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Workspace Analysis of the Parallel Module of the VERNE Machine 
 

Daniel Kanaan, Philippe Wenger, and Damien Chablat 
Institut de Recherche en Communications et Cybernétique de Nantes, U.M.R. C.N.R.S. 6597 

1, rue de la Noë, BP 92101, 44321 Nantes Cedex 03 France 
 
Abstract— The paper addresses geometric aspects of a spatial three-degree-of-freedom parallel 
module, which is the parallel module of a hybrid serial-parallel 5-axis machine tool. This 
parallel module consists of a moving platform that is connected to a fixed base by three non-
identical legs. Each leg is made up of one prismatic and two pairs of spherical joint, which are 
connected in a way that the combined effects of the three legs lead to an over-constrained 
mechanism with complex motion. This motion is defined as a simultaneous combination of 
rotation and translation. A method for computing the complete workspace of the VERNE parallel 
module for various tool lengths is presented. An algorithm describing this method is also 
introduced. 
 
Keywords—Parallel manipulators, parallel kinematic machines, workspace, hybrid machine 
tools, complex motion, mobility analysis, inverse kinematics, singularity. 

I. INTRODUCTION 

The workspace calculation of a parallel manipulator is very important for the designer and 

for the end-user. If we consider a serial robot, the representation of the workspace is generally 

based on the illustration in 3 dimensions of the space reachable by the center of its wrist 

(characterizing translations) and by the space reachable by the extremity of the terminal link 

(characterizing orientations), these two zones being uncoupled. Unfortunately, it is not the case 

for parallel robots: the zone reachable by the center of the moving platform is dependent on the 

orientation of its platform. Thus a graphical representation of the workspace of parallel 

manipulators with more than three degrees of freedom is only possible if we fix parameters 

representing the exceeded degrees of freedom. As consequence, different types of workspace 

were used in the literature, according to the choice of the presented parameters [1]. 

Several methods may be used to calculate the workspace of a parallel manipulator. One can 

mostly distinguish between discretization methods, geometrical methods, and analytical 

methods. A simple way for determining the workspace of a parallel manipulator is to use a 

discretization method. In this method, a grid of nodes with position and orientation is defined. 

Then each node is tested to see whether it belongs to the workspace or not [2, 3]. The 

discretization algorithm takes into account all constraints and it is simple to implement but is has 

some serious drawbacks. It is expensive in computational time and the accuracy depends on the 

sampling step that is used to create the grid [4]. Geometrical methods are mostly used to 

determine the boundary of the workspace. The principle is to define geometrical models for the 

constraints that limit the workspace of the parallel manipulator [5]. These models are obtained 
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for each leg separately and the workspace is the intersection between these models [1]. 

Analytical methods are more difficult to apply because they increase the dimension of the 

problem by introducing supplementary variables. They consist in solving an optimization 

problem with penalties at the borders [6]. 

 
Figure 1: Overall View of the VERNE Machine 

Parallel kinematic machines (PKM) are commonly claimed to offer several advantages over 

their serial counterparts [7], such as high structural rigidity, better payload-to-weight ratio, high 

dynamic capacities and high accuracy [1, 8]. Thus, they are prudently considered as promising 

alternatives for high-speed machining and have gained essential attention of a number of 

companies and researchers. Since the first prototype presented in 1994 during the IMTS in 

Chicago by Gidding and Lewis (the VARIAX) [9], many other parallel manipulators have 

appeared. However, most of the existing PKM still suffer from a limited range of motion [10]. 

This drawback can be diminished by designing a hybrid manipulator as for the VERNE machine, 

which is a 5-axis machine-tool built by Fatronik for IRCCyN [11]. This machine-tool consists of 

a parallel module and a tilting table as shown in Fig. 1. The parallel module moves the spindle 

mostly in translation while the tilting table is used to rotate the workpiece about two orthogonal 

axes. 
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A simplified workspace model of the Verne machine is used currently, but this model is 

reduced with respect to the real one. The purpose of this paper is to calculate the real workspace 

to enhance the working capability and to improve the productivity of the VERNE machine. In 

the following section, we present the VERNE parallel module and we formulate its geometric 

equations. Section ΙΙΙ is devoted to the calculation of the complete workspace for various tool 

lengths of the VERNE parallel module. In this section we define geometric models for 

constraints limiting the workspace. Then we apply a combination of geometric and discretization 

methods in order to calculate the complete workspace. Finally a conclusion is given in section 

IV. 

II. DESCRIPTION OF THE VERNE PARALLEL MODULE 

A. Parallel manipulator structure 
Figure 2 shows a scheme of the parallel module of the VERNE machine. The vertices of the 

moving platform are connected to a fixed-base plate through three legs Ι, ΙΙ and ΙΙΙ. Each leg 

uses pairs of rods linking a prismatic joint to the moving platform through two pairs of spherical 

joints. Legs ΙΙ and ΙΙΙ are two identical parallelograms. Leg Ι differs from the other two legs in 

that 11 12 11 12A A B B≠ , that is, it is not an articulated parallelogram. The movement of the moving 

platform is generated by three sliding actuators along three vertical guideways. 
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Figure 2: Schematic representation of the Parallel Module; (a) simplified representation and (b) 
the real representation supplied by Fatronik 

Due to the arrangement of the links and joints, as shown in Fig. 2, legs ΙΙ and ΙΙΙ prevent the 

platform from rotating about y and z axes. Leg Ι prevents the platform from rotating about z-axis 

but, because 11 12 11 12A A B B≠ , a slight coupled rotation about x-axis exists. 
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B. Kinematic equations 
In order to analyze the kinematics of the parallel module, two relative coordinates are 

assigned as shown in Fig. 2. A static Cartesian frame xyz is fixed at the base of the machine tool, 

with the z-axis pointing downward along the vertical direction. The mobile Cartesian frame, 

P P Px y z , is attached to the moving platform at point P and remains parallel to xyz. 

In any constrained mechanical system, joints connecting bodies restrict their relative motion 

and impose constraints on the generalized coordinates, geometric constraints are then formulated 

as algebraic expressions involving generalized coordinates. 
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Figure 3: Dimensions of the parallel kinematic structure in the frame supplied by Fatronik 

Using the parameters defined in Fig. 3, the constraint equations of the parallel manipulator 

are expressed as: 

 ( ) ( ) ( )2 2 2 2 0Bij Aij Bij Aij Bij Aij ix x y y z z L− + − + − − =  (1) 

where ijA  (respectively ijB  ) is the center of spherical joint number j on the prismatic joint 

number i (respectively on the moving platform side), i = 1..3, j = 1..2. 

Leg Ι is represented by two distinct equations defined by Eqs. (2a) and (2b). This is due to the 

fact that 11 12 11 12A A B B≠  (Figure 3) 

 ( ) ( ) ( )2 2 2 2
1 1 1 1 1 1 1cos( ) sin( ) 0P P Px D d y R r z R Lα α ρ+ − + + − + + − − =  (2a) 

 ( ) ( ) ( )2 2 2 2
1 1 1 1 1 1 1cos( ) sin( ) 0P P Px D d y R r z R Lα α ρ+ − + − + + − − − =  (2b) 

Leg ΙΙ is represented by Eq. (3). 
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 ( ) ( ) ( )2 2 2 2
2 2 2 4 2 2 2cos( ) sin( ) - 0P P Px D d y R r z R Lα α ρ+ − + − + + − − =  (3) 

The leg ІІІ, which is similar to leg ІІ (Figure 3), is represented by Eq. (4). 

 ( ) ( ) ( )2 2 2 2
2 2 2 4 2 3 3cos( ) sin( ) 0P P Px D d y R r z R Lα α ρ+ − + + − + + − − =  (4) 

C. Coupling between the position and the orientation of the platform 
The parallel module of the VERNE machine possesses three actuators and three degrees of 

freedom. However, there is a coupling between the position and the orientation angle of the 

platform. The object of this subsection is to study the coupling constraint imposed by leg I. 

By eliminating 1ρ  from Eqs. (2a) and (2b), we obtain a relation (5) between ,   and P Px y α  

independently of Pz . 

 
( ) ( )

( )( )

22 2 2 2 2
1 1 1 1 1 1 1

2 2 2 2 2
1 1 1 1 1 1

sin( ) 2 cos( )

sin( ) 2 cos( ) 0

P PR x D d r R r R y

R L R r R r

α α

α α

+ − + − +

− − + − =
 (5) 

We notice that for a given α , Eq. (5) represents an ellipse (6). The size of this ellipse is 

determined by a  and ,b  where a  is the length of the semi major axis and b  is the length of the 

semi minor axis. 

 ( )2 2
1 1
2 2 1P Px D d y

a b
+ −

+ =  (6) 

where 

( )( )
( )( )

( )

2 2 2
1 1 1 1 1

2 2 2 2 2
1 1 1 1 1 1

2 2
1 1 1 1

  2 cos( )                 

sin( ) 2 cos( )
  

2 cos( )

a L R r R r

R L R r R r
b

r R r R

α

α α

α

⎧ = − + −⎪
⎪
⎨ − + −
⎪ =
⎪ − +⎩

 

These ellipses define the locus of points reachable with the same orientation α . 

III. WORKSPACE CALCULATION OF THE VERNE PARALLEL MODULE 

A. Preliminaries 
The parallel architecture of the VERNE possesses 3 degrees of freedom; a complete 

representation of the workspace is a volume. Consequently the workspace of the VERNE 

machine can be defined by the positions in space reachable by a specific point connected to the 

moving platform.  

However, since the first leg is not a parallelogram, the platform undergoes a parasitic 

rotation movement about the x-axis defined by the angle α . This movement poses a problem in 

the determination of the workspace of VERNE, because it does not represent a controlled degree 
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of freedom. Thus, it can be expressed as function of the coordinates of the point P 

( P P Px , y  and z ), centre of the mobile Cartesian frame. 
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Figure 4: VERNE. (a) Real, (b) With virtual division of the leg І 

To solve the problem created by the presence of the orientation ,α  we propose the following 

method: 

Step 1: We virtually cut the leg І which is constituted of rods 11 and 12 (rod ij denotes AijBij) by 

supposing that 11ρ  is independent of 12ρ  (see Figure 4b). The parallel architecture of the 

VERNE possesses now 4 degrees of freedom instead of 3. These degrees of freedom are defined 

by coordinates ,    P P Px y and z  of the point P and by the orientation α  of the moving platform. 

Thus we consider that the orientation α  of the platform is given, and we geometrically model 

constraints limiting the workspace of the new parallel architecture (subsections C, D and E). 

The intersection between these models is a volume. 

Step 2: We consider the interdependence between rods 11 and 12 of the leg І characterized by 

the fact that 11 12 1ρ ρ ρ= =  (Figure 4a). This will allows us to determine a relation between 

,  ,    P P Px y z and α . Then for a given orientation ,α  the point P describes a surface (subsection 

F). 

Step 3: The intersection between geometric models defined at step 1 and the surface defined at 

step 2 represents the constant orientation workspace of the VERNE. We calculate a horizontal 

cut of this workspace when the point P, center of the mobile Cartesian frame, moves in a known 

horizontal plane. Then we proceed by discretization to determine the complete workspace of the 

VERNE (subsection G). 

It is important to mention that the constraints imposed by the two opposite main rods that 

constitute the same leg possess the same limits on the workspace, if the leg has a shape of a 



Workspace Analysis of the Parallel Module of the VERNE Machine, draft paper proposed to the Journal IFToMM 
Problems of Applied Mechanics, D. Kanaan, P. Wenger and D. Chablat, November 2006. 

p7 

parallelogram. Then it is sufficient to study one of these two rods to calculate the workspace. So 

taking into account this remark, we can limit the calculation of the workspace by studying only 

rods 11,  12,  21 and 31, since legs ІІ and ІІІ have a shape of a parallelogram. 

B. Geometric models for constraints limiting the workspace 
In this section, we virtually cut the leg І supposing that 11ρ  can be different from 12ρ  (Figure 

4b) and we calculate for a given orientation α , the workspace under the constraints on rods. 

This workspace is a volume because by cutting leg І we add one degree of freedom to the 

parallel architecture. 

Generally, to calculate geometrically the workspace of a parallel manipulator, it is necessary 

to establish geometric models for all the constraints limiting the workspace [12]. In our case, we 

only take into account limitations on rods, and we try to determine geometrically the boundary of 

the workspace under the hypothesis that the constraints on the rods permit to define the maximal 

region that point ijB  can cross, where ijB  is the point of attachment of the rod ij to the platform, 

this in an independent manner for every rod. 

Suppose that the constraints on rod ij allow us to define the reachable volume ijV  by point 

ijB . When ijB  describes this volume, P describes an identical volume obtained in translating ijV  

by vector ijB P,
uuuur

 which is constant because the orientation is fixed. This volume noted P
ijV  is the 

working volume allowed for P under the constraints on rod ij. The workspace being the one 

where the constraints on all rods are satisfied, it is obtained by the intersection of all 

volumes P
ijV . This volume is noted PV  [1]. 

To facilitate the calculation of the workspace, instead of determining the volume ijV  

reachable by the point ijB , we express the coordinates of ijB  as function of the coordinates of P 

and we look directly for the working volume P
ijV  allowed for P. The constraints that limit the 

workspace of a parallel manipulator are (i) Interference between links, (ii) Leg Length, (iii) 

Serial Singularity, (iv) Mechanical limits on passive joints and (v) Actuator stroke. 

In the following three subsections, we model geometrically these constraints under the 

hypothesis that 11ρ  can be different from 12ρ . Then we consider in subsection F the 

interdependence between rods 11 and 12 of leg Ι characterized by the fact that 11 12 1ρ ρ ρ= = . 
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C. Interference between the various elements of the machine 
In this subsection, we define a parallelepiped rectangle for point P assuring that there is no 

collision between the various elements of the VERNE machine. In order to do that, we represent 

the corresponding constraints by inequalities that allow us to determine the intervals of ,px  py  

and pz . 

To avoid slider-leg collisions, the leg should be only in one of the half-spaces separated by 

the plane parallel to the slider face and passing through point ijA  (see Fig. 2). From an analytical 

point of view, we can represent this constraint by inequalities that allow us to determine the 

interval min max,p px x⎤ ⎡⎦ ⎣  of px  as shown in Eqs. (7a) and (7b). 

 max 1 10 ( 1,  1..2) Bij Aij px x i j x d D− < = = ⇔ = −  (7a) 

 min 2 20 ( 2..3,  1) Bij Aij px x i j x d D− > = = ⇔ = −  (7b) 

To determine the interval min max,p py y⎤ ⎡⎦ ⎣ , we used the leg-length constraint: 

 2 2 2 4 ( 2,  1..2) cos( )Bij Aij py y L i j y R L rα− < = = ⇔ < + −  (8a) 

 3 4 2 3 ( 3,  1..2) cos( )Aij Bij py y L i j y r R Lα− < = = ⇔ > − −  (8b) 

As our goal is only to find, for any value of α , the minimal interval min max,p py y⎤ ⎡⎦ ⎣ , we use 

0α =  in Eqs (8a) and (8b), which implies that max 2 2 4py L R r= + −  and min 4 2 3.py r R L= − −  

lP2

lP1

luj  
(a) (b) 

Figure 5: (a) Platform body and (b) the allowable volume for point P assuring that there is no 
collision between the various elements of the machine and for a tool length l=0. 

To evaluate the performance of the machine, it is important to find the workspace of the 

machine for various tool lengths. Let us define _ 1p u p ujd l l= +  as the distance between the 
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platform and the extremity U of the tool (Fig. 5a). In order that there is no collision between the 

tool and the plate, it is necessary that at the limit the tool nears the tilting table. 

  P  _0 z cos( )U tilting table tilting table p uz z z d α− < ⇒ < −  (9a) 

Let us take 0α =  in Eq. (9a), max  _P tilting table p uz z d= − . This condition insures that there is no 

collision between the platform and the tilting table for any value of α . 

To insure that there is no interference between the platform and the hood of the machine, we 

define this constraint: 

 2 cos( )P hood pz z l α> +  (9b) 

Let us take 0α =  in Eq. (9b), min 2P p hoodz l z= + . This condition insures that there is no collision 

between the platform and the hood of the machine for any value of α  

Knowing the lower and superior boundary of p p px , y  and z , we can build in the fixed 

Cartesian frame the parallelepiped rectangle 1 PV ,  which represents the domain where there is no 

risk of collision between the different elements of the Verne machine (see Fig. 5b). 

D. Leg length limits and Serial singularity constraint 
To simplify the explanation of our method, we define points '

ijA  obtained by translating 

points ijA  by vector ijB P
uuuur

, which is constant because the orientation α  is fixed. Points ijA  

(respectively '
ijA ) correspond to the real centers (respectively imaginary centers) of rotation of 

the joints connected to the base. The introduction of '
ijA  will allow us to find directly the volume 

k P
ijV  allowed by P under the constraint k on rod ij (we suppose that the constant orientation 

workspace of the platform is a volume because leg I is virtually cut). 

Let the length of a leg be iL ,  if we respectively indicate by '
ij,0A  and '

ij,1A  the initial and 

final position of the center of joint ij, thus when point '
ijA  coincides with point '

ij,0A , the set of 

points reachable by P  is a sphere '
ij,0S  of radius iL and of center '

ij,0A . However, a particular 

characteristics of parallel manipulators of type PSS  (or PUS) is that they undergo a serial 

singularity at configurations where a rod ij is perpendicular to its corresponding guideway axis. 

Since passing through such a singularity is undesirable, the motion of each rod should be 

restricted so that the angle between the vectors ' ' ' '
ij ij ij,0 ij,1A B  and A A

uuuuuur uuuuuuuuur
 be always in only one of the 

two ranges 0,
2
π⎡ ⎡

⎢ ⎢⎣ ⎣
 or ,

2
π π⎤ ⎤
⎥ ⎥⎦ ⎦

. So when the actuator is in its initial position '
ij,0A ,  we can define 
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for every rod ij a plane perpendicular to axes ' '
ij,0 ij,1(A  A )  at '

ij,0A . This plane divides the sphere 

'
ij,0

S  into two hemispheres. We take the hemisphere that is on the side of the axis ' '
ij,0 ij,1(A  A ) . 

When the slider reaches its final position by starting from '
ij,0A , the volume described by P, noted 

2 P
ijV ,  is the volume swept by the chosen hemisphere along ' '

ij,0 ij,1(A , A )  (Fig. 6). 

 
Figure 6: Workspace of the point P under the constraints imposed by length of the rod ij, without 

singularity and for a given orientation 

The volume 2 P
ijV  represents the locations of point P under the constraints on the length of 

the rod ij and by making sure that rod ij does not pass through a serial singularity. The volume 
2 P 2 P 2 P 2 P 2 P

11 12 21 31V V V V V  = ∩ ∩ ∩  satisfies the constraints imposed by leg lengths and does not 

contain any serial singularity. This volume is obtained for a given orientation α  and by 

considering that the leg І is virtually cut, so other serial singularities can be found for the real 

Verne machine when we consider the interdependence between rods 11 and 12 of leg Ι. This 

singularity will be presented in the following subsection F. 

E. Mechanical limits on passive joints 
In this subsection, we propose a method that allows taking into account mechanical limits on 

the passive joints. This method takes into consideration the type of joints as well as the location 

of these joints in the machine. Therefore, our goal is to find geometric models of these 

constraints to be able to find the topology of the boundary of the workspace. In this subsection, 

we suppose that the constant orientation workspace of the platform is a volume because leg І is 

virtually cut. 

We have to mention that point P is obtained by translating ijB  by vector ijB P
uuuur

, which is 

constant because the orientation is fixed. Because our purpose is to find directly the locations of 
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P, we suppose that rod ij is linked to the corresponding prismatic joint and to the moving 

platform by points ' and ,ijA P  respectively, instead of points and ,ij ijA B  respectively. 

1) Mechanical limits on the passive joints attached to the prismatic joints  
We can describe the movement of the spherical joints by 3 angles ,  ,  β δ γ . These angles are 

defined in the following way: starting from the frame '
,0 ,0 ,0 ,0( , ,  ,  )ij ij ij ij ijR A x y z=  linked to the 

joint ij, we obtain the orientation of the base joint ij by a first rotation about the y-axis through an 

angle δ  then by rotating about the new ,1ijx  axis by an angle β  and finally by rotating about the 

new z-axis through an angle γ . However, the rotation of the rod about the last axis can be 

ignored because there are no joint limits. The obtained final frame is '
,2 ,2 ,2 ,2( , , , )ij ij ij ij ijR A x y z=  

(Fig. 7). 

  

Figure 7: Spherical joint 

Since designers provide graphs that describe the movement of joints (Fig. 8), we can define the 

angle β  as function of δ . So knowing the angular ranges of these angles as well as the function 

that relates them (Fig 8), we can describe the motion of these joints. 
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Figure 8: Definition of mechanical limits of a joint of type INA GLK 3  

The modeling of the constraints due to the mechanical limits on the base joints 
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Let us ,0 ,0 ,0 ,0
,2 ,2 ,2 ,2 ,0 ,1   0 ( , ) ( , )ij ij ij ij

ij ij ij ij ij ijT s n a Rot y Rot xδ β⎡ ⎤= =⎣ ⎦  define the transformation 

between frame ,0ijR  and frame ,2ijR  where, ,2 ,2 ,2,   and ij ij ij
ij ij ijs n a  indicate respectively the unit 

vectors of axes ,2 ,2 ,2,   and ij ij ijx y z  of ,2ijR  expressed in ,0ijR  and where ,0( , )ijRot y δ  

(respectively ,1( , )ijRot x β ) is a rotation matrix describing the rotation of angle δ  (respectively 

β ) ,0ijy  (respectively ,1ijx ). 

 
_

,0
,2 ,0 ,1

1 0 0 00 0
0 1 0 0 0 0( , ) ( , )

0 0 0 0
0 0 0 1 0 0 0 1

ij
ij ij ij

C S
C ST Rot y Rot x

S C S C

δ δ
β βδ β

δ δ β β

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥−
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

 (10) 

where Sδ  and Cδ  denote sinδ  and cosδ , respectively. 

Let vectors ,0 ,2 and ij ijP P  define the expression of P in frames '
,2 ,2 ,2( , , , )ij ij ij ijA x y z  and 

'
,0 ,0 ,0( , , , )ij ij ij ijA x y z , respectively. Knowing [ ],2 0 0 1 Tij

iP L=  and ,0
,2

ij
ijT  from Eq. (10) we 

deduce ,0ij P : 

 [ ],0 ,0 ,2
,2  sin( ) cos - sin cos( ) cos 1 Tij ij ij

ij i i iP T P L L Lδ β β δ β= =  (11) 

 
(a) 

 
(b) 

Figure 9 (a) Definition of the surface characterizing constraints on the base joint for a fixed 
position of the corresponding slider. The point '

ijA  is fixed; the point P describes this constraint 
in the frame linked to the joint. (b) Projection of this surface in the plane xOy 

Since the coordinates of P are expressed as function of angles and β δ  (Eq. 11) and β  is 

expressed as function of δ , it is sufficient to know the angular range of δ (Fig 8) to define 

geometrically the locations of P in the frame linked to the corresponding joint (Fig. 9). 

Location of the universal joints 
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Let us consider the frame '
,0 ,0 ,0 ,0( , ,  ,  )ij ij ij ij ijR A x y z=  linked to joint ij and the fixed Cartesian 

frame ( , ,  ,  ).aR O x y z=  Let us define ,0 ,0 ,0 ,0 ,0   a a a a a
ij ij ij ij ijT s n a H⎡ ⎤= ⎣ ⎦ , the transformation that 

brings the frame aR  on the frame ,0ijR  where ,0
a

ijH  is the vector expressing '
ijA , origin of the 

frame ,0ijR  in the frame aR . Let us denote , , ij ij ijθ ψ φ , the angles defining the position of the 

universal joint ij with respect to aR . These angles are defined in the following way: starting from 

the fixed Cartesian frame aR , we obtain the frame ,0ijR  linked to the joint ij by undergoing a 

translation along the vector '
ijOA

uuuuur
, then by rotating about the y-axis through an angle ψ , then by 

rotating about the new x-axis through an angle θ  and finally by rotating about the new z-axis 

through an angle φ . 

 ' ' ',0 ( , , ) ( , ) ( , ) ( , )
ij ij ij

a
ij ij ij ijA A A

T Trans x y z Rot y Rot x Rot zψ θ φ=  (12a) 

where ( , ),ijRot y ψ  ( , )ijRot x θ  and ( , )ijRot z φ  are respectively the rotation matrixes describing 

the rotation of angles ijψ , ijθ  and ijφ  about the y, x and z axis. 

 

'

'

'

,0

0 0 0 1

ij

ij

ij

ij ij ij ij ij ij ij ij ij ij ij ij A

ij ij ij ij ij Aa
ij

ij ij ij ij ij ij ij ij ij ij ij ij A

C C S S S S S C C S S C x

C S C C S y
T

C S S S C C S C S S C C z

ψ φ ψ θ φ ψ θ φ ψ φ ψ θ

θ φ θ φ θ

ψ φ θ ψ φ ψ θ φ ψ φ ψ θ

+ −⎡ ⎤
⎢ ⎥

−⎢ ⎥
= ⎢ ⎥

− +⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (12b) 

Let vectors ,0 and a ijP P  represent the point P  respectively expressed in frames ,0and a ijR R  

as function of angles ,  δ β . Knowing ,0ij P  from Eq. (11) and ,0ij
aT  from Eq. (12), we deduce: 

 ,0
,0  a a ij

ijP T P=  (13) 

The matrix ,0
a

ijT  is expressed as function of iρ , which depends on the position of the slider, 

and as function of angles ,  ,   and ij ij ijθ ψ φ α  (the coordinates of '
ijA  are expressed as function of 

iρ  and α ). The first three angles design parameters and the last one is the angle representing the 

orientation of the platform, which is assumed known. Thus a P  can be expressed as function of 

 , β δ  (described in Fig 8) and iρ  only. We can now define the acceptable spherical region '
ciS  

for P when '
ijA  is fixed (Fig. 10), by varying δ  from 2δ−  to 2δ+  in Eq. (13) (remember β  is 

expressed as function of δ  as shown in Fig 8). Since '
ijA  can only move between points 

' '
ij,0 ij,1A  and A , the acceptable spatial region for P is the volume 3 P

ijV  swept by '
,0ciS  along 
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' '
ij,0 ij,1A A . This volume is the volume allowed for P by taking into account only mechanical limits 

on the base joint ij. The total volume including all base joints will be: 
3 P 3 P 3 P 3 P 3 P

11 12 21 31V V V V V= ∩ ∩ ∩ . 

Figure 10: (a) Locations of point P characterizing the constraints on the base joint ij, for a given 
orientation and for a fixed position of the corresponding slider. (b) Projection of this surface in 

the plane xOy 

In order to obtain the projection of '
,0ciS  in the plane xOy, we calculate the x and y 

coordinates of a P  from Eq. (13) by varying δ  between 2max(- , - / 2 )ijδ π ψ−  and 2min(δ , 

/ 2 ijπ ψ− ), in this way, we also insure that the leg ij does not pass through a serial singularity, 

which occurs when the angle between the corresponding slider and the leg is higher than / 2π . 

2) Mechanical limits on the passive joints linked to the moving platform 
In order to model constraints imposed by the platform joints, we can clearly adopt the same 

model as the one used for the joints attached to the prismatic joints. So we can define the 

spherical region '
siS  (we use the same reasoning as in the previous subsection) of vertex P such 

as if the constraints on the joint ij are satisfied, the point '
ijA  is on this surface. Let us consider 

the reference frame ' ' ' '
,2 ,2 ,2( , , , )ij ij ij ijA x y z  where '

,2 ,2 ,ij ijx x= − '
,2 ,2ij ijy y= −  and '

,2 ,2  .ij ijz z= −  We can 

define in this reference frame a surface equivalent to '
siS , 'P

siS of vertex '
ijA  such as if the 

constraints on the platform joint ij are satisfied then the point P is on surfaces 'P
siS  [13]. Since the 

point '
ijA  can only move between points ' '

ij,0 ij,1A  and A , thus the acceptable spatial region for the 

point P is the volume 4 P
ijV  swept by '

,0
P

siS  along ' '
ij,0 ij,1A A . This volume is the volume allowed for 
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P by taking into account only mechanical limits on the platform joint ij, the total volume 

including all platform joints will be: 4 P 4 P 4 P 4 P 4 P
i 11 12 21 31V V V V V= ∩ ∩ ∩  

F. Closure constraints 
We consider the interdependence between the rods of leg І that allows us to define the region 

in which P can move. This region is a surface. 
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Figure 11: (a) Locations of point P characterizing the constraint imposed by the shape of the leg 
I for a given orientation α  (b) The projection of this surface in the plane xOy 

For a given orientation α , we can model the Eq. (6) by a hollow cylinder P
1Cy  whose base is 

an ellipse (Fig. 11). This surface represents the coupling between the position and the orientation 

of the platform resulting from the shape of the Leg Ι. However the serial singularities and the 

inverse kinematics induce additional constraints. In the previous subsection we studied the serial 

singularities for the VERNE parallel module in the virtual shape that is when the leg Ι is cut. 

However, we have conducted previous studies in order to find the serial singularities for the 

VERNE parallel module [14]. In this study, we demonstrated that a particular singularity was 

obtained when 1 1cos( )R rα = , so to avoid passing by this singularity it is necessary to impose the 

following constraint:  

 1

1

cos( ) r
R

α >  (14) 

For the workspace calculation of the VERNE machine only one solution to the inverse 

kinematic problems is taken into consideration. In a previous study [14], we have proved that 

this solution is obtained when signs of 1 Pzρ − , 2 2 sin( )Pz Rρ α− +  and 3 2 sin( )Pz Rρ α− −  are 

negative. However subtracting equation (2a) from equation (2b) yields: 
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 ( ) ( )P 1 1 1 1 Py R cos( ) r =R sin( ) zα α ρ− −  (15) 

Equation (15) implies that ( )1 P 1 1 Pzsgn sgn(sin( )) sgn(R cos( ) r )sgn(y )ρ α α− = − . So in order to 

verify the inverse kinematic condition 1 Pzρ <  and the serial singularity condition 1 1cos( )R rα >  

only half of the hollow cylinder P
1Cy  obtained for Py 0<  (respectively Py 0> ) if 0α >  

(respectively 0α < ) must be considered in the workspace calculation of the VERNE machine. 

It is important to mention that the existence of this constraint directed us to look for the locations 

of the point P in a plane parallel to the plane ( )xOy  for a given orientation α . 

G. The Complete Workspace Algorithm 
Until now, we looked for the workspace of the VERNE parallel module by considering each 

constraint separately. In this subsection, we first suppose that the orientation of the moving 

platform is fixed and we find all the possible positions of the point P verifying all constraints in a 

horizontal plane. Then we scan parameters and Pzα  to find the complete workspace. 

The workspace of the VERNE parallel module varies with Pz . However we can prove 

graphically that for [ ]2 min maxmax( ),  min( )P i i iz I lρ ρ∈ = +  ( 1..3),i =  the workspace remains 

constant. When [ ] [ ]1 3 max max min minmin( ),  min( ) max( ),  max( )P i i i i i iz I I l lρ ρ ρ ρ∈ ∪ = + ∪ +  ( 1..3),i=  

the workspace varies as shown in Fig. 12 where min max and i iρ ρ  represent the minimal and the 

maximal value of iρ , respectively. 
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Figure 12: Projection of the volume 2 PV  in the plane xOz for a given orientation α  

Summary of the method 

The workspace of the VERNE is the intersection between geometric models already defined 

in the previous section. To calculate this workspace, we apply the following steps: 
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Step1: We vary α  between 1-α  and 1α+  following a constant step and for each value of α  we 

repeat Step2, Step 3 and Step4. 

 1
1

1

arccos r
R

α
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (16) 

Step2: We horizontally project all geometrical models obtained for a given orientation α  (see 

Fig. 13) 

Step3 We calculate the intersection between the projected zones characterizing leg length 

constraints, interference between links and mechanical limits on passive joints to obtain the zone 

1( )S α  (see Fig. 14). 

Step4: We select the part of half of the ellipse that is inside the zone 1( )S α . 
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Figure 13: Locations allowed for P in the horizontal plane and for a given orientation α ; (a) 

under the base joint mechanical limits, (b) under the platform joint mechanical limits, (c) by 

considering all passive joint constraints (after intersection between curves) 
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Figure 14: Zone 1( )S α  before and after intersection between curves characterizing Leg length 

constraints, mechanical limits on passive joint and interference between links 

Step5: We take discrete values of Pz  in the interval 2 tilting table _( ,  zhood p p uz l d⎡ ⎤+ −⎣ ⎦  and for each 

value of Pz  we apply Step6 to Step10. 
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Step6: We vary α  between 1-α  and 1α+  following a constant step and for each value of α  we 

repeat the following steps from Step7 to Step10. 

Step7: If 2 ,Pz I∈  we use results from Step4 and we go to Step10 else we go to Step8. 

Step8: If 1 3 ,Pz I I∈ ∪  we horizontally cut all volumes 2 ( 11,  12,  21,  31)P
kV k =  by the plane 

Pz z=  and then we calculate the intersection between the obtained circular zones and the zone 

1( )S α  to get a new zone 2 ( , )PS zα . 

Step9: If 1,Pz I∈  we select the part of half of the ellipse, which is inside the zone 2 ( , )PS zα . 

Other wise if 3,Pz I∈  we select the part of half of the ellipse, which is outside the zone 2 ( , )PS zα  

with respect to 1( )S α . Example is illustrated in Fig. 15. 
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Figure 15: The places of the point P for a given orientation and height with (a) 2Pz I∈ , (b) 

1 3Pz I I∈ ∪  

Step10: We have Py  as function of Px  (Eq. (5)) and we know their lower and upper bounds for 

a given .Pz  Thus we first save these values in a note pad file 1f  then we vary Px  following a 

constant step and we calculate Py  for each value of .Px  This will permit us to save numerically 

all values of Px , Py  and Pz  belonging to the workspace in another note pad file 2f . 

Step11: In order to obtain the volume of the workspace, we import the file 1f  into CATIA V5® 

and we make the meshing by using “Quick surface reconstruction product”. After that, we 

recover the surface by using the “Digitized Shape Editor product”. Finally we fill the surface 

using the fill function in the “part design product”. The obtained volume is the complete 

workspace as shown in Fig. 16. 
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Figure 16: Workspace defined as the set of points P in the fixed Cartesian frame bR  

Now in order to calculate the workspace for a given tool length we proceed as follows: 

Step12: We express the coordinates of the tool centre point Ou  ( tox , toy , toz ) in the fixed 

Cartesian frame as function of the coordinates of the point P 

 to Px x= , _ sin( )to P p uy y d α= −  and _ cos( )to P p uz z d α= +  (17) 

Where _ 1p u p ujd l l= +  and ujl  is the tool length (Fig. 5a). 

Step13: We add the condition that  to tilting tablez z≤  

Step14: We save the obtained results in a note pad file. 

Step15: We do the same operations as for Step 11. This will permit us to obtain a volume that 

represents the complete workspace for a given tool length as shown in Fig. 17. 

 
1 50uL mm=  

 
2 100uL mm=  
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3 150uL mm=  

 
4 200uL mm=  

Figure 17: The workspace for various tool lengths 

The proposed procedure for calculating the workspace of the VERNE parallel module for 

various tool lengths was implemented in Maple 10®. 

IV. CONCLUSIONS 

In this paper, we have proposed a method for calculating the complete workspace for various 

tool lengths of the VERNE parallel module. This method takes into account all constraints 

having an actual influence on the workspace of the VERNE: leg length, serial singularity, 

mechanical limits on passive joints, actuator stroke, interference between links and closure 

constraints. The last constraint was a particular one for the VERNE due to the shape of the leg I 

which is not a parallelogram. 

In this method, leg I was cut by considering that it is linked to the base through two 

prismatic joints instead of one and we geometrically modeled constraints limiting the workspace 

of the new parallel architecture for a given orientation of the platform. The intersection between 

these models is a volume. We geometrically modeled the closure constraint for a given 

orientation of the platform; this gave us a surface. We calculated the intersection between these 

models in a known horizontal plane, then we proceeded by discretization to determine the 

complete workspace of the VERNE parallel module. An algorithm for the determination of the 

workspaces was also presented. This algorithm was implemented in the computer algebra Maple 

10®. Examples were provided to illustrate the results. 

This method was particularly applied for the Verne machine. However it can be always 

applied to all machines of type PSS  ( PUS or PSU ) but with some modifications in the 

algorithm according to the shape of legs and number of degree of freedom of the machine. For 

parallel manipulators with more than three degrees of freedom, we can fix angles representing 

the orientation degrees of freedom and then calculate a constant orientation workspace. For 
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parallel manipulators where legs are simple rods (or of parallelogram shape) we can 

geometrically model constraints and then directly implement these models into CATIA V5® to 

be able to calculate the intersection between these models and obtain the workspace volume. 
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