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A combinatorial approach to jumping particles
II: general boundary conditions

Enrica Duchi and Gilles Schaeffer

ABSTRACT: We consider a model of particles jumping on a row of cells,
called in physics the one dimensional totally asymmetric exclusion process with
open boundaries (TASEP). From the point of view of combinatorics a remarkable
feature of this Markov chain is that Catalan numbers are involved in several entries
of its stationary distribution.

In a companion paper, we gave a combinatorial interpretation and a simple
proof of these observations in the simplest case where the particles enter, jump
and exit at the same rate. To do this we revealed a second row in which particles
travel backward and defined on these two row configurations a Markov chain with
uniform stationary distribution which is a covering of the TASEP.

In this paper we show how to deal with general rates. The covering chain
is still defined on two row configurations, but its stationary distribution is not
uniform anymore. Instead it is described in terms of two natural combinatorial
statistics.

1 Jumping particles

We shall consider a model of jumping particles on a row of n cells that was studied
by and large since the early 90’s in physics, under the name one dimensional
totally asymmetric exclusion process with boundaries, or TASEP for short. Roughly
speaking, the TASEP consists of black particles entering a row of n cells from an
infinite reservoir on the left hand side and randomly hopping to the right with the
simple exclusion rule that each cell may contain only one particle.
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Figure 1: An informal illustration of the TASEP.

The TASEP is usually defined as a continuous-time Markov process on a finite
set of configurations of particles on a line. We shall use an alternative definition
as a finite state Markov chain —with discrete time— which is more convenient
for our combinatorial purpose. One could insist on calling our chain the TASEC,
with “C” for chain instead of “P” for process, but as we will argue later, there
is no need for this distinction. Another cosmetic modification we allow ourselves
consists in putting a white particle in each empty cell, to make explicit the left-
right particle-hole symmetry of the system.



1.1 The basic system, or TASEP

A basic configuration is a row of n cells, each containing either one black particle
or one white particle (see Figure 2). These cells are delimited by n + 1 walls: the
left border (or wall 0), the ith separation wall for ¢ = 1,...,n — 1, and the right
border (or wall n).
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Figure 2: A basic configuration with n = 10 cells.

The TASEP, which we shall sometimes refer to as the basic system, is a
Markov chain Sy, defined for any three parameters o, 8 and v in the interval
[0,1] on the set of basic configurations. From time ¢ to ¢ + 1, the chain evolves
from the basic configuration 7 = S,43,(t) to a basic configuration 7' = S, (t + 1)
as follows:

e A wall 7 is chosen uniformly at random among the n + 1 walls, and then
may become active with probability A(i), with A({) = afori=1,...,n—1,
A(0) = 8 and A(n) = 7.

e If the wall did not become active, then nothing happens: 7' = 7.
e Otherwise the configuration may change near the active wall:

a. If the active wall is not on the border (i € {1,...,n — 1}) and has a
black particle on its left and a white one on its right, then these two
particles swap: e|o — o]e.

b. If the active wall is the left border (i = 0) and the leftmost cell contains
a white particle, then the white particle leaves the system and it is
replaced by a black particle: o — |e.

c. If the active wall is the right border (i = n) and the rightmost cell
contains a black particle, then the black particle leaves the system and
it is replaced by a white particle: o] — o|.

d. Otherwise the configuration is left unchanged.

The four cases a, b, ¢, d define an application ¢ from the set of configurations with
an active wall into the set of configurations, and, in terms of this application, the
chain can be described as: let I(t) be a sequence of independent uniform random
variables on {0,...,n}, and set

_ | 9(Sap,(t),I(t)) with probability A(I(t)),
Sapy(t +1) = { Sagv(tw) otherwise,

where A\(i) = a for i € {1,...,n— 1}, A(0) = 8, and \(n) = .

As illustrated by Figure 3, during the evolution of the system, black par-
ticles travel from left to right while white particles do the opposite. As already
mentioned, one can equivalently think about white particles as empty cells. See
Figure 10 for the entire system with n = 3.



Q0|00 — |0|®|0|®
O|@|O|@| —= |O|®@|O|O
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Figure 3: A possible evolution, with n = 4. The active wall triggering each transi-
tion is indicated.

1.2 A remarkable stationary distribution

Among many results on the TASEP, Derrida et al. [1, 3] proved the following nice
property of the system in the case a = f = v = 1. First,

1

Prob(S111(t) contains 0 black particles) — , (1)
t—o0 Cn+1
where Cpy1 = -5 (*"1?) is the (n + 1)th Catalan number. More generally, for all
0<k<n,
L (L (nH)
Prob(Si11(t) contains k black particles) —y 2k Jin=k/ (2)
t—o0 Cn+1

The finite state Markov chain Si1; is clearly ergodic so that the previous
limits are in fact the probabilities of the same events in the unique stationary
distribution of the chain [6]. More generally, Derrida et al. provided expressions for
the stationary probabilities of Sy5+. Since their original work a number of papers
have appeared, providing alternative proofs and further results on correlations,
time evolutions, etc. It should be moreover stressed that the model we presented is
a special case among the many existing variants of asymmetric exclusion processes.
See for instance the article [4] for recent advances and a bibliography. However,
the remarkable apparition of Catalan numbers is not easily understood from the
proofs in the physics literature. As far as we know, these proofs rely either on a
matriz ansatz, or on a Bethe ansatz, both being then proved by a recursion on n.

In a previous paper [5], we proposed a combinatorial proof of Formulas (1)
and (2) based on a combinatorial interpretation of the stationary distribution of
S111- The aim of the present paper is to give a combinatorial derivation of the
general stationary distribution of Sy .

1.3 The complete system

The main ingredient we introduced in [5] to study the TASEP consisted in a new
Markov chain Xi11 on a set Q% of complete configurations, that satisfies two main
requirements. On the one the stationary distribution of the basic chain Si11 can
be simply expressed in terms of that of the chain X;11. On the other hand the
stationary behavior of the chain X;;; is easy to understand. The complete con-
figurations that we introduced for this purpose are made of two rows of n cells
containing black and white particles. The first requirement was met by imposing
that in the first row, the chain X;;; simulates the chain Syi1, i.e. Xj11 is a cov-
ering chain of Sj;;. The second requirement was met by adequately choosing the
complete configurations and the transition rules so that X311 has clearly a uni-
form stationary distribution. In this paper we shall proceed in an analogous way



Figure 4: A complete configuration with n = 10.

and construct a complete chain X,p, on Q9, that will allow us to describe the
stationary distribution of the basic chain S,g3.,.

A complete configuration of QO is a pair of rows of n cells satisfying the
following constraints:

(i) The balance condition: The two rows contain together n black and n white
particles.

(i) The positivity condition: On the left hand side of any vertical wall there are
no more white particles than black ones.

An example of complete configuration is given in Figure 4. In view of Formulas (1)

and (2), one first reason to introduce these complete configurations is that the

cardinal of Q0 is n%rz(?:ff), and that, for all 0 < k < n, the cardinal of the set
QO

km Of complete configurations with k black and m = n — k white particles on

the top row is ¢ (" (™*)- These formulas can be obtained in many ways, for

instance using the cycle lemma (see [5]), or through one-to-one correspondences
between complete configurations and bicolored Motzkin paths with n steps, or
Dyck paths with 2n + 2 steps [8, Chap. 6]. Yet another classical way to obtain
them is using generating functions, as we shall do in Section 2.

The Markov chain X,p, on Q2 will be defined in terms of an application T
from the set Q9 x {0, ...,n} to the set Q2. This application, which we already used
in [5], is derived in Section 3 as the first component of a fundamental bijection T
and can be conveniently described as follows. Given a complete configuration w and
an active wall ¢, the actions of T on the first row of w do not depend on the second
row, and mimic the application ¢ describing the evolution of the Markov chain
Sapy in the cases a, b, ¢ and d of the description of the basic TASEP. In particular
in the top row, black particles travel from left to right and white particles from
right to left. As opposed to that, in the bottom row, 7' moves black and white
particles backward. In order to describe this, we first introduce the concept of
sweep (see Figure 5):

e A white sweep between walls i; and iy consists in all white particles of the
bottom row and between walls 7; and 42 simultaneously hopping to the right
(some black particles thus being displaced to the left in order to fill the gaps).

o A black sweep between walls i; and is consists in all black particles of the
bottom row and between walls i; and iy simultaneously hopping to the left
(some white particles thus being displaced to the right in order to fill the

gaps).

Next, around the active wall i, we distinguish the following walls: if ¢ # 0, let
j1 < i the leftmost wall such that there are only white particles in the top row
between walls j; and 4 — 1; if ¢ # n, let jo > i be the rightmost wall such that
there are only black particles in the bottom row between walls ¢ + 1 and ja.
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Figure 5: A white sweep and a black sweep.
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Figure 6: Sweeps occurring below the transition (blw — wlb).

With these definitions, we are in position to describe completely the appli-
cation T. Given a configuration w € Q% and an active wall i € {0,...,n}, the
cases a, b ¢ and d of the basic chain describe the first row of T'(w, 7), and they are

complemented as follows to give the second row:

a. Depending whether the particle on the bottom right of the ith wall in w
is black or white, a white sweep occurs between j; and i, or a black one

between i + 1 and js + 1 (see Figure 6).

b. The leftmost column of w consists of a |{|-column. These two particles ex-
change (in agreement with the rule for the top row), and a black sweep occurs

between the left border and wall ja + 1.

c. The rightmost column of w consists of a |°|-column. These two particles
exchange (in agreement with the rule for the top row), and a white sweep

occurs between wall j; and the right border.

d. As in the top row, nothing happens in the bottom row.

The Markov chain X,g, is the Markov chain on the set Q9 of complete
configurations that is defined from the application T exactly as the TASEP is
described from J: the evolution rule from time ¢ to ¢t + 1 consists in choosing

i = I(t) uniformly at random in {0,...,n} and setting

[ T(Xap(),i) with probability A(i),
Xapy(t+1) = { Xopy (tiy otherwise,

where A\(i) = a for i € {1,...,n— 1}, A(0) = 8, and A(n) = 1.
By construction, the Markov chains S,g, and X3, are related by

Saﬂ'y = top (Xaﬂ”r) ’
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Figure 7: A configuration w with weight g(w) = 831946, Labels are indicated
below particles.

where top(w) denotes the top row of a complete configuration w, and the = is
intended as identity in law. An appealing interpretation from a combinatorial
point of view is that we have revealed a circulation of the particles, that use the
bottom row to travel backward and implement the infinite reservoirs.

1.4 The stationary distribution of the complete system

In order to express the stationary distribution of the chain X3, , we introduce two
combinatorial statistics and use them to associate a weight ¢(w) to each complete
configuration.

By definition, a complete configuration w is a concatenation of four types
of columns |J], |2], || and |7 |, subject to the balance and positivity conditions.
Observe that the concatenation of two complete configurations of Qf and QY with

i+ j = n yields a complete configuration of Q2. Let us call prime a configuration
that cannot be decomposed in this way. A complete configuration w can be uniquely
written as a concatenation w = wj ---wy,, of prime configurations. These prime
factors can be of three types: |°|-columns, |g|-columns, and blocks of the form
|e]w'| 2| with w’ a complete configuration. The inner part w’ of a block w = | |w’|?|
is referred to as its inside.

Now, given a complete configuration w, let us assign labels to some of the
black and white particles of its bottom row: a white particle is labeled z if it is
not in a block, and a black particle is labeled y if it is not in the inside of a block
and if on its left hand side, all white particles belong to some block. Let us denote
by ng(w) and n,(w) respectively the number of labels of type « and the number
of labels of type y in the configuration w. Then the weight of a configuration w is
defined as

ny(w) Na(w)
o o
q(w) = IBH n (_) (_) — anm(w)—i-ny(w)ﬂn—ny(w) n—nm(w)‘
(w) "\ 3 5 gt

For instance, the weight of the configuration of Figure 7 is a®831%4!¢, and more
generally the weight is a monomial with total degree 2n.

Theorem 1.1 The Markov chain X, is ergodic and has the following stationary
distribution:

Prob(Xop,(t) =w) — a() where 7, = z q(w"),

t—o0 Zn ’

w' e

where q(w) is the previously defined weight on complete configurations.
In particular for a« = 8 = v = 1, q(w) = 1 for all configurations and we
recover uniformity as in [5],
1 1

PTOb(Xlll(t) :CU) tjo W = C_



The Markov chain X,3, is clearly aperiodic, and the fact that it is irreducible
follows from the irreducibility of Si11 done in [5]. This granted, it is sufficient for
the proof of Theorem 1.1 to show that the distribution induced by the weights ¢ is
stationary. We shall use an alternate description of 7', which rely on the following
result proved in Section 3.

Theorem 1.2 There ezists a bijection T from Q% x {0,...,n} onto itself such
that

e the application T is the first component of T: for all w and i, T(w,i) =
W' j) = T(w,i) =w',

e the bijection T transports weights: for all (W', ) = T(w,1),

A gw') = A@) q(w),
where A\(i) = a fori € {1,...,n—1}, AX(0) = B and A(n) =~.

In order to see that the distribution induced by ¢ is stationary, we assume
that
aw)
Zn’
and try to compute Prob(Xag(t + 1) = w’).

Recall that I(t) denotes the wall chosen at time ¢, so that Xag,(t +1) =
T(Xapy(t),I(t)), and define J(t+ 1) by T (Xapy(t),I(t)) = (Xap,(t+1),J(t+1))
if I(t) became active, or by J(t + 1) = I(t) otherwise. Then, in view of the first
point in Theorem 1.2,

Prob(Xap,(t) =w) = for all w € QY

Prob(Xasy(t+1) =w') = > Prob(Xap,(t+1) =w', J(t+1) = j).
j=0

Now, by definition of the Markov chain X3, for all w’ and j,
Prob(Xas,(t+1) =w', J(t+1) = j)
= A(i) - Prob(X,p,(t) = w, I(t) =)
+ (1= A(j)) - Prob(Xas, (t) = ', I(t) = j),

where (w,i) = T~1(w', 7). Since the random variable I(t) is uniform on {0,...,n},
we get
Prob(Xagy(t +1) = o', J(t+ 1) = j)
~ oy dw) 1 W o) 1
= A0 a0 T

But according to the second point in Theorem 1.2, A(i)g(w) = A(j)q(w’) so that
the terms involving A cancel. Finally

—q(w) 1 q(«")
Prob(Xap,(t+1) =w') = > el
j:O n n

and this completes the proof that the distribution induced by ¢ is stationary.



1.5 From the complete to the basic system.

The relation Syg, = top(X,s,) now allows to derive from Theorem 1.1 a combi-
natorial interpretation for the basic system.

Theorem 1.3 Let top(w) denote the top row of a complete configuration w. Then
for any initial configurations Sap(0) and Xqap(0) with top(Xapy(0)) = Sasy(0),
and any basic configuration r,

1
Prob(Sag(t) =7) = Prob(top(Xagy(t)) =1) = Z Z q(w).
{we |top(w)=r}
In particular, in the case a = f = v =1, we recover

Prob(Sap,(t) =1) — |{w € 00 | top(w) = r}|

= )
which is yields
Prob(Sap (t) contains k black particles) — | %’m| = %H(n;:l) ("‘"tl)
o tooo ()] Cnia

As discussed in Section 4 this interpretation sheds a new light on some recent
results of Derrida et al. connecting the TASEP to Brownian excursions [2].

1.6 Continuous-time descriptions of the TASEP

In the physics literature, the TASEP is usually described in the following terms.
The time is continuous, and one consider walls where a move can take place: at
any time, wall ¢ has probability A(i)dt to trigger a move w — ¥(w, %) during time
interval dt (the rate \(i) is defined as previously).

Following the probabilistic literature [7], one can give an formulation which is
equivalent to the previous one, but already closer to ours. In this description, each
wall waits for an independent exponential random time with rate 1 before waking
up (in other terms, the probability that wall ¢ will still be sleeping in ¢ seconds is
e~ ). When wall i wakes up, it has probability A(i) to become active. If this is the
case, then the transition w — ¥(w, 1) is applied to the current configuration w. In
any case the wall falls again asleep, restarting its clock again.

This continuous-time TASEP is now easily coupled to the Markov chain Sy,
Let the time steps of S,3, correspond to the succession of moments at which a
wall wakes up. Then in both versions, the index of next wall to wake up is at any
time an uniform random variable on {0,...,n}, and when a wall wakes up the
transition probabilities are identical. This implies that the stationary distribution
of the continuous-time TASEP and its Markov chain replica are identical.

1.7 Outline of the rest of the paper.

In Section 2 an approach to compute explicit quantities from the combinatorial
interpretation is briefly exposed. Theorem 1.2 is proved in Section 3. Finally some
concluding remarks are gathered in Section 4.



2 Enumeration

Let us introduce the weighted generating function of complete configurations with
respect to their length:

Z(t;u,v) = Z z whe (@ yn(@) gn so that  Z(Bvt; 2, %) = EnZO Znt™.

n>0weQ?
The decomposition of a configuration at its first block yields
Z(t;u,v) = 1+ tvZ(t;u,v) + tuZ(t; 1,0) + t20Z(t;1,1) Z(t; u,v).
Solving this equation yields

2—u—v+uv—2tuww — (u+v—uv)y/1—4t

Z(t; =
(tu,v) 2(1 —u + tu?)(1 — v + tv?)

Extracting coefficients in this expression allow to recover for instance a formula
for Z,. One could also have taken into account the number of particles in the top
row in the equation. We do not pursue on this line since Z,, was obtained by other
ways and largely studied as a function of a, 3, v in the physical literature.

3 The bijection T

The aim of this section is to prove Theorem 1.2, thus giving an alternate description
of the transformation 7" and a case by case analysis of its action on the weight g.
We need the following properties, the verification of which is left to the reader.

Property 3.1 Let w be a complete configuration belonging to §,, then we have
the following structure properties:

1. In a local configuration |3 || the black particle in the bottom row never con-
tributes a label y.

2. The white particle in the bottom row of a | |-column never has a label x.
and movement properties:

i. The deletion/insertion of a | |-column does not change the labels of other
particles.

#. The deletion/insertion of a pair °|_ taking the form |3|2| < |3| does not
change the labels of other particles.

From now on in this section, (w,?) denotes an element of the current class,
and (w',j) its image by 7. In the pairs (w,) and (w',j), ¢ and j refer to walls
of the configurations w and w', and 4 is called the active wall of w. Following the
notations of Section 1, when ¢ # 0, we also consider j; < i the smallest integer
such that in the top row of w all cells between walls j; and ¢ — 1 contain white
particles. Symmetrically, when i # n, we consider j» > i the largest integer such
that in the top row of w all cells between walls i+ 1 and j» contain black particles.
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Figure 8: Jump moves in the case e|o — ofe.

To define the bijection T' and prove Theorem 1.2 we shall partition the set
0 x {0,...,n} into classes Ay, Aqr, Agr, Agr, Ap, Ap,, Ac, Ac,, Ag, and de-
scribe, for each class A, its image B, = T(A.) under the action of T and the
corresponding variation of the weight g:
The active wall of w separates in the top row a black particle P and a white particle ().
Then in the top row the particles P and ) swap. In the bottom row, the sweep that
occurs depends on the type of the particle R that is below @ in w (see Figure 8):

Ay The particle R is black and the wall j; is different from 0. Then j = j; and,
in the bottom row, a white sweep occurs between walls j and ¢. The new
configuration w’ belongs to Q,,. Indeed w’ can also be described as obtained
from w by moving a | |-column from the right of the ith wall to the right of

the jith. But moving a | |-column has no effect on the positivity constraint.

Now we want to compare g(w) and g(w'). According to Property 3.1.1 the
particle R does not contribute a label y neither in w nor in w’. Moreover,
according to Property 3.1.i, the displacement of the |J|-column does not
affect labels of other particles. Hence ¢(w) = ¢(w'), in agreement with A() =
A()-

The image B, of the class A, consists of pairs (w',j), j > 0, with a ||
column on the right hand side of the jth wall of w' and such that the sequence
of white particles on the right hand side of the jth wall in the top row is
followed by a black particle.

10



Ay The particle R is black and the wall j; = 0. Then j = 0 and a white sweep
occurs between walls 0 and 4. The new configuration w' still belongs to €,
since it is again obtained from w by moving a |{|-column from the right of
the 4th wall to the right of the wall 0.

As opposed to the previous case, Property 3.1.1 applies only to w: in ', the
displaced | { |-column is the leftmost one, so that its black particle contributes
a supplementary y label. Therefore ¢(w') = ¢(w)%, in agreement with (i) =

B)
a, A(0) = 3.

The image B, consists of pairs (w',0) such that the top row starts on the
left by a non-empty sequence of white particles followed by a black one.

A, The particle R is white and the wall j; is different from n. Then j = j and,
in the bottom row, a black sweep occurs between walls ¢ + 1 and j + 1. The
new configuration w' belongs to 2,,. Indeed w' can be described as obtained
from w by moving a °|_-diagonal from the ith wall to the jath wall: this
movement has no effect on the positivity constraint.

From Property 3.1.2 we see that the particle R does not contribute a label
y neither in w nor in «’, and from Property 3.1.ii the displacement of the
*|-diagonal does not affect labels of other particles. Hence g(w) = ¢(w'), in
agreement with A(7) = A(j).

The image B, of the class A,» consists of pairs (w’,j) with a | |-column
on the right hand side of the jth wall and such that the sequence of black
particles on the left hand side of the jth wall in the top row is followed by a
white particle.

Agr The particle R is white and the wall j, is equal to n. Then j = n and, in
the bottom row, a black sweep occurs between walls ¢ + 1 and n. The new
configuration w’ still belongs to €, since it is obtained from w by removing
a *|_-diagonal around the ith wall and inserting a |°|-column to the left of
the n-th wall.

As opposed to the previous case, Property 3.1.2 applies only to w: the inserted
|2]-column is the rightmost one, so that its white particle contributes an

label. Therefore g(w') = g(w)%, in agreement with A(¢) = o and A(n) = .

The image B, of the class A,» consists of pairs (w',n) such that there is a
sequence of black particles on the left hand side of the nth wall in the top
row, followed by a white particle.

The active wall of w is the left border with a white particle @ on its right in the top
row. Again, the cell under () must contain a black particle R (see Figure 9). First
the two particle @ and R exchange to form a | |-column. Then we have two cases:

A, the wall j5 is not n. Then j = j; and, in the bottom row, a black sweep occurs
between walls 1 and j + 1. The configuration w' belongs to Q,,. Indeed no
black particle moves to the right.

Equivalently, the new configuration w' is obtained by inserting a *|-diagonal
at the wall jo and deleting the first | |-column. According to Properties 3.1.i
and 3.1.ii only the labels of the displaced particles are affected. Since the
deleted |{|-column is the leftmost, it contributes a y label in w. As opposed

11
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Figure 9: Active left border and active right border with respectively a black and
a white particle in the top row.

to that, Property 3.1.2 forbids the °|_-diagonal to contribute a x label.
Therefore g(w') = q(w ) in agreement with A(0) = 8 and A(j) =

The image By consist of pairs (w',j) with a |?|-column on the right of the
jth wall of w' and such that the sequence of black particles on left of the jth
wall in the top row ends at the border.

Ay, the wall js is equal to n. Then j = n and, in the bottom row, a black sweep oc-
curs between walls 1 and n. Finally, ¢(w') = ¢(w )a S =qw )ﬁ in agreement
with A(0) = 8 and A(n) =

The image By, is reduced to the configuration with all black particles in the
top row.

s

The active wall of w is the right border with a black particle  on its left in the top
row. The cell under () must contain a white particle R (see Figure 9): First the
particles Q and R exchange to form a |{|-column. There are then two cases:

A, the wall j; is different from 0. Then j = j; and in the bottom row, a white
sweep occurs between walls j and n — 1. The configuration w' belongs to (2,
since the transformation amounts to moving and flipping a |? |-column.

Equivalently, o' is obtained by inserting a | |-column at the left of the wall
n and deleting the | |-column on the right of j;. According to Property 3.1.i
only the labels of displaced particles can be affected. Since the deleted |? |-
column is the rightmost column, its white particle contributes an z label in
w. As opposed to that, Property 3.1.1 forbids the ||-column to contribute

a label in w'. Therefore ¢(w') = gq(w)2, in agreement with A(n) = v and
AG) = a.
The image B, consist of pairs (w',j) with a |]|-column on the right hand

side of the jth wall of w’ and such that the sequence of white particles on
the right hand side of the jth wall in the top row ends at the right border.

the wall j; is equal to 0. Then j7 = 0 and in the bottom row, a white sweep
occurs between walls 0 and n — 1. Finally, q(w') = q(w)%% = q(w)%, in
agreement with A(n) = v and A\(0) = S.

The image By, is reduced to the configuration with all white particles in the
top row.

s
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Ayq: This class contains all the remaining cases. On these pairs the application T has
no effect, that is, for (w,?) € Aq, T'(w,4) = (w, ). In particular the weights are left
unchanged.

The observation that image classes {Bq/, By: , Bqir, Bor, By, By, , Be, Be, , Bq}
form a partition of Q, x {0,...,n} completes the proof of Theorem 1.2.

4 Conclusions and links to Brownian excursions

The starting point of the paper [5] was a “combinatorial ansatz”: the stationary
distribution of the TASEP can be expressed in terms of Catalan numbers hence
should have a nice combinatorial interpretation. As we have seen in the present
paper, our approach is natural enough to extend to more general TASEP.

We do not claim that our combinatorial interpretation is of any physical rele-
vance. However, as already pointed out in [5], apart from explaining the occurrence
of “magical” Catalan numbers in the problem, it sheds a new light on the recent
results of Derrida et al. [2] connecting the TASEP with Brownian excursion. More
precisely, using explicit calculations, Derrida et al. show that whena =8 =y =1,
the density of black particles in configurations of the TASEP can be expressed in
terms of a pair (e, b;) of independent processes, a Brownian excursion e; and
a Brownian motion b;. In our interpretation these two quantities appear at the
discrete level, associated to each complete configuration w of Q9:

e The role of the Brownian excursion is played for w by the halved differences
e(i) = 3(B(i) — W(i)) between the number of black and white particles
sitting on the left of the ith wall, for ¢ = 0,...,n. By definition of complete
configurations, (e(?))i=o,...,n is a discrete excursion, that is, e(0) = e(n) =0,
e(i) > 0 and |e(i) —e(i — 1)| € {0,1}, for i =0, ...,n.

e The role of the Brownian motion is played for w by the differences b(i) =
Biop(i) — Bpot (i) between the number of black particles sitting in the top and
in the bottom row, on the left of the ith wall, for i = 0, ..., n. This quantity
(b(4))i=0,...,n is a discrete walk, with |b(i) —b(i —1)| € {0,1} for i =0, ...,n.

Since e(i) + b(i) = 2Byep(i) — i, these quantities allow to describe the cumulated
number of black particles in the top row of a complete configuration. Accordingly,
the density in a given segment (i, j) is

Biop(d) = Buop(i) _ 1 eli) = e(i) | b() = b(i)
J—i 2 2(—1) 2(j — 1)

This is a discrete version of the quantity considered by Derrida et al. in [2].

Now the two walks e(i) and b(i) are correlated since one is stationary when
the other is not, and vice versa: |e(i) — e(i — 1)| 4+ |b(é) — b(i — 1)| = 1. Given
w, let I, = {ayn < ... < ap} be the set of indices of |{|- and |J|-columns, and
Iy = {B1 < ... < B4} the set of indices of |°|- and |]|-columns (p + ¢ = n).
Then the walk e'(i) = e(a;) — e(a;—1) is the excursion obtained from e by ignoring
stationary steps, and the walk b'(i) = b(8;) — b(B;—1) is obtained from b in the
same way. Conversely given a simple excursion e’ of length p, a simple walk b’ of
length ¢ and a subset I, of {1,...,p + ¢} of cardinal p, two correlated walks e
and b, and thus a complete configuration w can be uniquely reconstructed. The
consequence of this discussion is that the uniform distribution on QY (which is
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stationary for & = # = v = 1) corresponds to the uniform distribution of triples
(Ie,€e',b') where given I, ¢’ and b’ are independent.

A direct computation shows that in the large n limit, with probability ex-
ponentially close to 1, a random configuration w is described by a pair (e, b') of
walks of roughly equal lengths /2 4+ O(n'/2%%). In particular up to multiplicative

constants the normalized pairs (effl#, %) and (j’ff—jﬁ, I;(f;;)) both converge
to the same pair (e, b;) of independent processes, with e; a standard Brownian
excursion and b; a standard Brownian walk.

We thus obtained a combinatorial interpretation of the apparition of the pair
(e¢,bt) in the TASEP at @« = 8 = v = 1. How do these considerations extend
to other TASEP? The case o much smaller than § and « essentially reduces to
a = =+ =1on asystem of length n — 2 (with border cells acting as reservoirs).
The case 8 and - smaller than a appears more interesting to consider: at a rough
level, the weights force e(t) to spend more time at the value exactly zero and favors
negative value of b(t). The derivation of the associated continuum quantities in this
case could be of some interest.

Another challenge raised by our approach is to give an explicit construction
of a continuum TASEP by taking the limit of the Markov chain X,g3,, viewed as
a Markov chain on pairs of walks. An appealing way to give a geometric meaning
to the transitions in the continuum limit could be to use a representation in terms
of parallelogram polyominos, where the process e(t) (or e; in the continuum limit)
describes the width of the polymonino and b(¢) (or b; in the continuum limit)
describes its vertical displacement.
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Figure 10: The basic configurations for n = 3 and transitions between them. The
startpoint of each arrow indicates the wall triggering the transition. The numbers
are the stationary probabilities.

Figure 11: The 14 complete configurations for n = 3 and transitions between
them. The startpoint of each arrow indicates the wall triggering the transition
(loop transitions are not indicated). Stationary probabilities are uniform (equal to
1/14) since each configuration has equal in and out degrees. Ignoring bottom rows
reduces this Markov chain to the chain of Figure 10.
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