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Abstract— We proposed a new search heuristic using thecuba In the field of evolutionary computation, neutrality plays a
dIVHITg bf)lﬂ_etaphgﬂ TQIS approla_ch is b?seq C;_n the lcozgept of important role. Under the assumption that the neutral netsvo
evolvability and tends to exploit neutrality in fitness landscape. ; (et
Despite the fact that natural evolution does not directly skect ?re ne?”}l/ :sotéopf’c B.amgttt[ﬂ prloposes an lrtlgurlstlc ac(jjapted
for evolvability, the basic idea behind thescuba search heuristic 0 neutral lan .Scape' _e crawler processit Is a random .
is to explicitly push the evolvability to increase. The seah Neutral walk with a mutation mode adapted to local neugralit
process switches between two phaseSonquest-of-the-Watersand  The per-sequence mutation rate is optimized to jump to one
Invasion-of-the-Land. A comparative study of the new algorithm  npeutral network to another one. When the isotropic assampti
and standard local search heuristics on the NKg-landscapelsas is not verified, for a population based algorithm, Nimwegéen

shown advantage and limit of the scuba search. To enlighten T
qualitative differences between neutral search processegshe al. [5] show the population’s limit distribution on the neutral

space is changed into a connected graph to visualize the patays Ne€twork is solely determined by the network topology. The
that the search is likely to follow. population seeks out the most connected areas of the neutral
network.
In real-world problems as in design of digital circuits
In this paper we propose a novel heuristic calleduba [6][7][8], in evolutionary robotics [9] or in genetic progm-
Searchthat allows to exploit the neutrality that is existing irming [10], neutrality is implicitly embedded in the genogyio
many real-world fithness landscapes. phenotype mapping. Another possibility in evolutionarytiop
This section presents the interplay between neutrality mization is to introduce artificial redundancy into the ediog
fitness landscapes and metaheuristics. Section Il desdtilee [11][12]. This may improve the evolvability of genotype or
Scuba Searcheuristic in detail. In order to illustrate thecreate neutral paths to escape from suboptimal peaks.
efficiency of this heuristic, we use th®¥ K ¢-landscape as a -
model of neutral fitness landscape. This one is developped Evolvability
in section lll. The experiment results are given in sectign | Evolvability is defined by Altenberg [13] as "the ability of
where comparisons are made with standard heuristics.0Bectiandom variations to sometimes produce improvement”. This
V analyzes the neutral search process of scuba search. &acept refers to the efficiency of evolutionary searchsit i
point out in section VI the shortcoming of the approachased upon the work by Altenberg [14]: "the ability of an
and propose aeneric scuba searcheuristic. Finally, we operator/representation scheme to produce offspringaret
summarize our contribution and present plans for futurekwoffitter than their parents”. Smith et al. [15] focus on the &lea
) of evolvabilityand neutrality, they plot the average fitness of
A. Neutrality offspring over fitness of parents (considering 1-bit motati
The metaphor of 'adaptative landscape’ introduced kps an operator). As enlighten by Turney [16] the concept of
S. Wright [1] has dominated the view of adaptive evolutiam: aevolvability is difficult to define. As he puts it: "if ands’ are
uphill walk of a population on a mountainous fitness landsecapqually fit, s is moreevolvablethan s’ if the fittest offspring
in which it can get stuck on suboptimal peaks. Results giveri s is more likely to be fitter than the fittest offspring &f.
by molecular evolution has changed this picture: Kimura [Zollowing this idea we define evolvability as a function (see
establishes that the overwhelming majority of mutatiors asectionlE).
either effectively neutral or lethal and in the latter caseged
by negative selection. This theory is called the theory of Il. SCUBA SEARCH
molecular evolution. This theory can help us to revisit th&. The conquest of the waters

metaphor of adaptive landscape and define a neutral IarreiscapKeeping the landscape as a model, fill each area between

In neutral landscape population can walk on mountain bt alﬁ/vo peaks (local optima) with water allow lakes to emerge.

on plateaus (neutral networks). The dynamics of populati%us the landscape is bathed in an uneven sea; areas under
evolution is then a metastable evolution as proposed bydsoy| _, ' '

. : SO ater represent non-viable solutions. So now there arespath
and Eldredge [3] characterized by long periods of f'me?fsbm one peak to the other one for a swimmer. The key, of
stasis (population stated on a ’neutral network’) punadat ’

by shorter periods of innovation with rapid fitness increase !same neutral degree and same probability to jump

I. INTRODUCTION



course, remains to locate an attractor which represents the

system’s maximum fitness. In this framework, the problem There are two overlapping dynamics during the Scuba
is how to cross a lake without global information. We use th&earch process. The first one is identified as a neutral path.
scuba diving metaphor as a guide to present the principlesAifeach step the scuba diving remains under the water surface
the so-calledscuba searchS\S). This heuristic is a way to driven by the hands-down fithesses; that is fitter fithesseglu
deal with the problem of crossing between peaks and so avoidchable from one neutral neighbor. At that timefta&Count

to be trapped in the vicinity of local optima. The problem isounter is incremented. When the diving reaches a local-
what drives the swimmer from one edge to the opposite edgeutral optimum, that is if all the fithesses reachable froma o

of the lake? The classic view is the one of a swimmer driftingeutral neighbor are selectively neutral or disadvantageo

at the surface of a lake. The new metaphor is a scuba ditiee neutral path stops and the diving starts upltivasion-of-
seeing thewvorld above the water surfac&Ve propose a new the-Land Then thegateCountcounter increases. This process

heuristic to cross a neutral net getting information abthes-
surface (ie. from fitter points of the neighborhood).

B. Scuba Search Algorithm

goes along, switching betwee@onqguest-of-the-Waterand
Invasion-of-the-Langduntil a local optimum is reached.

Algorithm 1 Scuba Search

Despite the fact that natural evolution does not directly flatCount— 0, gateCount— 0

select for evolvability, there is a dynamic pushing evolirgb

to increase [16]. As Dawkins [17] states, "This is not ordjna
Darwinian selection but it is a kind of high-level analogy

of Darwinian selection”. The basic idea behind tt%5
heuristic is to explicitly push evolvability to increaseefdre

presenting this search algorithm, we need to introduce a new

type of local optima, thdocal-neutral optima Indeed with
SS heuristic, local-neutral optima will allow transition fro
neutral to adaptive evolution. So evolvability will be Idiga
optimized.

Given a search spac® and a fithness functiorf defined on
S, some more precise definitions follow.

Definition: A neighborhood structureis a function
V : S — 29 that assigns to every € S a set of neighbors
V(s) such thats € V(s)

Definition: The evolvability of a solution s is
the function evol that assigns to everys € S the
maximum fitness from the neighborhodd(s): Vs € S,
evol(s) = maz{f(s) | s € V(s)}

Definition: For every fitness functiory, neighborhood
structure)V and genotype, the predicatésLocal is defined
as:
isLocal(s,g, W) = (Vs € W(s),g(s') < g(s))

Definition: For everys € S, the neutral setof s is the
setN(s) = {s € S| f(s) = f(s)}, and theneutral
neighborhoodf s is the setVn(s) = V(s) NN (s)

Definition: For everys € S, the neutral degreeof s,
noted Degn(s), is the number of neutral neighbors ef
Degn(s) = #Vn(s) — 1
maximum iff

Definition: A solution s is a local

isLocal(s, f,V)

Definition: A solution s is a local-neutral maximumiff
isLocal(s, evol, Vn)

Choose initial solutiors € S
repeat
while notisLocal(s, evol, Vn) do
M = maz{evol(s) | s € Vn(s) — {s}}
if evol(s) < M then
chooses’ € Vn(s) such thatevol(s')
s — s, flatCount— flatCount +1
end if
end while
chooses’ € V(s) — Vn(s) such thatf(s') = evol(s)
s« s, gateCount— gateCount +1
until isLocal(s, f,V)

M

In order to study the Scuba Search heuristic we have to
use landscapes with a tunable degree of neutrality. Viiéy
fitness landscapes family proposed by Newnsinal [18]
has properties of systems undergoing neutral selectioh suc
as RNA sequence-structure maps. It is a generalizationeof th
N K-landscapes proposed by Kauffman [19] where parameter
K can tune the ruggedness and parametéhe degree of
neutrality of the landscape.

M ODEL OF NEUTRAL LANDSCAPE

A. Definition

The fitness function of av K ¢-landscape is a functioff :
{0,1}" — [0,1] defined on binary strings wittV loci. Each
locus i represents a gene with two possible allelesyr 1.
An "atom’ with fixed epistasis level is represented by a fitnes
componentsf; : {0,1}5+! — [0,q — 1] associated to each
locusi. It depends on the allele at locdsand also on the
alleles atK other epistatic loci & must fall betweerd and
N —1). The fitnessf (z) of z € {0,1}* is the average of the
values of theN fithess componentg;:

N
1
f(z) = m;fi(xﬁxip---,xi;()
where{iy,...,ig+ C {1,...,i—1,i+1,..., N}. Many ways

have been proposed to choose Hiether loci from/N loci in



TABLE |
AVERAGE NEUTRAL DEGREE ONN K q-LANDSCAPEWITHN = 64
PERFORMS ON50000 GENOTYPES

2) Netcrawler ProcessWe also comparg'S to Netcrawler
Process(N () proposed by Barnett [4]. This is a local search
adapted to fitness landscapes featuring neutral netorks

K Netcrawler uses a mutation per-sequence mutation ratenwhic
q 0 2 4 8 12 | 16 is calculated from the neutral degree of neutral networks [4
2 |[ 3500 21.33 | 16,56 | 12.39 | 10.09 | 8.86 In th N K a-land . ati d esti
3 |l 2100 1329 | 1043 | 765 | 621 | 543 n the case o g-landscapes, experimentations and esti-
4 || 12.00| 6.71 | 430 | 245 | 166 | 1.24 mations of neutral degree given by [20] yields as mutation
100 ]| 1.00 | 032 | 008 | 0.00 | 0.00 | 0.00 flips only one bit per genotype. The algoriti{in 3 displays the

Netcrawler process.

the genotype. Two possibilities are mainly used: adjacadt ghlgorithm 3 Netcrawler Process

random neighborhoods. With an adjacent neighborhoodstheRequire: stepMax> 0

genes nearest to the locuisre chosen (the genotype is taken St€P<—0 _

to have periodic boundaries). With a random neighborhood,Choose initial solutiors € S
the K genes are chosen randomly on the genotype. EacHeP€at

fitness component; is specified by extension, ie an integer ~ chooses € V(s) randomly

NUMbEery; (4., .....z;,. ) from [0, q—1] is associated with each if f(s) < f(s) then
element(x;; z;,, . .., 2, ) from {0,1}5+1 Those numbers 58
are uniformly distributed in the intervéd, ¢ — 1]. end if
step— step+1
B. Properties until stepMax< step

The parameters ofV K ¢-landscape tune ruggedness and
neutrality of the landscape [18][20]. The number of local 3) Hill Climbing Two StepsHill Climber can be extended
optima is link to parametek . The largest number is obtainedn many ways. Hill Climber two Step (HC2) exploits a
when K takes its maximum valud/ — 1. The neutral degree larger neighborhood of stage 2. The algorithm is nearly the
(see tab] I) decreases wheincreases and wheli increases. Same asHC'. HC2 looks in the extended neighborhood of

The maximal degree of neutrality appears whetakes the Stage two of the current solution to see if there is something
value 2. better. If so, HC2 adopts the solution in the neighborhood

of stage one which can reach a best solution in the extended

IV. EXPERIMENT RESULTS neighborhood. If notH C2 stop assuming the current solution
is good enough. Sd7C2 can avoid more local optimum than
HC. Before presenting the aIgorithﬂ1 4 we must introduce the

Three algorithms of comparison are used: two kindsiibif following definitions:
Climbing and one heuristic adapted to neutral landscape, thepefinition: The extended neighborhood structdréom V
Netcrawler Process is the functionV?(s) = Uy, ey(s)V(s1)

1) Hill Climbing: The simplest type of local search is
known asHill Climbing (HC) when trying to maximize a  Definition: evol? is the function that assigns to every

solution. HC' is very good at exploiting the neighborhood; its ¢ S the maximum fitness from the extended neighborhood
always takes what looks best at that time. But this approash h2(s). vs € S, evol?(s) = maz{f(s)|s € V2(s)}

some problems. The solution found depends from the initial
solution. Most of the time, the found solution is only a local
optima. We start off with a probably suboptimal solutionefih Algorithm 4 Hill Climbing (Two Steps)
we look in the neighborhood of that solution to see if there step— 0

is something better. If so, we adopt this improved solutisn a Choose initial solutiors € S

our current best choice and repeat. If not, we stop assumingepeat

A. Algorithm of Comparison

the current solution is good enough (local optimum). if evol(s) = evol?(s) then
chooses’ € V(s) such thatf(s') = evol?(s)
Algorithm 2 Hill Climbing else
step— 0 chooses’ € V(s) such thatevol(s ) = evol?(s)
Choose initial solutiors € S end if
repeat s« s, Step— step +1
chooses’ € V(s) such thatf(s') = evol(s) until isLocal(s, f, V?)

s— s, step— step + 1
until isLocal(s, f,V)

2More exactly toe-correlated fithess landscapes
3Let's note thatV(s) C V3(s)



TABLE Il

Y ] ) AVERAGE NUMBER OF EVALUATIONS ONN K q-LANDSCAPEWITHN = 64
All the four heuristics are applied to a same instance of

B. Parameters setting

N K q fitness landscageThe search spacs is {0,1}%, that K
is bit strings of lengthV. In this paper all experiments are le 9 0 2 4 8 12 16
. ! : . HC 991 | 961 | 807 | 613 | 491 | 424
with N = 64. The selected nelghbor/hood is the cla§5|cal onesg 2 || 35769 | 23565 | 15013 | 8394 | 5416 | 3962
bit mutation neighborhood?(s) = {s | Hamming(s ,s) < | HC2 29161 | 35427 | 28038 | 19192 | 15140 | 12374
i 3 HC 1443 | 1159 | 932 | 694 | 546 | 453
1}. For each triplet of parameter$, K andgq, 1Q runs were | 3 | 31689 | 19129 | 10662 | 6095 | 3973 | 2709
performed. For netcrawler process, stepMax is SeX0@. HC?2 42962 | 37957 | 29943 | 20486 | 15343 | 12797
HC 1711 | 1317 | 1079 | 761 | 614 | 500
C. Average performances ss 4 || 22293 | 9342 | 5153 | 2601 | 1581 | 1095
Figure [l shows the average fitness found respectively |offC? 52416 | 44218 | 34001 | 22381 | 18404 | 14986
- ; 2 O 2102 | 1493 | 1178 | 832 | 635 | 517
each of the four_ heuristics as a function of the epistalicgg 100 || 4175 | 1804 | 1352 | 874 | 653 | 526
parameterK for different values of the neutral parameter | HC2 63558 | 52194 | 37054 | 24327 | 18260 | 15271

In the presence of neutrality, according to the averagesitne

Scuba SearcloutperformsHill Climbing, Hill Climbing two

stepsand Netcrawler Let us note that with high neutrality A. Exploration neighborhood size

(¢ = 2 andq = 3), difference is still more significant. Without  The number of evaluations for Scuba Search is greater

neutrality ¢ = 100) all the heuristics are nearly equivalentthan the one fofC or for Netcrawler. But it lesser than the

exceptNetcrawler one for HC2. This last heuristic realizes a larger exploration
The two heuristics adapted to neutral landscape, Scuffathe neighborhood thas's: it pays attention to neighbors

Search and Netcrawler, have on average better fitness vakigh same fitness and all the neighbors of the neighborhood

for ¢ = 2 and ¢ = 3 than hill climbing heuristics. Thesetoo. However the average fitness found is less good than

heuristics benefit in NKg-landscapes from the neutral patfie one found bySS. So, the number of evaluations is not

to reach the highest peaks. sufficient to explain good performance 6. Whereas there

is premature convergence towards local optima witli'2,

SS realizes a better compromise between exploration and

D. Evaluation cost o . ;
) , exploitation by examining neutral neighbors.
Table[l] shows the number of evaluations for the different

heuristics except for Netcrawler. For this last heuristie t

number of evaluations is constant whatevérand ¢ values B. Neutral search process

are; and we get the smallest evaluation cost from all thepifference between the two neutral heuristics can be ex-
heuristics {naxzStep = 300 evaluations). For all the otherplained analyzing the respective neutral search process.
heuristics, the number of evaluations decreases WitliThe  For Netcrawler, as mutation is uniform on the neighborhood,
evaluation cost decreases as ruggedness increases For the probability of neutral mutation is proportional to the
and H(C'2, the evaluation cost increases withFor HC and npeutral degree Pyeutrainrut(s) = Deng(s)_ Neutral mutation
HC2, more neutral the landscape is, smaller the evaluatigepends on the neutral degree only. If a mutation is neurtoal,
cost. Conversely, fo5S the cost decreases with At each way is preferred, all the neutral paths have the same priityabi
step the number of evaluations 1 for HC' and X =1 {5 he chosen. The Netcrawler promotesutral drift

for HC2. So, the cost depends on the length of adaptive For Scuba Search, the probability of neutral mutation in-
walk of HC' and HC?2 only. The evaluation cost a/C and creases with the neutral degree (see[fig. 2); without however
HC2 is low when local optima are nearby (i.e. in ruggeée proportional. This probability is larger fa&8S than for
landscapes). Fa$'S, at each step, the number of evaluationSetcrawler and depends on parametgand K also. Contrary

is (14 Degn(s))N which decreases with neutrality. So, th@o our intuition about neutral mutation, the probability of
number of evaluations depends both on the number of stepsutral move decreases as neutrality increases. The pligbab

in SS and on the neutral degree. The evaluation cos§8f of neutral mutation for one given neutral degree increases
is high in neutral landscape. with ¢ and K as well. SS performs a neutral move from
genotypes to s if s have a strictly greater evolvability than

s. When neutrality is large, all the neutral neighbors have

According to the average fitness found, Scuba Search ofjtsirong probability to have the same evolvability. In other
performs the others heuristics on theiq fitness landscapes. ords neutral networks are few connected to neutral sets an

However, it should be wondered whether efficiency of Scubgen neutral moves are not frequent. When neutrality ile it
Search does have with the greatest number of evaluatioes. Ty e important, evolvability of neutral neighbors becornite

neutral search process of Netcrawler and Scuba marked fiferent and thers'S have a larger probability to move while
dissimilarity. We will analyze their own strategy. maintaining the same fitness.

V. ANALYSIS

4With random neighborhood Figure@ shows the average number of stepsdCount +
5In our experiments netcrawler stops moving before thistlimi flatCount) and the average number of neutral mutations
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g Fig. 4. Hill Climbing paths. NKq landscape represented as a connected graph
0 2 4 8 12 16 (N=5, K=2, g=2). According to the fitness functigfi each arrow connects
one individual to the fittest genotype in its neighborhood.

number of mutation

Fig. 3. Number of stepsg@eteCount + flatCount) and neutral mutations
(flatCount) for Scuba Search Heuristic oW K g-landscape withV = 64

puting by the scuba heuristic. The total number of mutations K
(steps) decreases as epistadi§) (ncreases. The maximum a »
number of neutral mutations is reached for intermediateeteg . , :

andq = 3 as a function ofK. e
(flatCount) as a function of the epistatic parameter K com- @ v v?\: i

of epistasis i = 4); and then the number of neutral moves /

decreases, but as the probability of neutral move incretses

number of steps decreases faster than the number of neutral

moves. So0,SS can keep a high number of neutral mutations.
To enlighten differences between the search processes, we

map the Iandscape onto a 2-dimensional space. This tecehnlg}dl 5. Scubapaths. NKq landscape represented as a connected graph (N=5,

inspired by Layzeel [21] allows to visualize the pathwayg=> g=2). According to the fitness functiofi, each solid arrow connects
within a search space that a heurictic is likely to followone individual to the fittest genotype in its neighborhoodcdrding to the

The space is transformed into a connected graph Vertiees ﬁiolvability functionevol, each dotted arrow connects one individual to the
. . . . ) . t type in it tral neighborhood.
connected if their Hamming distance from each other is one. > 9eNoYPe I 1S NEUAl NEIghbormoo
According to the heuristic used C, 5SS or NC, salient edges
are picked out, and the rest discarded. Each genotypedggrti
is shaded according to its fitnés3 his allows to "see” all the
neutral sets. To illustraté/C, SS, NC, and HC?2 potential 24). Second, somé/C' paths can be replaced by a neutral
dynamics, a small NKg-landscape, with intermediate egistaPath (see for instance the new neutral path from node 11 to
and high neutrality, is considered(= 5, K = 2,q = 2). node 10). Globally the number of local optima and basins of
Figure [} shows all theHill Climbing paths through the attraction tends to reduce (equal to five here).
landscape. According to the fithess functign each arrow According to the fitness functiorf, each solid arrow in

connects one individual to one of the fittest genotypes {4 connects one individual to a strict fitter genotypitsin
its neighborhood. We can see eight local optima as well thgijhhorhood and dotted arrows connect two neighbors with

corresponding basins of attraction for this landscape. the same fitness. So,Netcrawler Searcipath is a subgraph
Figure[$ shows all th&cuba Searchaths. According to the f this graph.

fitness functionf, each solid arrow connects one individual to

one of the fittest genotypes in its neighborhood. According Figure [f shows all theHill Climbing two stepspaths.

to the evolvability functiorevol, each dotted arrow connectsfccording to the fitness functiofi, each solid arrow connects
one individual to one of the fittest genotypes in its neutr@ne individual to genotype as defined in algoritim 4. As might
neighborhood. The choice between neutral path Hidéipath be expected, compared #C', the number of local optima
is specified by the scuba algorithm (see algorifhm 1). Theze 4 smaller (equal to five). But our experiments have shown
two types of change froni/ C to SS. First, some new neutral that coarsely increasing neighborhood size is not sufficien

paths appear (see for example the path from node 8 to nd@dmprove performance. Comparison betwegn'2 and S5
performances on NKqg-landscape suggests that exploiting ne

6In our example, low-fitness genotypes are black trality is a better way to guide search heuristics.

|
2%



allows jumping to a fitter solution. For instance, we could
use Simulated Annealing [23] or Tabu search [24] to optimize
neutral network then jump to the first improvement meets in
the neighborhood.

More generally, the Scuba Search heuristic could be ex-
tended in three ways:

« evolvability definition,

« local search heuristic to optimize neutral network,

« local search heuristic to jump toward fitter solution.

From these remarks we propose to definedGesmeric Scuba
Search(alg. [$).

Algorithm 5 Generic Scuba Search
flatCount«— 0, gateCount— 0

Choose initial solutiors € S
Fig. 6. Netcrawlerpaths. NKq landscape represented as a connected graphrepeat

(N=5, K=2, q;2)_. _According_ to the fitnes_s _functiloﬁ, each solid arrow while terminal condition not metdo
connects one individual to a fitter genotype in its neighboth Dotted arrows
connect neighbors with the same fitness. s « Improve (s, evol, Vn(s))
flatCount«— flatCount + 1
end while

? %?/@ ? %? : s « Improve(s, f,V(s))
gateCount— gateCount+1
: ”\m\ ?? /a : ?/G . until terminal condition met
bt u 2 4

N\

6

VII. CONCLUSION AND PERSPECTIVES

This paper represents a first step demonstrating the paltenti
interest in using scuba search heuristic. According to the
Fig. 7. Hill Climbing two stepspaths. NKq landscape represented as gyerage fithess found,S outperforms hill climbing heuristics
connected graph (N=5, K=2, q=2). According to the fitnestion f, each d | h fi land C .
arrow connects one individual to one of its neighbors whiah access to the an netcrawler .on theV K¢ fitness lan sc_apes. omparison
fittest genotype in its extended neighborhood (size 2). with HC?2 algorithm has shown that.S efficiency does not

have with the number of evaluations only. Mapping the land-
scape onto 2-dimensional space allows qualitative diffese
VI. DiscussIoON between neutral search processes to emerge.

A. Limit of the Scuba search When neutrality is too high the scuba search stops in the

The main idea behind Scuba Search heuristic is to try {@iddle’ of neutral networks. In future work, we would like t
explicitly optimize evolvability on a neutral network be& replace Improve heuristic by a tabu search allowing to drift
performing a qualitative step using a local search hearistP" neutra! networks. . o
Optimized evolvability needs evolvability not to be comita AS our implementation uses hill climbing as Imprewend
on a neutral network. For example in the well-known RoyalMProve: heuristics, S5 is more to be compare to a local
Road landscape, proposed by Mitchell et al. [22], a hig‘-’r?arCh heuristic without deleterious mutation. Thus u3adou
degree of neutrality leads evolvability to be constant ocheaS€arch on neutral landscape it could be useful to reptaCe
neutral network. A way to reduce this drawback is to modifpy SS. At each iteration of tabu search we choose a new better
the neighborhood structung induced by the choice of per-Solution which is not in the tabu list. This better solutian i
sequence mutation rate; for example we could use the p@rneutral neighbor if its evolvabilty is greater than evoilis

) Performance of heuristics adapted to neutral landscape
B. Generic Scuba Search depends on the difficulty to optimize neutral networks and

As previously shown, the evaluation cost®¥f is relatively the connectivity between networks. It would be interesting
large. In oder to reduce this cost, one solution would be f@ve a measure of neutral networks optimization difficulty.
choose a "cheaper” definition for evolvability: for exampleMoreover if we are able to measure the difficulty to jump from
the best fitness of. neighbors randomly chosen or the firsbne neutral network to another one then we can compare the
fitness of neighbor which improves the fitness of the curreefficiency of neutral exploration.
genotype. Another solution would be to change either thalloc Last but not least we obviously have to study scuba search
search heuristic which optimizes evolvability or the ondalih on other problems thanV K¢-landscapes, in particular on



real-world fitness landscapes where neutrality alreadyrabt
exists.
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