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Sharp adaptive estimation in sup-norm for d-dimensional
Holder classes

KARINE BERTIN

Departamento de Estadistica, Universidad de Valparaiso, Casilla 5030, Avenida Gran Bretana
1091, Valparaiso, Chile. Tel: 0056322508324 . Email: karine.bertin@uu.cl

Abstract: In this paper, our aim is to estimate an anisotropic function in the framework of the
Gaussian white noise model. We suppose that the function belongs to an unknown d-dimensional
Hoélder class. We evaluate the performance of an estimator by the sup-norm risk. We find the
exact asymptotics of the adaptive minimax risk and construct asymptotically adaptive estima-
tors.

Key Words: anisotropic Holder class, minimax exact constant, uniform norm, white noise Model.

1 Introduction

Minimax adaptive estimation of a non-parametric function f from noisy data is the subject
of many papers. Assuming that f belongs to a smoothness class Y3, where § is an unknown
smoothness parameter, the aim is to find an estimator of f independent of 4 and which attains
asymptotically optimal behaviour on all the classes X3, for 3 given in a known set B. In this
article, we study the problem of adaptive estimation in the Gaussian white noise model in sup-
norm, assuming that the function f satisfies a Holder condition. We observe {Yt,t € ]Rd}, where
Y; is a random process defined by the stochastic differential equation

dY; = f(t)dt + %th, t e RY, (1)
where f is an unknown function, n € N, ¢ > 0 is known and W is a standard Brownian sheet
on [0,1]9. We want to estimate the function f on R? given a realization y = {Yt,t € ]Rd}.
We suppose that f belongs to a d-dimensional anisotropic Holder class X(3, L) where L =
(L1,...,Lq) € (0,+00) is known, 3 = (f1,...,34) € (0,1]¢ is unknown and belongs to a finite
set B C (0,1]¢ known. The class ¥(3, L) is defined by

B(3,0) = {1 B! = B:17(@) ~ fW)] < Lalers — 1P+ + Laloa —pal®, 2y €R'},

where © = (z1,...,2q) and y = (y1,...,yq4). In the following, P is the distribution of y under the
model (1) and E¢ is the corresponding expectation. An estimator 6, of f is a random function
on [0,1]? taking its values in R, measurable with respect to 3. We will evaluate the quality of an
estimator 6,, by the maximal risk in sup-norm on B

R,(0,) =sup sup Ef { <”9nf”°°>p} ) (2)
BEB fex(B,L) V()
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_B_
where [|g|lcc = SUPye(o,1]4 lg(t)], p > 0 and ¥, (B) has the form ,(8) = Cp (lo%) W g

B=(B,...,0) € B, B= (Z?:l 1/&) 1, Cj being a constant depending on 3. In the non-
adaptive case, i.e. when B contains only one vector, it has been proved that 1, (3) is the minimax
rate of convergence for sup-norm estimation: for d = 1, it was done by Ibragimov and Hasminskii
(1981); for multidimensional case, this fact was shown by Stone (1985) and Nussbaum (1986)
for isotropic setting (f1 = --- = [(4) and in Bertin (2004) for anisotropic setting considered
here. In other set-ups, some results on rate of convergence can be found in Barron et al. (1999),
Neumann and von Sachs (1997) and Kerkyacharian et al. (2001). In an adaptive set-up, Lepski
(1992) proved that v, () is the adaptive rate of convergence (cf. Tsybakov (1998) for precise
definition of adaptive rate of convergence) for the problem considered here when d = 1.

Our goal is to study the asymptotics of the minimax risk in sup-norm on B (i.e. the adaptive
minimax risk), in others words to study the asymptotics of

lélnf R, (6n).

We want to prove that there exist optimal rate adaptive estimators on the scale of classes

{2(8, L)} pep for the Lo norm and to find an estimator f, and the constant Cg with ¢, (8) =
B
Cs (k’%) *#+1 "such that we have

lim inf R,(6,) = lim R,(f,) =1, (3)

n—oo 0, n—oo
where infp stands for the infimum over all the estimators. To obtain that there exist optimal
rate adaptive estimators, it is enough to have that there exist an estimator 0, and a positive
constant C' such that

lim sup Ry, (6,) < C.
n—oo
An estimator f; that satisfies (3) is called asymptotically exact adaptive estimator on the scale
of classes {X(8, L)} pgep for the Lo norm, and Cjg is called exact adaptive constant.
In the non-adaptive case (cf Bertin (2004)), the relation (3) is satisfied by a constant Co(f3)

which depends on 3, L and o2, and for fg a kernel estimator with kernel close to the kernel K.
The kernel Kj is defined for u = (uy,. .., uq) € R? by

d
+1 ,
(1= luil™)+
i=1

Kg(ut,...,uq) =
o

with

2'TIE D5
F(%) H’L 1ﬂl

I denotes the gamma function and (x);+ = max(0,z). The constant Cy(3) satisfies

_ 3\ W1
Co(8) = | o?L.(3 (B“)
o O\ a7

a(p) =
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and

d B
=1

In this article, we prove that there exist optimal rate adaptive estimators on {3(3,L)}gen
for the Lo, norm. We give precise upper and lower bounds for any finite set B. When B contains
only two vectors, we improve the upper bound.

For particular forms of the set B (including sets B of isotropic classes), we prove it exist an
estimator f, and a constant Cj satisfying (3). The constant Cg we have found is equal to the
constant Co(/3)(which was the solution of (3) in Bertin (2004)) multiplied by a constant larger
than 1, depending on the set B and p. As a consequence, for this case, we lose efficiency in the
constant under adaptation. We will see that the estimator satisfying (3) is obtained using the
Lepski method. This method is introduced in Lepski (1992) for the problem considered here with
d =1 and it has been studied by many authors. In particular, for d > 1, Klemela and Tsybakov
(2001) have used it for the estimation of linear functionals in isotropic settings. Tsybakov (1998)
used this method to study pointwise and sup-norm estimation on Sobolev classes.

For more general forms of the set B, we construct optimal rate adaptive estimators using o
generalization of the Lepski method proposed in Lepski and Levit (1998).

2 Main results

In this section, we introduce the notation and the assumptions about the set B, we define three
families of estimators and we give our results.

2.1 The set B

We suppose that the set B = {ﬁ(l), . ,ﬁ(l)} contains [ vectors belonging to (0, 1]¢. The coordi-
nates of 3 are denoted by ﬁ](-l), j=1,....d:

8O = (8", 81 e (0,14 (4)

We define the real B(i) by
-1

1
G (5)
J

d
B(i) _

and we denote by B the set:
= (50 —(
B={3",....5").

We suppose that B(i) % B(j) for all 4,5 € {1,...,1} such that i # j. As a consequence, a 3 € B
is matched to a unique # € B via the relations (4) and (5). We define the following relation of
order in B: the vectors 3 and -y satisfy

B <~ ifandonlyif £<7.

This is a relation of total order in B, thus the notion of maximum and minimum in B are well-
defined. We denote Bqp = max{®,i =1,--- 1} (respectively Bpmin = min{f®,i=1,---,1})
and f3,,,, (respectively 3,,;,) the associated real number in B via (5).
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Remark. In the isotropic setting (i.e. for all 8 = (B1,...,8q4) € B, /1 = --- = [4), this order is
the order 8= (61,...,084) <v=(71,...,7) if and only if 51 < ;.
2.2 Three families of estimators

Here we define three families of kernel estimators (fg’l)ﬁeB, (fg,g)/geB and (f@g)geg. They are
close to the asymptotically exact estimator of Bertin (2004), but the kernel is somewhat different
at the boundary. This is a consequence of the fact that the observations here are for t € R?
whereas they were for ¢ € [0,1]% in Bertin (2004). The estimators are defined in the following
way. For f € B and j € {1,2,3},

Fast) = [ Ry (¢ =wavs,

defined for t = (t1,...,tq) € [0,1]¢, where for u = (uy,...,uq) € R?

_ B 1 Uy Ud
K (w) = h1,;(B) -+~ ha;(B) Ko (hl,j(ﬁ)’m’ hdd(ﬂ)> '

For j € {1,2,3}, the bandwidth h; = (h1;(B),...,hq;(B)) satisfies for i € {1,...,d}

Cori(B) [ loan B/ /7
- (240 (1))

where
1 for j =1,
_ 2B B
M) = 4 27 ()T for =2
__26
2 28+1 for j = 3,
B\ i
_ 2341
i ca(B)(B+1
S <<><>> | ©)
a(B)B
p(Bmam B B)
=1 fmaz B
c1(B3) 2% 1
c2(B) = 1+ pu(B)(26 + 1)
and
< A . { v Ay })
() = max [ —= — min — , — ,
A> \2X2+1  y<hi=led [ 29+ 1 v(29+ 1)
where the maximum is taken for A = (A1,...,\;y) € B, and the minimum for v = (y1,...,74) €
B.

Lemma 1. The kernel Kg satisfies f[—l 1) Ks(u)du =1 and f[—l 154 Kg(u)du = %
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This a consequence of formula of Gradshteyn and Ryzhik (1965) (cf Appendix of Bertin (2004))
For t € [0, 11d, j € {1,2,3} and for a function f belonging to one of the classes (3, L), define
the bias of fg;

bp(t, ) = Ep(fo,(1)) = (1) = Kpj * f(t) = £(2)

and the stochastic term of the error
Zg;(t) = fa;(t) — Es(fa,(t) / Kp;(t W.

The symbol # stands here the convolution of functions defined on R?. The quantity F/g’j * f is
well-defined since K g ; is continuous with compact support and f is continuous.

2.3 A lower bound for anisotropic classes

In the following, we will use the maximal risk in sup-norm on B defined in (2) with v, (8) =

B
Cs (k’%) 2741 Cp defined in (6) and p > 0. We have the following lower bound which is valid
for any finite set B satisfying the conditions of Subsection 2.1.

Theorem 1. The minimaz risk in sup-norm on B satisfies

liminfinf R, (6,,) > 1.

n—oo @O,

2.4 Exact asymptotics for particular forms of the set B

For § € B and j € {1,2,3}, we consider

1/2
oy [ 2Kl (®) n)
e (mﬁlzlm,j(ﬂ)(zml) )

where c3(3) = ¢1(5). We select the vector B(p) € B defined by

b =max{BeB: vy < Ifs1—Frle <m()}

We have the following theorem for particular forms of the set B, which include the sets B of
isotropic classes.

Theorem 2. We suppose that the set B satisfies the property (P):
(P) Forall B = (B1,---,04),7= (71,---,74) € B, if B <y then for alli=1,...,d B; <.

Then, the estimator f(p) = f[a( 1 is asymptotically exact adaptive, i.e. it satisfies the condition
p)?

3) with the constant Cg defined in (6):
8

lim 1nfR (0,) = lim Rn(f(p)) =1

n—oo O,

Remark. The estimator }v(p) is obtained using the method of Lepski. The constant Cz has the
form of the constant obtained by Lepski (1992) in the case d = 1 where we replace 3 by 3.
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2.5 Upper bounds for anisotropic classes

If the set B does not satisfy Condition (P), Theorem 2 is not true anymore. In this subsection,
Theorem 3 gives an upper bound for any finite set B C (0,1]% and Theorem 4 improves this
upper bound when B contains only two vectors.

We consider new estimators defined for 3 and v € B and t € [0,1]¢ by

Fouy2(t) = / K gy 2(t — u)dY,,

where o o
Kpiyo = Kpgox Ky .

We consider the vector Bam- € B defined by
Buni =max {B € B: ¥y < B, |lfgers = Frolloo < m()}-

Theorem 3. The estimator ]A”;mz = f,@am , satisfies for p >0

limsup sup sup Ef{”ﬁm—ngo (%(ﬁ)Mz(ﬁ))_p} <1, (7)
n—oo [eB feX(B,L)
where, for j € {2,3} and § € B,
2] — -
oy Cj(ﬂ))QﬁJrl 21/(26+1) 4 3228/(26+1)
M) = (Cl(ﬂ) ( 25 +1 '

The relation (7) imply that fani is an optimal rate adaptive estimator on {3(3, L)}gep for the
Loo norm, for any finite set B C (0, 1]%.

For | = 2, we have a better result. We suppose that B = {v, 8} with v < 3. We consider a
new estimator defined for ¢ € [0, 1]¢ by

fﬁ*’y,l(t) = /Kg*ml(t —u)dYy

where
KIB*’Y71 = Kﬁ’l * K773'

We select the estimator famg defined by
A . . . As ()0
7o fa i s = Fuallee < (1) o s = fanlle 2 2EHO1+ p0)
o f+,3 otherwise,
Pn ()
A - —1
<1°g"> A with A = (Z?Zl 1/)\i) . Here B® denotes the complement of the set B. Then we

n

where p, = LolB0/2) 44 Pn(N), for A = (A1,..., ) € (0,1] N B, is defined by ¢, ()\) =

have the following theorem
Theorem 4. The estimator fam-g satisfies for p >0
limsup sup By { || faniz — fIZ07(5) b <1 ®)
n—oo  feX(B,L)

and

tmsup sup By { [ funiz = %070 } < (Ms(2))" )
n—oo  fex(y,L)
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2.6

1.

Some remarks

In the model here, we choose to have observations in R¢ to simplify the calculations. To
obtain the results, it is enough to have observations in a neighborhood in [0, 1]%.

. These results can be generalized to others models such regression with regular design. This

can be done by following the same proofs with minor modifications.

. In this article, we have considered a finite set B such that its cardinality, card(B), does

not depend on n. We could have considered a set B such that card(B) grows as n —
oo and there exists M > 0 such that, for all 8 € B, 8 > M. In Theorems 2 and 4,
following the same proofs, it is possible to have the same results taking B such card(B) <

(log n)m (The last condition is necessary to have lim,_.o, Ri(8) = 0 in Section 5
and the relation (49)). A weaker condition is possible on B. If, for j € {1, 2,3}, we replace
¢;(B) by ¢;(B) + W in n;(B), the results of Theorem 2, Theorem 3 and Theorem 4 can
be obtained for B such that card(B) < (logn)® with a > 0.

. For d = 1, in the Lepski method, for a given family of estimators ( f@) 3eB, we choose 8, the

This choice is based on the fact that, if f € 3(5,, L) and v < 3 < 3, the bias of fg — ffy is
upper-bounded by a term of order (). This property is still valid for anisotropic settings
when B satisfies Condition (P), but it does not work for general anisotropic settings.
Indeed, for anisotropic settings, we do not have such a property on the bias of fg — f7 and
this bias can be very large. Kerkyacharian et al. (2001) give a new criteria which permits to
obtain results in anisotropic Besov classes. Rather than comparing fg to j‘; for v < 3, they
compare, for v < 3, f7 to a kernel estimator fgy with bandwidth (hq(8,7),-..,ha(B,7))
where h;(8,7) = maz(hi(3), hi(7)) and (h1(B), . .., ha(B)), respectively (h1 (), ..., ha(7)),

is the bandwidth of fg, respectively f,. This comparison permits to have a new criteria

largest 3 € B C R such that Hfg — fWHC>o < cthp(7y) for all v < B, with a constant ¢ > 0.

for selecting ﬁ In Theorem 3 and Theorem 4, we use another estimator fﬁ*%j to do this

kind of comparison. The different choice of fg*%j is motivated by our goal to have better
constants.

. Our results are adaptation with respect to § and we suppose that L is fixed and known.

To use our method of estimation, the statistician need to know L. Here we suppose the
statistician does not know L. We suppose that 3 belongs to B and L € {L(l), ey L(l)} C

10, +00[®. We note for j =1,...,1, LU) = (ng), . .,L((jj)). Our method can be applied to
select 8 € B with L = (maxj—i,. . q ng), oo, MaX 1, 4 L[(i])).

. Theorem 2 gives a result of exact estimation. In Theorem 3 and in Theorem 4 in the case

f € X(v, L), the difference between the lower bound and the upper bound is the factor
(M3(3))? and (Ms3(7y))P respectively. The following plot represents the quantity Ms(3)(on
the vertical axis) as a function of 3 € (0,1/2].
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We can see that, for g € (0,1/2], 1.06 < M3() < 2 and then it implies that

1.06 < 1.06 (ZEZ?)Q;H < My(B) <2 (ZEE;)Q"’L .

The following sections are devoted to preliminary results and to the proofs of the theorems.

3 Some preliminary results

In the following, D;, with ¢ = 1,2,..., denote positive constants, except otherwise mentioned.
These constants can depend on 3 € B but we do not indicate explicitly the dependence on S.
This does not have consequences on the proofs since B is a finite set. The quantity n;(/3) satisfies
the following lemma which will be proved in Section 8.

Lemma 2. For § € B and j € {1,2}, we have

b (BN
(8 + L) — a3y ),
where My () = 1. Moreover, for 3 € B, we have
m(9) + 2520 — a1y (3)05).

We have the following results for the families of estimators (fﬁ,l),@eB; (f@g)geg and (fﬁ}g)/geB.

Proposition 1. For € B and j € {1,2,3}, we have

sup  |[bg,; (-, f)lloo < —=77—
fez(m)ll 5.5 (5 Pl 611

Proposition 2. For 3 € B, j € {1,2,3} and t € [0,1]%, we have

o?||Ksll3

2
B ) =)

)
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Dy
/iy (9) 108 (s (5))|

D {_ b2nh;(5) }exp Dy (8)by/nh; ()
)

]P) Z 1| oo Z b S 7 h
7123 4l ] hi (8 2| Kgl|302 (log(h;j(B)))1/2

and for b >

, we have

9

where fzj(ﬁ) = Hle hi ;(5).
Proposition 3. Forp >0, f € B and j € {1,2,3}, we have

timsup sup By [(I1fas — FlooMi(Den(8) )] < 1 (10)

n—oo  fex(B,L)

£ -1 —
nhl&fe;‘? )Ef [(Hfﬂ,j—f!!oown (ﬁ)) {13.5=Flloo 2 (1+e(m) M jw)wnw)}] =0, (Y

—~1/4

where e(n) satisfies e(n) > (logn)™ /", and I4 denotes the indicator function of a set A.

Proposition 1, respectively Proposition 2, can be obtained following the proof of Proposition 1,
respectively Lemma 4, of Bertin (2004). The proof of Proposition 3 can be deduced from the
proofs of Bertin (2004) and we add some elements of proof in Section 8.

Define for t € [0,1]¢, j € {1,2} and a function f the bias term of fg*%j

b1t ) = B (faer,5 (1) — £ (1),

and the stochastic term of fg*%j

Zpary, (1) = fﬁ*w( t) — Ef(fﬁ*%y /K/B*“f — u)dWy.

The estimator fﬁ*w’ satisfies the two lemmas.

Lemma 3. For 3,7 € B, we have

< Ya(B)A2(B)
bgsy2(5 ) = by2(s; flloo < b o S T =
fesggg@ll Bey.2( f) = by2( £ fesggg’m\l 5,2(5 fl W1
When B = {~, B} with v < 8 we have
)
b * "y - "y o] < b ) o] < =
L sea ) = Dl S st (b Dl < 225
and
Y1) Xs(2)

sup  [[bguy, 1 (5 f) = 03,105 lloo < sup [[04,3(5 f)lloo <
resenny ’ resen 27 +1
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Lemma 4. For 3, € B such that v < 3 and j € {1,2}, we have for all t € [0,1]¢

o?|| K53
Ef ((Zﬁ*%j)2 (t)> < W(ﬁ)za

D3
Vi (8) 1og (R (8))]

and for b >

D, bni; () Dsby/nh;(6)
) P\ 2Kl (log(h;(3))
Lemma 5. Let j € {1,2,3}. We have, for v, € B such v < (3,

: AP o)y —P _
Jir&fesz}zg,L)Ef{”Z’M”oown (ﬁ)f{||zwllw>m,j<v>}} 0,

where

9 o — 1/2
T ('7) _ <2”K’7H20 (1 +pﬁmar) IOgTL)
n7‘7 - —
n T hig () (27 +1)
Remark: 7,(7) is of the same order of 9, (7).

These three lemmas will be proved in Section 8.

4 Proof of Theorem 1

The proof of the lower bound is similar to the proof of lower bounds in Tsybakov (1998)The
difficulties consist in finding a good subclass of 3(3, L) and good parameters to apply Theorem
6 of Tsybakov (1998). We have

A, =infsup sup E;{||Tn — fIB¢,P(8); > max{A,(5)},
phoup Al I (B)} max {An ()}

where

An(B)=inf sup By {IT— FIZ0n7(5)}
n fex(g,L)

By Theorem 1 of Bertin (2004), we know that liminf, o Ay (Bmaez) > 1. This comes from
the fact that the loss function w(xz) = xP satisfies the conditions required in this theorem (i.e.
w is a non-decreasing function which admits a polynomial majorant and such that w(0) = 0),
and the exact constant Cpg, . in the rate of convergence is the same as the exact constant

in the non-adaptive case. Now, in order to prove the theorem, it is enough to prove that
liminf,, oo Ay (8) > 1 for all 3 € Byg,,. -

Let 0 <e<1/2. Let § € B\g,,.,- In the following several quantities depend on 3, but we do
not indicate this dependence to simplify the notations. We consider the set of functions f; g(-)

defined, for j € {0,---, M}, by
Bi )
) , j=1,....M
+

{ fig = (A1 —¢) (1 -
fosg =0,

Lizaji

hi,1(8)
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where the a; = (aj1,...,a;jq) form a grid of points in [0, 1]¢. This grid is defined in the following
manner. For
1

mi = _—
Lhm(?l/ﬂ +1)

with [z] the integer part of z and M = Hf’:l m;, we consider the points a(ly,...,13) € [0,1]? for
lie{l,...,m;} and i € {1,...,d}, such that:
1
a(ll, R ld) = 2(25 =+ 1) (hl,lll, RN hd71ld) .

To simplify the notation, we denote these points aq,...,an and each a; takes the form:

aj = (aj71, ey aj,d).
The functions f; g satisfy the following lemma which can be proved as in Bertin (2004).

Lemma 6.

1- fjp € X(6, L),
2- Hf]ﬁ”% = UQCl(ﬁ)lggn(l_E)Q
7 n(26+1)
5- the functions f;5 have disjoint support.

Here we come back to the study of A,,. Let j € {1,..., M} and T,, an estimator. We have,
since f;g(ax) = (1 —€)Yn(B)djk,

U (BT = fiplloo =001 (B) max |Th(ax) — f;(ar)l

1<k<M

2019 o, G i

~ —1
where 0 is the Kronecker delta and 6, = w As a consequence

U DN T = fipllso > d(B,0;),

where 0 = (é1, . ,éM), 0; = (517j, oo 75M,j)7 and d(u,v) = (1 —¢) maxi<ig<M |Ug — vg| for two
vectors u = (ug,...,uy) and v = (vy,...,vy) of RM.
In the same way

G B Tn = foplleo = (B) max [T (ar)]

1<k<M
20 (Bmaz) max [T, (ay)]

1<k<
¢n(ﬁ) N
Z (B 210 B0,

where 6y is the null-vector of R™. Then we have

An(B) 2> iﬁf Og}%}?\l Ej, (HTn - fk,ﬁ”lo)owr:p(ﬂ))

> inf max {EO <(W>pdp(é,eo)>, max B, (dp(é,ek))}, (13)

erd Yn(Bmaz) 1<k<M
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where Ej; is the expectation By, = Ey, ;. We denote also P, = Py, .

Here we apply Theorem 6 of Tsybakov (1998) to the relation (13). We consider the M + 1
parameters {fg,...,0y} C [0,1]M, the family of probability measures {Py, = Pj}, the loss
function w(z) = 2P and the distance d previously defined. The parameters 6; satisfy d(6;, i) >
1—¢forik e {0,...,M} and i # k. We are now going to prove that there exists a,,, with
0 <a, <1 and lim, . a, =0, such that

dP
Q (dQO > Tn) > 1= ap, (14)
where @ = 7 Z]k‘/il Pomh=n"v= 2%’2::11 - 2%?1 - 52%5?1)(1 —¢/2) and ¢ is chosen small

enough to have v > 0.
Indeed, if we prove (14), Theorem 6 of Tsybakov implies that

p
(1 = a1 = 20 (5755

An(B) >
Yn(B)e \P
(1 —2e)P + 7 (wn(ﬂm)>

We have lim,,—o0 T, (wf&gi);)y = +o00o. Then

liminf A, (8) > (1 — 2¢)P.

n—oo

Since ¢ can be arbitrarily small, we obtain that liminf, ., A, (3) > 1 and it proves the theorem.

Here we prove (14). In the same way as Tsybakov (1998), we have that under P,

apP; exp{fkvn—kv%} k=1
dPy | exp {ﬁkvn — v,%} k # i,

where the &, are iid. N(0,1) variables and v} = % || fi /3 = 2logn . (8)(1 — £)2. Now, by the

28+1
independence of the &;, we have
dp, 1 & dp, 1 1dP, 1
k k i
Pl — <1 >P | — — < — | B|— < —. 15
' ( < dPy /T"> =M, ;ﬁ Py " 27, | " (M Py 2Tn) (15)
=1,k#1

The probabilities above satisfy, since the & are A/(0,1) variables,

M M

dPy _ 1 1 1
L5 p (LS eofam-d) <t

M, ki dPO 27, Mk:l,k;éi 27
M

M

Son( Y ewfan-d) i) oo
k=1,k#1

27, (M

— I)Ei [exp {é’kvn — UTQL}]

=l (17)
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and

1 dp; 1 M
P2 <5 ) =P ion + U2} < 5
< 4Py < 27_n> <exp{§v +vn} < 27’n)

=1—-® (; (—log M + log(27,) + ’Ui/?)) : (18)

n

where @ is the Gaussian c.d.f. By replacing M, 7, and v, by their values in terms of n and /3,

a@ _ 1 + PBmaz DB

since =~ = o= L
2Bmastl  26+1°

25+1 25+1 we obtain that

1
- (—log M + log(27,) + v2/2)

_logn (_ L PP PO ca(B)
vn \ 28+1 2B,.+1 28+1 28+1
_ logn [c1(B)e
S (26—1—1

c1(f)
(1—¢/2)+ m(l —2e+¢%) + 0(1))

(1—¢/2) —|—0(1)). (19)

Using the relations (15), (17), (18), (19), noting that Lﬁ*” tends to 0 and that

—logn (M(l —/2)+ 0(1)) tends to —oo, as n tends to oo, we deduce that

Un QB—‘rl
dP,
lim Q (0 > Tn> =1.

This implies the existence of a sequence «,, that satisfies (14) and lim,_,o o, = 0, which con-
cludes the proof of the lower bound.

5 Proof of Theorem 2

Since Theorem 1 is true, in particular for set B satisfying Condition (P), to prove Theorem 2,
it is enough to show that

limswpsup sup By {|1fi) — flBn?(8)} < 1. (20)
n—oo BEB feX(f,L)

Here we prove (20). Since the cardinal of B is finite, we are going to prove that for all § € B,

limsup A(B,n) <1,

where
A(B,n)= sup E; {Hf(p) - f”lo)owr;p(/@)} < Rin(0) + Ron(6),
fex(s,n)
with ~
Bin®)= sup By {17 = FIB"B) g5 < }
and

RJLB: sup E f_f}o?owrjpﬂ-[A )
2i8) fex(8,L) f{” ) | ( ){ﬁ(mzﬁ}}
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This will be obtained by proving that

lim Ry ,(8) =0 (21)
and that
limsup Ry ,(5) < 1. (22)

eProof of (21)
Let 8 € B. We have

R < > s Bp{lifa - fIEGT D )

vEB,y<B rex(s,

We fix now v € B with v < 3. The event {B(p) = 7} satisfies

0o >m(B )}

{B(p)ZW}C U {||fv/1—fﬁ’

B'eB,B <y
where 7/ = min{\ € B such that A > ~}. Then we have

sup By {|l 1 = FI?(B) Ly ) }

B'eB,B <~ er(,@,L)

sup E - Iy _ <
S {1 = @Iy}

with R )
Ava(B) = {Ilfra = foralle >m (8}

We do not indicate the dependence of the set A;,,(5’) on 4/ because we argue for fixed v in B
and then for fixed 4. To prove the result (21), since the cardinal of B is finite, it is enough to
prove that the following quantity, for 3’ € B with 8’ < v/,

sup By {llfa = FIBtn? (D), (23)
fex(p,L)

tends to 0 as n — oo.

Here we study the quantity (23). Let f € (3, L). We fix ' € B such that 5’ < +'. We have

Bl }) -

To study the quantity above, we need the following lemma which will be proved in Section 8.

By {11 = Pt (D) Tas )} < 207 (8) (101 ( PP (Asn()) + By {11700

Lemma 7. We have for n large enough

1 — 2Brmaz—F)

sup Py [A1n(8)] < Dg(logn) 2F+1n CBmaethH@5'+1),
fES(B.L)
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The bias b, satisfies, for all f € ¥(5, L),

d
[69,1(5 Flloo < /K,y(u) ZLi|Uihi,1(’Y)’Bidu.
=1

Since for all ¢ € {1,--- ,d}, 75 < i, we have that

sup |lby1(, )l = o(¥n (7)),
fex(p,L)

as n — 00. As a consequence, we deduce from Lemma 7 that

B , S - B _ _PBmax glﬁl 2 B
sup ¢np(ﬁ)||b%1(.’f)”gopf(ALn(ﬁ )) < D7(10gn) 28'+1 27t1 268+1p 2Bmartl 28 +1 2710 2641
fex(B,L)
(24)
Moreover,
Ef {4 (B Zy1 1B Lay (51} < (Ta1 ()PP (B)Bf (A1 (6))
+ B {1 Zy 1 1200 P BV (12, 1o > (1))} - (25)

_ 1 _ fgmaac EIE/
From Lemma 7, we know that Ps(A1,(3)) is at most of order (logn) 25 +1n 2Pmazt1l " 25+1 thus

_ — — — _ _
Py pB_ _ _PBmax B Py pB

1
(Tml(fy))Pw;P(ﬂ)Pf(ALn(ﬂl))SDg(logn)72ﬁl+1+27+1725+1n 28maz+l | 28 +1 27+1+25+1.

Since ' < v < 3 < Bimaz, We obtain that

lim = sup 9, P(B)1by,1(, £)IEPr(A1n(B) =0 (26)
"m0 fen(B,L)

and

lim  sup (7n,1(7))P¥, P (B)Ps(A1n(8") = 0.
0 FeS(B,L)

Using Lemma 5, we deduce that

lim  sup Ej {¢,P(8)| 2411514, .5} =0 (27)
n—% fex(5,1)

From (26) and (27), we conclude that the quantity (23) tends to 0 as n — oc.

eProof of (22)

1/4
Letén:( 1 >/ and 0 € B. We have

logn

Ryn(B) < (1+0n)" + o Ef {Hf<p> —f H&%”(ﬂ)f{gmZg}m{uf(p)ff||oow;1<ﬂ>>1+5n}}

< (1 —l—(;n)p—i- Z sup QQ,n(ﬁa’% f)7
veBy>p €EB.L)
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where

Q2 (B, ) = Ey {”f%l - f"gow;p(B)I{@p)zv}ﬂ{llfm—flloowﬁl(ﬁ)>1+5n}} '

By Proposition 3, we have limy, oo Sup rexy g,y @2,n(8, 3, f) = 0. To prove (22), since the cardinal
of B is finite and lim,,_.. 6, = 0, it is enough to prove, for v € B with v > (3, that

lim  sup  Q2.(8,7, f) = 0. (28)
W0 fen(B,L)

Here we prove the result (28). Let v € B such that v > g and f € (8, L). If B(p) = 7, since
v > [, we have || fy1 — f3.1llcc <n1(5). Then,
1ot = FllooTz, =y < (11 = Falloo + 1 = Flloo) Iy
< (m® + a1 = flloe) I3, =y (29)
The quantity Q2,,(3,7, f) is upper bounded by

(B {1lFs - 112021 1) (B (1B =1 1 Ul = Pl (8) > 1400))

Then, (29) and Proposition 3 imply that

. 1/2
sup (Eg 411 fy1 = FI2B0, 2P (8) s _
feE(ﬁ,L)< f{H =/l (8) {5<p>—7}}>

is bounded above by a positive constant for n large enough and we deduce that

. . /
b Qa8 ) < Do [By (1B =4 0l — oot ®) > 1463)] 7, (30
fex(s,L)

for n large enough. Now we are going to prove that the right hand side of inequality (30) tends
to 0 as n — oo. We have

1 Fya = FllooT g ooy < (byaC £) = banCe Dlloe + g Plloe + 1 Zlle0) Iz -y

6(8)
< (10160 = a6 Dl 22 120l ) 1 e o

where the last line is a consequence of Proposition 1.
We have [[by.1( /) =b1 (s Flloo = By (Fr) =y (F1))]
E¢ ( fgyl(t)) is a continuous function on [0, 1]? which admits a non-random maximum z( satis-

fying

K The function ¢ : t — E¢ (f,y,l(t)> -

[7,1(5 f) = 08,1 (5 f)lloo = H(z0)
< | Fya(@o) = fa1(wo)| + |1l
< | fy1 = follos + lo1] < m(B) + |enl, (32)
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where 1 = f,1(z0) — fs.1(zo) — Ef [f.yyl(:co) - f@l(:co)]. Since ¢ is a N(0,72) variable, by

2

=~ satisfies

Proposition 2, we deduce that its variance 7

2| Kplj30%(1 + o(1
52 < 9B (Zs(20))?) + 28y ((Zoa(w0))?) < 2 B”iﬁfm) =2 )
Then using (31) and (32) we deduce that
11 = iy < [0+ 2220 2ol + il 15,
< (Un(B) + [1Zy1lloo + 1) I{B(p):'y}v
the last line being a consequence of Lemma 2. Thus,
Py ({8 = 1} 0 Lot = flloo > (1 60)n(9)})
<Ps (125100 + lp1] > 6ntpn(8))
on On,
<Ps (1Z,alke > $n(8)) + 2 (Irl > Z0n3)) (31)
As 1 is a N'(0,72) variable and using (33), we have
dn Ua(B)oanhi(B)
P — 1y, < i/ S VPN
(o> Gn0)) _exp{ e,
The quantity wi(ﬁ)@%nﬁl(ﬁ) is of order /logn, and then
: On
Jim Py <\s01\ > 2%(@) = 0. (35)

Using Proposition 2, we have

2(3)62n Dbt (5)
> () < 5" eXp{%fmw}exp{ 2t (6) m}‘

Py [1Z41 =
f( hi(v) 8|| K l502 2(log hy())1/?

The quantity 12 (8)62nhy(v) is of order 12 () 2(v)(log n)P10 with some Dig € R and hi(7) is

logn 1/(27+1) . .. .
of order (=~ . Hence, since 8 < +, this implies that

on
i By (12,10 > 0,(9) =0 (36)

Using (35), (36) and that the fact that the right hand side of inequality (34) does not depend on
f, we deduce that

lim sup Py ({,@(p) =~}N {wa,l — flloo > (1 + 5n>¢n(ﬁ)}> =0.

"0 fex(B,L)

Then we obtain the result (28) which implies (22).



Sharp adaptive estimation for d-dimensional classes 18

6 Proof of Theorem 3

The scheme of proof is similar to the proof of relation (20) in the proof of Theorem 2. To prove
Theorem 3, we will prove that, for all 3 € B,

Tim Rsu(8) = 0 (37)
and

limsup Ry »(5) < (Ma2(5))?, (38)
where

Ryn(B) = sup Ep || fani — FIBURP(B) 5 _m b
FeS(B.L) { {ﬁam<,@}}

Run(B) = sup Epq | fani — FIZtn?(D 5 g b
fGE(,B,L) / { {BanzZﬂ}}

eProof of (37)

Let 8, € B such that v < .
The event { Bam- = ’y} satisfies

{Bui=fc U A2a®)
p'eB,p'<p

where

A20(8) = {2 = firalloe > m(8)}

Following the same reasoning as in the proof of relation (20), to prove (37), it is enough to prove
that, for all 8’ € B with ' < g3,

tim  sup By {llfyo — IR () ay o) b = 0. (39)
T fen(B,L)

The event Ap (') satisfies the following lemma:

Lemma 8. We have for n large enough

. )
sup Py [A2,(8)] < Di1(logn) 25 +1 pPR(A)
fex(s,L)

The bias b, o satisfies for all f € (8, L)

d
Hb%Z(-7f)Hoo < /K«,(u) ZLi’uihi,Z(’}/)’Bidu,
i=1

then sup ey ,) 164,2(¢; f)lloo is at most of order

Y

<1og n)min(w(gﬂm>

n
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where the minimum is taken on ¢ = 1,...,d. Therefore
sup ¥, P (B)lIby,2(, £)IEP s (A2 (B))
fex(g.L)

is upper bounded by
2B = —p(u(B)—w(B.))
D13(logn) WP 7

where

w(B,v) = *B —,Join L
) Qﬁ +1 i=1,....d ’Yz(QW + 1)

If B satisfies Condition (P), then

B 7
2604+1 27+1

w(B,7) <

Since 3 > 7 and u(B’) > 0, this implies that

lim  sup 4, P(B)[1by,2(, f)[[EPr (A2 (8) = 0. (40)
"0 fex(B,L)

If B do not satisfy Condition (P), there exists i € {1,...,d} such that 3;/v; <1, then

, B 5
(B > w(B,v) > Bl w4l

> 0.

This implies that

lim — sup 0, P(B)[1by2(; [ IEP s (A2n(B) = 0. (41)
"m0 feR(B,L)

Reasoning as in the proof of (21), using the decomposition (25), Lemma 5, Lemma 8 and that

fB — il <
26+1 27+1°

u(6'),

we deduce that

lim  sup By {6;7(0)1 22l Ly .5} = 0. (42)
N0 fes(B,L)

From (41), (40) and (42), we obtain (37).

eProof of (38)
1/4
The proof will be similar to the proof in the proof of (22). We fix 4,, = ( 1 ) . We have

logn

Rin(B) < (14 6)P(M2(B8))P + > sup Qun(B7. 1),
veBy>p IER L)

where

QunB.1.8) =By {IlFya = T B) o}

and

Crin = {Ify2 = fllootn (8) > Ma(B)(1 + 6n)}.
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By Proposition 3, we have limy, .o Supexys,1) Qan (5,8, f) = 0. To prove (38), it is enough to
prove that, for all ¥ € B such that v > 3,

lim sup Qun(B,7,f)=0. (43)
00 fex(B,L)

Let v € B, such that v > (3, and f € 3(5,L). Following the same reasoning as in the proof of
(22) from (31) to (33), using Proposition 1, Lemma 2 and Lemma 3, we deduce that

1z = Flloc i,y <Ubsera( ) = by Flloo + bger2( ) = bl Dllse
5520 F)lloe + 11252l g5, oy

20 (3)Xa(0)
< (2220 s (5) 4 12,2l + bl T
< (Ma(B) + 1 Zy2llo0 + |02]) T - (44)

where @3 = fguy2(z0) — fa2(wo) — Ef [fﬁ*y,z(l’o) - fﬂ,2(%’0)}7 with some zo € [0,1]%. Using
Lemma 4 and Proposition 2, we have that @9 is a N'(0,72) variable, with variance 72 satisfying
2| K)130%(1 + o(1))

nhi(B)

71'721 <
We have
Ey (1125212805 (8)] < (ra2(0)*Pn 2 (B) + 40 P (DB [1 25,2210 2, e 5 n()}] -
Reasoning as in the proof of Lemma 5, we have that

lim (4 (8)) 7 sup By (12521138 L2, 2w > 2 (0y] =0

fex(s,L)
Since v > (3, we deduce that
lim sup By [[1Z,2]205 " (8)] =0. (45)
700 fex(B.L)
Moreover, the variable (3 satisfies the properties
Py (2| > dnthn(B)t] < exp {—D13t2\/ log ”} >0, (46)
lim  sup Ej [|ga] 9, *(8)] = 0. (47)

"0 fex(B,L)

The property (46) comes from the fact that o is a N'(0,72) variable, and the property (47) can
be proved as (45) using (46) and the proof of Lemma 5.
The relations (45) and (47) and Proposition 3 imply that

. 21 —2p 1/2
swp (By {1y — 11262705, oy )
fex(p,L)

is bounded above by a positive constant for n large enough. Now to have (43), it is enough to
prove that

lim sup P [Cm A {Bani = »y}] ~0. (48)

0 fex(B,L)
Using the relations (44) and (46), and following the proof of (22) from (34) to (36), we deduce
(48), which finishes the proof.
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7 Proof of Theorem 4

eProof of (8)

By Proposition 3, we have

limsup sup Ey {\|f51 - f||€o¢ﬁp(5)} <1
n—oo  fex(B,L)

Then to have (8), it is enough to prove that

timsup By {1y = SIS )G, i, ) = O (49)

e fex(,L)

The event {famg = f%3} satisfies {famg = f%g} C Az N Ay, where

A3,n = {Hfb’*fy,l - f7,3”oo > 773(7)} )

A= {0 = Farlle < 52280 0 4 )
The event Az, satisfies the lemma:
Lemma 9. We have for n large enough
sup Pr[As,] < Dig(log n)fﬁn_%.

fex(p,L)
The proof of Lemma 9 is similar to the proof of Lemma 7 and 8. Let f € (3, L). We have

18 = FllooTas it < (s = Frslloo + 1o = faalloo + 11 = flloo ) Tagunas,

Using Proposition 3 and Lemma 9 we deduce that

lim sup Ey {llfﬁ,l - f||€o¢5p(ﬁ)IA3,nnA4,n} =0,
N0 fexy (L)

Moreover, using the definition of A4 ,, we have

A3(7)ton (7)1, (B)
27 +1

p
Ey {Hfﬂ*’y,l — fp1 gowﬁp(ﬂ)btg,nmm,n} < ( > (1 + pn)PPr(Asz ).

Using Lemma 9, we deduce that, for n large enough, ¥,”(8)0h(7)(1 + pn)PPs(As,,) is at most
1 4 7 pB

4 _PY D .
of order (logn) 27+ 7271 25+1 therefore, since v < 3,

lim sup Ey {”fﬁ*%l - f571||go¢77p(ﬁ)IA3,nﬁA4,n} =0
n00 fes(3,L)

To prove (49), it remains to prove that

lim sup By {[|fa — Frallietn(8) as,nae, = 0.
o0 fex(B,L)
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We have

Hfﬂ*%l - f%3||OOIA3,nﬁA4,n < (Hb,@*%l('a f) - b’y,S('» f)”oo + HZ ,3”00 + HZB*%IHOO) IA3,n0A4,n'

Reasoning as in the proof of (21), using the decomposition (25) and applying Lemma 5 to Z 3,
we deduce that

lim  sup  Ef {(|Z3llcc)” ¥, P(B)1a;5,.044, } = O.
n—00 rexy(6,L)

Since Zgy~,1 satisfies Lemma 4, a similar reasoning permits to have

lim  sup  Ef {([Z817,3]l00)" 0" (8)L45,,044, } = 0.
"0 fen(B,L)

Appying Lemma 3, we obtain that the quantity supscsy g r) 10y, 1(5 f) — by,3(, f) oo is of order
¥n(F), and finally we have by Lemma 9 that

lim  sup |[bguy,1(5 f) = by.3(s Pl P (B)Ps (A3 N A p) =0,
"0 feN(B,L)

which prove (49) and then (8).
eProof of (9)

The proof will be similar to the proof in the proof of (22). Let f € ¥X(vy,L). We fix §,, =

<loén> 1/4. We have

By { |l aniz = FI%tn? (1) } <1+ 602 (M3 () + By {|| faniz = FIE" () I,
<(1+ 80P (Ms())” + By {1 a1 = FIEa” () e na,

By { s = 1?0 canag }

where

Con = {Faniz = Flloctt () > (14 6)Ms (1) }

and A, = (A3, N Asy)¢. By Proposition 3, we have

lim sup By {|lfys = FIBYUE() ey nac} = 0.
T feS(y,L)

The event A4, satisfies the lemma

Lemma 10. For n large enough, we have

D
sup Py [Af,] < 1 exp {~Dig(logn)”'7n"P1#} exp {—D19 (log n)D”nDlS} ,
feS(,L) hi ()

with D17 € R.
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Lemma 10 implies that

ti sup By {Ifas = %00y, } =0
" fen(y,L) |

Then to have (9), it is enough to prove that

lm s By {|for — IR (), } =0, (50
L

00 fesi(v,L)

where As,, = Cy N Ag,n NAyp, On Ag}n N Ay p, we have

181 = flloo <l fs,1 = foemilloo + 1 f8ey1 = fr3lloe + 1f7.3 = flloo

¢n(7))‘3(’7)(1 +pn) £
+ DY s~ Flle

<n3(7)

Using Proposition 3, we deduce that, for n large enough,

sup Ey {I1fs = FIEUR (N Ly, }
fex(y.L)

is upper bounded by a constant. Now to have (50), it is enough to prove that

lim sup Py[A5,] =0. (51)
"0 feS(y,L)

We have by Lemma 2 and Proposition 1,

”fﬁ,l - fHOOIAs,n < (”fﬁ,l - fﬁ*%lHoo + Hbﬁ*’y,l<'a f) - b'y,3('a f)HOO =+ Hb%3('7 f)HOO + ”ZB*’YJHOO> IAs,n

223(7)¥n(v)

< * ) - ) [e) —
<bpera (1) = bra, Pl + 51208

+ 11 Zpsr 1 lloo-
Following the same argument as in the proof of (22) from (31) to (33), we deduce that
134y,1 (-5 ) = 03,35 F)lloo < m3(7) + lips] (52)

where 3 = fﬁ*%l(xo) - fmg(:l?o) — Ef fg*%l(xo) - f%g(l‘o)}, with some x¢ € [0,1]%. Using
Lemma 4, we have that 3 is a random variable N'(0,72), where 72 satisfies

2| K [130°(1 + o(1)

2
T < =
" nhy(7)
Using Lemma 3 and Lemma 4, we obtain finally that
; 2X3(7)n(y
20 = Aol < (0 + 2520 120+ bl )

< (Mz(7)¥n(7) + 1 Zpsylloo + lp3]) La; ,

Now following the proof of (22) from (34) to (36), we deduce (51), which finishes the proof of
(50).
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8 Proofs of the lemmas and propositions

Proof of Lemma 2

Since ||Kg||3 = _20+1) e have for j € {1,2,3},

Ba(B)(26+1)"
B 18\ /2
logn\ #+1 35 [ 2¢;(B)|Kgl30°Ls ~L
(B) = — , E
e =) e, ol )7,

25 L (4B (8B 1/8\ /2 )
B <logn> B ;¥ (45 cjﬁﬂ)(ﬁ—kl)aié* ) OB
" (26 +1)%a(B)p

For j=1, we deduce that

1 2841 el el
B 2B _ 2B
23 23

" Cﬂ C

8
logn\ 28+t _— B
) B QBH_QBH%@'

mis) = (

This implies the result of the lemma for j = 1. For j € {2, 3}, we have

B
(g 2B ~1/(2B+1) <Cj(ﬂ)> 241

which permits to have the result for j € {2,3}.
Proof of Proposition 3

Following the proof of Theorem 1 of Bertin (2004) with the loss function w(z) = 2P, studying
the bias term and the stochastic term of f3 ;j, we can deduce, for j € {1,2,3}, that

Ai(B) 1 (5) _
Bl wnw)(q(ﬂ))lﬂﬂ -

limsup sup Py |:Hfﬁ7j — flloo > (1 +€n)Yn(B) (

n—oo  feX(B,L)

and

i (6) 1i(B) >p
B/

lim sup sup Ey “!fﬁa - f||§o¢5p(ﬁ)} = (25+ 1 Un(B)c;

n—o0  fEX(B,L)
For j = 1, using that n(8) = 2%%1%(@ (cf. proof of Lemma 2), and that ¢;(3) > 1, we have

that

A (B) m@) 1 26
B+ 1 baBDa®) Bl @@
- _ B
For j € {2, 3}, using that n;(8) = %1%(5)2_1/(26“) (ZEZ)) P+ (cf. proof of Lemma 2), and
that ¢;(8) > 1, we have that

VO (cj<ﬂ>>w’11(22351+ 2 )<Mj(ﬁ>_

N

28+1  Pa(B)ei(B)  \ea(B) 26+1 (28 +1)(ca(B))'/?
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The above lines imply the results of Proposition 3.
Proof of Lemma 3

Here we prove the first result of the lemma. Let 8 = (£1,...,84) € B,y € B, f € 3(3,L) and
r=(z1,...,29),y = (y1,...,yq) € RL. We have

[ K2 % fa) = Ky x f(y)]

= V Ky (u) {f(z1 —wih12(7);s -+, @a — ugha2(v)) — f(y1 —wih12(7);- -, Ya — uaha2(v))} du

d d
< (/ KV(U)dU> ZLz’|$z’ — | = ZLim — ;%
i1 =1

Then, K. 2 * f belongs to X(3, L). As a consequence, we have

187,25 ) = by2 (s F)lloo = (15,25 K2 [0 < s )Hbﬁ,z(-,f)Hoo-
€

)

Thus, from Proposition 1, we deduce that

) bl < B0
fESZ}zg,L) ”bﬂ*%2( . f) bw,?( s Plloo < 23_’_ -

The two other results can be proved exactly in the same way.
Proof of Lemma 4

We prove here the result for j = 2. The result for j = 1 can be proved exactly in the same way.
Let 8= (B1,...,34),7 € B such that v < 8 and t € [0,1]?. We have

e 700 = s | (9 () % () )

where the notation ¥, for two vectors u = (u1,...,uq) and t = (t1,...,tq), represents the vector

(ui/t1,...,uq/ty). By the generalized Minkowskii inequality (cf. Appendix), we deduce that

) s (] ([ (57) () ")

oKl v ) ) = CIEslE
Snﬁg(ﬁ)ﬁ%(v) </K7 (hz(v)>d> C nha(8)

Now the proof of (12) is similar to the proof of Proposition 3, and then to that of Lemma 4

of Bertin (2004). The process Zg, satisfies as Z3, Ef {Zg*v(t)} < il{i]ﬁ%@%
2

2
apply that argument, we need to bound the quantity E; {(Zéw (t) — ng(s)> ] by a multiple of

Furthermore, to
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si—t;

1 d
nha(8) 2 i=1 hi,2(B)
Let s,t € [0,1]¢, we have
2
Ef [(Zé*m ~ Z3,(9)"]

i i) (o () ) o)

1/2 2

< ey (] (/2 () (o (557 -0 (W))Zdu) -

< 70 <,~;m/ o () o) S| - o

=1 =1

"for s = (51,...,84),t = (t1,...,tq) in [0,1]%. Here we look at this quantity.

Bi

Si—ti

hi2(B)

the second line being obtained by the generalized Minkowskii inequality (cf. Appendix) and the
third line coming from the fact Ky satisfies an Hélder condition of order §3.

As a consequence, following the proof of Lemma 4 of Bertin (2004), we will obtain the result
for j = 2 of Lemma 4.

Si —

hi2

7

Proof of Lemma 5

Let f € 3(8,L) and j € {1,2,3}. We have, by a change of variables,
+oo
Ey {||Zw'||§O¢Ep(6)f{||zmj||oo>m,j(7)}} = %p(ﬂ)/o Py (”Z’Y,jHgo‘[{||Z%j”oo>Tn,j(’Y)} > t) dt

+oo
=" (0) (g [ By (125 eTiz, srn s > H s ()

= ¥, " (8) (n,j (1)) Py (12,5l 00

+o00o
> 7o (1)) 497 (8) (75 (7)) /1 Py (1255118 >t (Tnj(7))7) dt.

(53)
We are going to prove that the two elements of the sum (53) tend to 0 as n tends to co. We
obtain by Proposition 2 that

1 —
n_\ @ 2P (1 + PBra)
Pr (124,15 > t (70,;(7))7) < D1 <logn> exp {— i1 logn » exp {tl/”Dm\/logn}-
(54)

Using the formula (54) with ¢ = 1, we deduce that ¥, (83) (Tn; (V) P (11 2 jlloc > Tn,j (7)) is of

5 _ _Bmax
order "7 TF e )(log n)P22 with some Dys € R, and then it tends to 0 as n tends to oo
since ¥ < 3 < Bz Moreover by (54) we have, after a change of variables,

+o00o
[ B 21 > e d

is bounded above by

n 27% 400 2 B
v ( > / or {_ 57+ 1+ PPmac) logn} exp { Dast/logn } 7 Ldi.
1

logn ~¥+1
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By using several integrations by parts, one can find that this integral is at most of order

1 —
341 1 _ PPmax _
( n ) k exp{—( + POimaz) logn} — (logn) g
Y

logn
Hence 9n”(8) (Tnj(7))" [P (|1 21,515 > t (7n;(7))P) dt tends to 0 as n tends to oco.
Proof of Lemma 7
Let f € X(B,L). Using the same argument as in the proof of (21), we can deduce that

167 1(5, F)lloe = 0(¥n (7)) and ||bgr1 (-, )l = 0(¥n () for all f € X(5,L). As a consequence
for all f € (8, L) lby.1(+ ) — by (- f)loe = o(n(8) since 5 < ~/, and therefore

Py [Ifyra = Foalloe > m ()] < By (121l + 123 1llo0 > m (F) (L4 ma)] - < Pi(n) + Pa(n),

where k,, is of order n~% with a § > 0 and
Pi(n) =Py [ Zy alloo > ¥n((6+7)/2)(1 + £n)] ,

g4y
“%ﬂb>mW%bmmG_%iéﬂﬂ'

- /

W%(/B')nfn (ﬁl) _ 1 ( _i_pﬁmaxfﬁ

PQ(TL) = Pf

Using Proposition 2, since

) log n, we obtain that for n large

2Ky 307 28’41 Brmaztl
enough
= —/
—+ p ﬁmax B ﬂ
Py(n) < Dyy (logn) 28+1 expq —— = logn » . (55)
26 +1 \ 2B ma0 + 1

Using Proposition 2, it can be proved that P;(n) is negligible with respect to Py(n) as n — oo.
The relation (55) implies the lemma.

Proof of Lemma 8

Let f € ¥(8,L). By Lemma 3, we have that |[bg.g2(-, f) — bs 2(, f)|lec is at most of order
¥ (B). Since 3 < B3, 1, (B) is negligible with respect to n2(3’) and therefore

Py [Hfﬁ*ﬁ/,z — fr2lloe > m2 (ﬁ’)} <Py (1 Zsp 2llco + 123 2llcc > m2 (8') (1 4+ Kn)] < P3(n) + Pa(n),

where ky, is of order ¥, (3)/n2(5),
P3(n) =Py [ Zsup 2llco > Un (8 + 5)/2)(1 + k)],

B+
H%ﬂ@>mWMume—%(2vl

and

Py(n) =Py

Using Proposition 2, since

B, hin(8) _ (1 Ay
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we obtain that for n large enough

Py(n) < Dy (logn) 5 71 exp {— (pu(8)) logn} (56)

Using Lemma 4, it can be proved that P3(n) is negligible with respect to Py(n) as n — oco. The
relation (56) implies the lemma.

Proof of Lemma 10

Let f € ¥(v,L). By Lemma 3, we have that

b3t (+ ) = b (e Do < L2280,

27 + 1
Hhen Yn()s(2)
P A n\Y)A3\Y
Pr |1y = folloo 2 = (1+ Pn)] < Ps(n) + Ps(n),
v+ 1
where du) ()
n\7Y)A37Y)Pn
P =P Z 34 00> T |
5(0) = By [ Zo o > 222000
and Yn()Ns2)
n\Y)A3\Y)Pn
Ps(n) = Ps || Z51]jc0 > Lo P287)Pn |
b(0) = B 121 > L2000
Using Proposition 2, since p,, = %Jg))/z), we obtain that

D { N (Y28 +7)/2)nhu (8) } p | D22 0U(B+ /2 0k (9
- 2,2(9% 2 B -
8[| Kgll30°(27 + 1) 2(27 + 1)1/log 7 (B)
(57)
Using Lemma 4, we have that Ps(n) satisfies the same inequality as (57) but with different
constants Dy and Ds. Now, since 3 > ~, we have

A (NYa((B +7)/2)nha (5)

_ D D
8||K5||502(27+ 1)2 —D16(logn) 17 D1s

with D17 € R, which includes the lemma.
Appendix: Minkowskii inequality

For all function g measurable on R? x R, we have

/</9(ua x)du>2da: < (/ </g2(u,a:)dx> v du) |

(cf. Besov et al. (1978) for a proof)
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