖bγ,2(·, f)‖p

∞Pf (A2,n(β′)) = 0. (40)

If B do not satisfy Condition (P ), there exists i ∈ {1, . . . , d} such that βi/γi ≤ 1, then

µ(β′) ≥ ω(β, γ) ≥ β

2β + 1
− γ

2γ + 1
> 0.

This implies that
lim

n→∞
sup

f∈Σ(β,L)
ψ−p

n (β)‖bγ,2(·, f)‖p
∞Pf (A2,n(β′)) = 0. (41)

Reasoning as in the proof of (21), using the decomposition (25), Lemma 5, Lemma 8 and that

β

2β + 1
− γ

2γ + 1
≤ µ(β′),

we deduce that
lim

n→∞
sup

f∈Σ(β,L)
Ef

{
ψ−p

n (β)‖Zγ,2‖p
∞IA2,n(β′)

}
= 0. (42)

From (41), (40) and (42), we obtain (37).

•Proof of (38)

The proof will be similar to the proof in the proof of (22). We fix δn =
(

1
log n

)1/4
. We have

R4,n(β) ≤ (1 + δn)p(M2(β))p +
∑

γ∈B,γ≥β

sup
f∈Σ(β,L)

Q4,n(β, γ, f),

where
Q4,n(β, γ, f) = Ef

{
‖f̂γ,2 − f‖p

∞ψ−p
n (β)I{β̂ani=γ}∩C1,n

}
,

and
C1,n = {‖f̂γ,2 − f‖∞ψ−1

n (β) > M2(β)(1 + δn)}.
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By Proposition 3, we have limn→∞ supf∈Σ(β,L) Q4,n(β, β, f) = 0. To prove (38), it is enough to
prove that, for all γ ∈ B such that γ > β,

lim
n→∞

sup
f∈Σ(β,L)

Q4,n(β, γ, f) = 0. (43)

Let γ ∈ B, such that γ > β, and f ∈ Σ(β, L). Following the same reasoning as in the proof of
(22) from (31) to (33), using Proposition 1, Lemma 2 and Lemma 3, we deduce that

‖f̂γ,2 − f‖∞I{β̂ani=γ} ≤(‖bβ∗γ,2(·, f) − bγ,2(·, f)‖∞ + ‖bβ∗γ,2(·, f) − bβ,2(·, f)‖∞
+‖bβ,2(·, f)‖∞ + ‖Zγ,2‖∞)I{β̂ani=γ}

≤
(

2ψn(β)λ2(β)

2β + 1
+ η2(β) + ‖Zγ,2‖∞ + |ϕ2|

)
I{β̂ani=γ},

≤ (M2(β) + ‖Zγ,2‖∞ + |ϕ2|) I{β̂ani=γ} (44)

where ϕ2 = f̂β∗γ,2(x0) − f̂β,2(x0) − Ef

[
f̂β∗γ,2(x0) − f̂β,2(x0)

]
, with some x0 ∈ [0, 1]d. Using

Lemma 4 and Proposition 2, we have that ϕ2 is a N (0, π2
n) variable, with variance π2

n satisfying

π2
n ≤ 2‖Kβ‖2

2σ
2(1 + o(1))

nh̃1(β)
.

We have

Ef

[
‖Zγ,2‖2p

∞ψ−2p
n (β)

]
≤ (τn,2(γ))2pψ−2p

n (β) + ψ−2p
n (β)Ef

[
‖Zγ,2‖2p

∞I{‖Zγ,2‖∞>τn,2(γ)}

]
.

Reasoning as in the proof of Lemma 5, we have that

lim
n→∞

(ψn(β))−2p sup
f∈Σ(β,L)

Ef

[
‖Zγ,2‖2p

∞I{‖Zγ,2‖∞>τn,2(γ)}

]
= 0.

Since γ > β, we deduce that

lim
n→∞

sup
f∈Σ(β,L)

Ef

[
‖Zγ,2‖2p

∞ψ−2p
n (β)

]
= 0. (45)

Moreover, the variable ϕ3 satisfies the properties

Pf [|ϕ2| > δnψn(β)t] ≤ exp
{
−D13t

2
√

log n
}

, t ≥ 0, (46)

lim
n→∞

sup
f∈Σ(β,L)

Ef

[
|ϕ2|2pψ−2p

n (β)
]

= 0. (47)

The property (46) comes from the fact that ϕ2 is a N (0, π2
n) variable, and the property (47) can

be proved as (45) using (46) and the proof of Lemma 5.
The relations (45) and (47) and Proposition 3 imply that

sup
f∈Σ(β,L)

(
Ef

{
‖f̂γ,2 − f‖2p

∞ψ−2p
n (β)I{β̂ani=γ}

})1/2

is bounded above by a positive constant for n large enough. Now to have (43), it is enough to
prove that

lim
n→∞

sup
f∈Σ(β,L)

Pf

[
C1,n ∩ {β̂ani = γ}

]
= 0. (48)

Using the relations (44) and (46), and following the proof of (22) from (34) to (36), we deduce
(48), which finishes the proof.
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7 Proof of Theorem 4

•Proof of (8)

By Proposition 3, we have

lim sup
n→∞

sup
f∈Σ(β,L)

Ef

{
‖f̂β,1 − f‖p

∞ψ−p
n (β)

}
≤ 1

Then to have (8), it is enough to prove that

lim
n→∞

sup
f∈Σ(β,L)

Ef

{
‖f̂γ,3 − f‖p

∞ψ−p
n (β)I

{f̃ani2=f̂γ,3}

}
= 0 (49)

The event
{

f̃ani2 = f̂γ,3

}
satisfies

{
f̃ani2 = f̂γ,3

}
⊂ A3,n ∩ A4,n, where

A3,n =
{
‖f̂β∗γ,1 − f̂γ,3‖∞ > η3(γ)

}
,

A4,n =

{
‖f̂β∗γ,1 − f̂β,1‖∞ <

ψn(γ)λ3(γ)

2γ + 1
(1 + ρn)

}
,

The event A3,n satisfies the lemma:

Lemma 9. We have for n large enough

sup
f∈Σ(β,L)

Pf [A3,n] ≤ D14(log n)
− 1

2γ+1 n
−

p(β−γ)

(2β+1)(2γ+1) .

The proof of Lemma 9 is similar to the proof of Lemma 7 and 8. Let f ∈ Σ(β, L). We have

‖f̂γ,3 − f‖∞IA3,n∩A4,n
≤

(
‖f̂β∗γ,1 − f̂γ,3‖∞ + ‖f̂β∗γ,1 − f̂β,1‖∞ + ‖f̂β,1 − f‖∞

)
IA3,n∩A4,n

Using Proposition 3 and Lemma 9 we deduce that

lim
n→∞

sup
f∈Σ(β,L)

Ef

{
‖f̂β,1 − f‖p

∞ψ−p
n (β)IA3,n∩A4,n

}
= 0,

Moreover, using the definition of A4,n, we have

Ef

{
‖f̂β∗γ,1 − f̂β,1‖p

∞ψ−p
n (β)IA3,n∩A4,n

}
≤

(
λ3(γ)ψn(γ)ψ−1

n (β)

2γ + 1

)p

(1 + ρn)p
Pf (A3,n).

Using Lemma 9, we deduce that, for n large enough, ψ−p
n (β)ψp

n(γ)(1 + ρn)p
Pf (A3,n) is at most

of order (log n)
− 1

2γ+1
+ pγ

2γ+1
− pβ

2β+1 , therefore, since γ < β,

lim
n→∞

sup
f∈Σ(β,L)

Ef

{
‖f̂β∗γ,1 − f̂β,1‖p

∞ψ−p
n (β)IA3,n∩A4,n

}
= 0

To prove (49), it remains to prove that

lim
n→∞

sup
f∈Σ(β,L)

Ef

{
‖f̂β∗γ,1 − f̂γ,3‖p

∞ψ−p
n (β)IA3,n∩A4,n

}
= 0.
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We have

‖f̂β∗γ,1 − f̂γ,3‖∞IA3,n∩A4,n
≤ (‖bβ∗γ,1(·, f) − bγ,3(·, f)‖∞ + ‖Zγ,3‖∞ + ‖Zβ∗γ,1‖∞) IA3,n∩A4,n

.

Reasoning as in the proof of (21), using the decomposition (25) and applying Lemma 5 to Zγ,3,
we deduce that

lim
n→∞

sup
f∈Σ(β,L)

Ef

{
(‖Zγ,3‖∞)p ψ−p

n (β)IA3,n∩A4,n

}
= 0.

Since Zβ∗γ,1 satisfies Lemma 4, a similar reasoning permits to have

lim
n→∞

sup
f∈Σ(β,L)

Ef

{
(‖Zβ∗γ,3‖∞)p ψ−p

n (β)IA3,n∩A4,n

}
= 0.

Appying Lemma 3, we obtain that the quantity supf∈Σ(β,L) ‖bβ∗γ,1(·, f)− bγ,3(·, f)‖∞ is of order
ψn(β), and finally we have by Lemma 9 that

lim
n→∞

sup
f∈Σ(β,L)

‖bβ∗γ,1(·, f) − bγ,3(·, f)‖∞ψ−p
n (β)Pf (A3,n ∩ A4,n) = 0,

which prove (49) and then (8).

•Proof of (9)

The proof will be similar to the proof in the proof of (22). Let f ∈ Σ(γ, L). We fix δn =(
1

log n

)1/4
. We have

Ef

{
‖f̃ani2 − f‖p

∞ψ−p
n (γ)

}
≤(1 + δn)p(M3(γ))p + Ef

{
‖f̃ani2 − f‖p

∞ψ−p
n (γ)IC2,n

}
,

≤(1 + δn)p(M3(γ))p + Ef

{
‖f̂β,1 − f‖p

∞ψ−p
n (γ)IC2,n∩An

}

+Ef

{
‖f̂γ,3 − f‖p

∞ψ−p
n (γ)IC2,n∩Ac

n

}
,

where
C2,n =

{
‖f̃ani2 − f‖∞ψ−1

n (γ) > (1 + δn)M3(γ)
}

,

and An = (A3,n ∩ A4,n)c. By Proposition 3, we have

lim
n→∞

sup
f∈Σ(γ,L)

Ef

{
‖f̂γ,3 − f‖p

∞ψp
n(γ)IC2,n∩Ac

}
= 0.

The event A4,n satisfies the lemma

Lemma 10. For n large enough, we have

sup
f∈Σ(γ,L)

Pf

[
Ac

4,n

]
≤ D15

h̃1(β)
exp

{
−D16(log n)D17nD18

}
exp

{
−D19

√
(log n)D17nD18

}
,

with D17 ∈ R.
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Lemma 10 implies that

lim
n→∞

sup
f∈Σ(γ,L)

Ef

{
‖f̂β,1 − f‖p

∞ψ−p
n (γ)IC2,n∩Ac

4,n

}
= 0.

Then to have (9), it is enough to prove that

lim
n→∞

sup
f∈Σ(γ,L)

Ef

{
‖f̂β,1 − f‖p

∞ψ−p
n (γ)IA5,n

}
= 0, (50)

where A5,n = C2,n ∩ Ac
3,n ∩ A4,n On Ac

3,n ∩ A4,n, we have

‖f̂β,1 − f‖∞ ≤‖f̂β,1 − f̂β∗γ,1‖∞ + ‖f̂β∗γ,1 − f̂γ,3‖∞ + ‖f̂γ,3 − f‖∞

≤η3(γ) +
ψn(γ)λ3(γ)(1 + ρn)

2γ + 1
+ ‖f̂γ,3 − f‖∞.

Using Proposition 3, we deduce that, for n large enough,

sup
f∈Σ(γ,L)

Ef

{
‖f̂β,1 − f‖2p

∞ψ−2p
n (γ)IA5,n

}

is upper bounded by a constant. Now to have (50), it is enough to prove that

lim
n→∞

sup
f∈Σ(γ,L)

Pf [A5,n] = 0. (51)

We have by Lemma 2 and Proposition 1,

‖f̂β,1 − f‖∞IA5,n
≤

(
‖f̂β,1 − f̂β∗γ,1‖∞ + ‖bβ∗γ,1(·, f) − bγ,3(·, f)‖∞ + ‖bγ,3(·, f)‖∞ + ‖Zβ∗γ,1‖∞

)
IA5,n

≤‖bβ∗γ,1(·, f) − bγ,3(·, f)‖∞ +
2λ3(γ)ψn(γ)

2γ + 1
+ ‖Zβ∗γ,1‖∞.

Following the same argument as in the proof of (22) from (31) to (33), we deduce that

‖bβ∗γ,1(·, f) − bγ,3(·, f)‖∞ ≤ η3(γ) + |ϕ3| (52)

where ϕ3 = f̂β∗γ,1(x0) − f̂γ,3(x0) − Ef

[
f̂β∗γ,1(x0) − f̂γ,3(x0)

]
, with some x0 ∈ [0, 1]d. Using

Lemma 4, we have that ϕ3 is a random variable N (0, π2
n), where π2

n satisfies

π2
n ≤ 2‖Kγ‖2

2σ
2(1 + o(1))

nh̃1(γ)
.

Using Lemma 3 and Lemma 4, we obtain finally that

‖f̂β,1 − f‖∞IA5,n
≤

(
η3(γ) +

2λ3(γ)ψn(γ)

2γ + 1
+ ‖Zβ∗γ,1‖∞ + |ϕ3|

)
IA5,n

≤ (M3(γ)ψn(γ) + ‖Zβ∗γ,1‖∞ + |ϕ3|) IA5,n

Now following the proof of (22) from (34) to (36), we deduce (51), which finishes the proof of
(50).
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8 Proofs of the lemmas and propositions

Proof of Lemma 2

Since ‖Kβ‖2
2 = 2(β+1)

βα(β)(2β+1)
, we have for j ∈ {1, 2, 3},

ηj(β) =

(
log n

n

) β

2β+1

C
− 1

2β

β

(
2cj(β)‖Kβ‖2

2σ
2L

1/β
∗

2β + 1

)1/2

(λj(β))
− 1

2β ,

=

(
log n

n

) β

2β+1

C
− 1

2β

β

(
4β

2
cj(β)(β + 1)σ2L

1/β
∗

(2β + 1)2α(β)β
3

)1/2

(λj(β))
− 1

2β .

For j=1, we deduce that

η1(β) =

(
log n

n

) β

2β+1

C
− 1

2β

β C
2β+1

2β

β

2β

2β + 1
=

2β

2β + 1
ψn(β).

This implies the result of the lemma for j = 1. For j ∈ {2, 3}, we have

ηj(β) =
2β

2β + 1
ψn(β)2−1/(2β+1)

(
cj(β)

c1(β)

) β

2β+1

,

which permits to have the result for j ∈ {2, 3}.

Proof of Proposition 3

Following the proof of Theorem 1 of Bertin (2004) with the loss function w(x) = xp, studying
the bias term and the stochastic term of f̂β,j , we can deduce, for j ∈ {1, 2, 3}, that

lim sup
n→∞

sup
f∈Σ(β,L)

Pf

[
‖f̂β,j − f‖∞ > (1 + εn)ψn(β)

(
λj(β)

2β + 1
+

ηj(β)

ψn(β)(cj(β))1/2

)]
= 0

and

lim sup
n→∞

sup
f∈Σ(β,L)

Ef

[
‖f̂β,j − f‖p

∞ψ−p
n (β)

]
≤

(
λj(β)

2β + 1
+

ηj(β)

ψn(β)cj(β)

)p

.

For j = 1, using that η1(β) = 2β

2β+1
ψn(β) (cf. proof of Lemma 2), and that c1(β) ≥ 1, we have

that
λ1(β)

2β + 1
+

η1(β)

ψn(β)c1(β)
=

1

2β + 1
+

2β

(2β + 1)(c1(β))1/2
≤ 1.

For j ∈ {2, 3}, using that ηj(β) = 2β

2β+1
ψn(β)2−1/(2β+1)

(
cj(β)
c1(β)

) β

2β+1 (cf. proof of Lemma 2), and

that cj(β) ≥ 1, we have that

λj(β)

2β + 1
+

ηj(β)

ψn(β)cj(β)
=

(
cj(β)

c1(β)

) β

2β+1


2

− 2β

2β+1

2β + 1
+

2β2
− 1

2β+1

(2β + 1)(c2(β))1/2


 ≤ Mj(β).
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The above lines imply the results of Proposition 3.

Proof of Lemma 3

Here we prove the first result of the lemma. Let β = (β1, . . . , βd) ∈ B, γ ∈ B, f ∈ Σ(β, L) and
x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ R

d. We have

∣∣Kγ,2 ∗ f(x) − Kγ,2 ∗ f(y)
∣∣

=

∣∣∣∣
∫

Kγ(u) {f(x1 − u1h1,2(γ), . . . , xd − udhd,2(γ)) − f(y1 − u1h1,2(γ), . . . , yd − udhd,2(γ))} du

∣∣∣∣

≤
(∫

Kγ(u)du

) d∑

i=1

Li|xi − yi|βi =

d∑

i=1

Li|xi − yi|βi

Then, Kγ,2 ∗ f belongs to Σ(β, L). As a consequence, we have

‖bβ∗γ,2(·, f) − bγ,2(·, f)‖∞ = ‖bβ,2(·,Kγ,2 ∗ f)‖∞ ≤ sup
f∈Σ(β,L)

‖bβ,2(·, f)‖∞.

Thus, from Proposition 1, we deduce that

sup
f∈Σ(β,L)

‖bβ∗γ,2(·, f) − bγ,2(·, f)‖∞ ≤ ψn(β)λ2(β)

2β + 1
.

The two other results can be proved exactly in the same way.

Proof of Lemma 4

We prove here the result for j = 2. The result for j = 1 can be proved exactly in the same way.
Let β = (β1, . . . , βd), γ ∈ B such that γ < β and t ∈ [0, 1]d. We have

Ef

[
Z2

β∗γ,2(t)
]

=
σ2

nh̃2
2(β)h̃2

2(γ)

∫ (∫
Kβ

(
t − u − v

h2(β)

)
Kγ

(
v

h2(γ)

)
dv

)2

du,

where the notation u
t , for two vectors u = (u1, . . . , ud) and t = (t1, . . . , td), represents the vector

(u1/t1, . . . , ud/td). By the generalized Minkowskii inequality (cf. Appendix), we deduce that

Ef

[
Z2

β∗γ,2(t)
]
≤ σ2

nh̃2
2(β)h̃2

2(γ)

(∫ (∫
K2

β

(
t − u − v

h2(β)

)
K2

γ

(
v

h2(γ)

)
du

)1/2

dv

)2

≤ σ2‖Kβ‖2
2

nh̃2
2(β)h̃2

2(γ)

(∫
Kγ

(
v

h2(γ)

)
dv

)2

=
σ2‖Kβ‖2

2

nh̃2(β)
.

Now the proof of (12) is similar to the proof of Proposition 3, and then to that of Lemma 4

of Bertin (2004). The process Zβ∗γ satisfies as Zβ , Ef

[
Z2

β∗γ(t)
]
≤ σ2‖Kβ‖

2
2

nh̃2(β)
. Furthermore, to

apply that argument, we need to bound the quantity Ef

[(
Z2

β∗γ(t) − Z2
β∗γ(s)

)2
]

by a multiple of
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1
nh̃2(β)

∑d
i=1

∣∣∣ si−ti
hi,2(β)

∣∣∣
βi

for s = (s1, . . . , sd), t = (t1, . . . , td) in [0, 1]d. Here we look at this quantity.

Let s, t ∈ [0, 1]d, we have

Ef

[(
Z2

β∗γ(t) − Z2
β∗γ(s)

)2
]

=
σ2

nh̃2
2(β)h̃2

2(γ)

∫ (∫
Kγ

(
v

h2(γ)

)(
Kβ

(
t − u − v

h2(β)

)
− Kβ

(
s − u − v

h2(β)

))
dv

)2

du

≤ σ2

nh̃2
2(β)h̃2

2(γ)




∫ (∫
K2

γ

(
v

h2(γ)

)(
Kβ

(
t − u − v

h2(β)

)
− Kβ

(
s − u − v

h2(β)

))2

du

)1/2

dv




2

≤ σ2D20

nh̃2(β)

(
1

h̃2(γ)

∫
Kγ

(
v

h2(γ)

)
dv

)2 d∑

i=1

∣∣∣∣
si − ti
hi,2(β)

∣∣∣∣
βi

=
σ2D20

nh̃2(β)

d∑

i=1

∣∣∣∣
si − ti
hi,2(β)

∣∣∣∣
βi

,

the second line being obtained by the generalized Minkowskii inequality (cf. Appendix) and the
third line coming from the fact Kβ satisfies an Hölder condition of order β.

As a consequence, following the proof of Lemma 4 of Bertin (2004), we will obtain the result
for j = 2 of Lemma 4.

Proof of Lemma 5

Let f ∈ Σ(β, L) and j ∈ {1, 2, 3}. We have, by a change of variables,

Ef

{
‖Zγ,j‖p

∞ψ−p
n (β)I{‖Zγ,j‖∞>τn,j(γ)}

}
= ψ−p

n (β)

∫ +∞

0
Pf

(
‖Zγ,j‖p

∞I{‖Zγ,j‖∞>τn,j(γ)} > t
)

dt

=ψ−p
n (β) (τn,j(γ))p

∫ +∞

0
Pf

(
‖Zγ,j‖p

∞I{‖Zγ,j‖∞>τn,j(γ)} > t (τn,j(γ))p
)

dt

= ψ−p
n (β) (τn,j(γ))p

Pf (‖Zγ,j‖∞ > τn,j(γ))+ψ−p
n (β) (τn,j(γ))p

∫ +∞

1
Pf (‖Zγ,j‖p

∞ > t (τn,j(γ))p) dt.

(53)
We are going to prove that the two elements of the sum (53) tend to 0 as n tends to ∞. We
obtain by Proposition 2 that

Pf (‖Zγ,j‖p
∞ > t (τn,j(γ))p) ≤ D1

(
n

log n

) 1
2γ+1

exp

{
− t2/p(1 + pβmax)

2γ + 1
log n

}
exp

{
t1/pD21

√
log n

}
.

(54)
Using the formula (54) with t = 1, we deduce that ψ−p

n (β) (τn,j(γ))p
Pf (‖Zγ,j‖∞ > τn,j(γ)) is of

order n
p( β

2β+1
− γ

2γ+1
−

βmax
2γ+1

)
(log n)D22 with some D22 ∈ R, and then it tends to 0 as n tends to ∞

since γ ≤ β ≤ βmax. Moreover by (54) we have, after a change of variables,
∫ +∞

1
Pf (‖Zγ,j‖p

∞ > t (τn,j(γ))p) dt

is bounded above by

D23

(
n

log n

) 1
2γ+1

∫ +∞

1
exp

{
− t2

2γ + 1
(1 + pβmax) log n

}
exp

{
D21t

√
log n

}
tp−1dt.
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By using several integrations by parts, one can find that this integral is at most of order

(
n

log n

) 1
2γ+1

exp

{
−(1 + pβmax)

2γ + 1
log n

}
= n

−
pβmax
2γ+1 (log n)

− 1
2γ+1 .

Hence ψ−p
n (β) (τn,j(γ))p ∫ +∞

1 Pf (‖Zγ,j‖p
∞ > t (τn,j(γ))p) dt tends to 0 as n tends to ∞.

Proof of Lemma 7

Let f ∈ Σ(β, L). Using the same argument as in the proof of (21), we can deduce that
‖bγ′,1(·, f)‖∞ = o(ψn(γ′)) and ‖bβ′,1(·, f)‖∞ = o(ψn(β′)) for all f ∈ Σ(β, L). As a consequence
for all f ∈ Σ(β, L) ‖bγ′,1(·, f) − bβ′,1(·, f)‖∞ = o(ψn(β′)), since β′ < γ′, and therefore

Pf

[
‖f̂γ′,1 − f̂β′,1‖∞ > η1

(
β′

)]
≤ Pf

[
‖Zγ′,1‖∞ + ‖Zβ′,1‖∞ > η1

(
β′

)
(1 + κn)

]
≤ P1(n) + P2(n),

where κn is of order n−δ with a δ > 0 and

P1(n) = Pf

[
‖Zγ′,1‖∞ > ψn((β′ + γ′)/2)(1 + κn)

]
,

P2(n) = Pf

[
‖Zβ′,1‖∞ > η1

(
β′

)
(1 + κn)

(
1 − ψn(β′+γ′

2 )

η1 (β′)

)]
.

Using Proposition 2, since
η2
1(β′)nh̃1(β′)

2‖Kβ′‖2
2σ2 = 1

2β
′

+1

(
1 + p βmax−β

′

2βmax+1

)
log n, we obtain that for n large

enough

P2(n) ≤ D24 (log n)
− 1

2β
′
+1 exp

{
− p

2β
′
+ 1

(
βmax − β

′

2βmax + 1

)
log n

}
. (55)

Using Proposition 2, it can be proved that P1(n) is negligible with respect to P2(n) as n → ∞.
The relation (55) implies the lemma.

Proof of Lemma 8

Let f ∈ Σ(β, L). By Lemma 3, we have that ‖bβ′∗β,2(·, f) − bβ′,2(·, f)‖∞ is at most of order
ψn(β). Since β′ < β, ψn(β) is negligible with respect to η2(β

′) and therefore

Pf

[
‖f̂β∗β′,2 − f̂β′,2‖∞ > η2

(
β′

)]
≤ Pf

[
‖Zβ∗β′,2‖∞ + ‖Zβ′,2‖∞ > η2

(
β′

)
(1 + κn)

]
≤ P3(n) + P4(n),

where κn is of order ψn(β)/η2(β
′),

P3(n) = Pf

[
‖Zβ∗β′,2‖∞ > ψn((β′ + β)/2)(1 + κn)

]
,

and

P4(n) = Pf

[
‖Zβ′,2‖∞ > η2

(
β′

)
(1 + κn)

(
1 − ψn(β′+β

2 )

η2 (β′)

)]
.

Using Proposition 2, since

η2
2(β

′)
∏d

i=1 hi,2(β
′)

2‖Kβ′‖2
2σ

2
=

(
1

2β
′
+ 1

+ pµ(β′)

)
log n,
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we obtain that for n large enough

P4(n) ≤ D11 (log n)
− 1

2β
′
+1 exp

{
−

(
pµ(β′)

)
log n

}
. (56)

Using Lemma 4, it can be proved that P3(n) is negligible with respect to P4(n) as n → ∞. The
relation (56) implies the lemma.

Proof of Lemma 10

Let f ∈ Σ(γ, L). By Lemma 3, we have that

‖bβ∗γ,1(·, f) − bβ,1(·, f)‖∞ ≤ ψn(γ)λ3(γ)

2γ + 1
.

Then

Pf

[
‖f̂β∗γ,1 − f̂β,1‖∞ ≥ ψn(γ)λ3(γ)

2γ + 1
(1 + ρn)

]
≤ P5(n) + P6(n),

where

P5(n) = Pf

[
‖Zβ∗γ,1‖∞ >

ψn(γ)λ3(γ)ρn

2(2γ + 1)

]
,

and

P6(n) = Pf

[
‖Zβ,1‖∞ >

ψn(γ)λ3(γ)ρn

2(2γ + 1)

]
.

Using Proposition 2, since ρn = ψn((β+γ)/2)
ψn(γ) , we obtain that

P6(n) ≤ D1

h̃1(β)
exp

{
−λ2

3(γ)ψ2
n((β + γ)/2)nh̃1(β)

8‖Kβ‖2
2σ

2(2γ + 1)2

}
exp



−

D2λ3(γ)ψn((β + γ)/2)
√

nh̃1(β)

2(2γ + 1)
√

log h̃1(β)



 .

(57)
Using Lemma 4, we have that P5(n) satisfies the same inequality as (57) but with different
constants D1 and D2. Now, since β > γ, we have

λ2
3(γ)ψ2

n((β + γ)/2)nh̃1(β)

8‖Kβ‖2
2σ

2(2γ + 1)2
= D16(log n)D17nD18 ,

with D17 ∈ R, which includes the lemma.

Appendix: Minkowskii inequality

For all function g measurable on R
d × R

d, we have

∫ (∫
g(u, x)du

)2

dx ≤
(∫ (∫

g2(u, x)dx

)1/2

du

)
.

(cf. Besov et al. (1978) for a proof)
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