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Abstract. Genetic Programming (GP) has been shown to be a good method of
predicting functions that solve inverse problems. In this context, a solution given
by GP generally consists of a sole predictor. In contrast, Stack-based GP systems
manipulate structures containing several predictors, which can be considered as
teams of predictors. Work in Machine Learning reports that combining predictors
gives good results in terms of both quality and robustness. In this paper, we use
Stack-based GP to study different cooperations between predictors. First, prelim-
inary tests and parameter tuning are performed on two GP benchmarks. Then,
the system is applied to a real-world inverse problem. A comparative study with
standard methods has shown limits and advantages of teams prediction, leading
to encourage the use of combinations taking into account the response quality of
each team member.

1 Introduction

A direct problem describes a Cause-Effect relationship, while an inverse problem consists
in trying to recover the causes from a measure of effects. Inverse problems are often far
more difficult to solve than direct problems. Indeed, the amount and the quality of the
measurements are generally insufficient to describe all the effects and so to retrieve the
causes. Moreover, since different causes may produce the same effects, the solution of
the problem may be not unique. In many scientific domains, solving an inverse problem
is a major issue and a wide range of methods, either analytic or stochastic, are used.
In particular, recent work [6][4] has demonstrated that Genetic Programming (GP) is a
good candidate.

GP applies the Darwinian principle of survival of the fittest to the automatic discov-
ery of programs. With few hypothesis on the instructions set used to build programs,
GP is an universal approximator [16] that can learn an arbitrary function given a set of
training examples. For GP, as for Evolutionary Computation in general, the way indi-
viduals are represented is crucial. The representation induces choices about operators
and may strongly influence the performance of the algorithm. The emergence of GP in
the scientific community arose with the use, inter alia, of a tree-based representation,
in particular with the use of the Lisp language in the work of Koza [8]. However, there
are GP systems manipulating linear structures, which have shown experimental perfor-
mances equivalent to Tree GP (TGP) [1]. In contrast to TGP, Linear GP (LGP) programs
are sequences of instructions of an imperative language (C, machine code, . . . ). The
evaluation of a program can not be performed in a recursive way and so needs to use
extra memory mechanisms to store partial computations. There are at least two kind of
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LGP implementation. In the first one [1], a finite number of registers are used to store
the partial computations and a particular register is chosen to store the final result. In
the other one, the stack-based implementation [12],[15] and [3], the intermediate com-
putations are pushed into an operand stack and the top of stack gives the final result.
It is important to note that in TGP, an individual corresponds to a sole program and its
evaluation produces a unique output. In LGP, an individual may be composed of many
independent sub-programs and its evaluation may produce several outputs and some of
them may be ignored in the final result. In this paper, we propose to combine those
sub-programs into a team of predictors.

The goal of Machine Learning (ML) is to find a predictor trained on set of examples
that can approximate the function that generated the examples. Several ML methods are
known to be universal approximators, that is they can approximate a function arbitrarily
well. Nevertheless, the search of optimal predictors might be problematic due to the
choice of inadequate architecture but also to over-fitting on training cases. Over-fitting
occurs when a predictor reflects randomness in the data rather than underlying function
properties, and so it often leads to poor generalization abilities of predictors. Several
methods have been proposed to avoid over-fitting, such as model selection, to stop train-
ing or combining predictors, see [14] for a complete discussion. In this study, we mainly
focus on combining predictor methods, also called ensemble, or committee methods. In a
committee machine, a team of predictors is generated by means of a learning process and
the overall predictions of the committee machine is the combination of the predictions
of the individual team members. The idea here, is that a team may exhibit performances
unobtainable by a single individual, because the errors of the members might cancel
out when their outputs are combined. Several schemes for combining predictors exist,
such as simple averaging, weighted combination, mixtures of experts or boosting. In
practice, ANN ensembles have already been strongly investigated by several authors,
see for instance [9]. In the GP field, there has been some work on the combination of
predictors, see for examples [17][11][2].

In this paper, our goal is initially to improve the performance of stack-based GP
systems by evolving teams of predictors. The originality of this study is that teams
have a dynamic number of members that can be managed by the system. In Section 2,
we describe different ways to combine predictors and how to implement them using a
stack. In Section 3, evolutionary parameters are tuned and the performances of several
combinations are tested on two GP benchmarks and on a real-world inverse problem.
Finally, in Section 4, we investigate the relationship between uncontrolled growth of
program size in GP and dynamical size of teams.

2 Teams of Genetic Predictors

2.1 Stack-Based GP

In stack-based GP, numerical calculations are performed in Reverse Polish Notation.
According to the implementation proposed by Perkis[12], an additional type of closure
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Fig. 1. Evaluation of a program in Stack-based GP

constraint is imposed on functions: they are defined to do nothing when arity is unsatisfied
by the current state of the operand stack. In Figure 1, a basic example of program
execution is presented. We can see the processing of the program “1,ADD,5,2,SUB”.
Initialization phase corresponds to step a where the stack is cleared. During steps b, d and
e, numerical constants 1, 5 and 2, respectively, are pushed onto the operand stack. During
step f, since the operand stack stores enough data (at least two), the “SUB” instruction
is computed and the result (3 = 5 − 2) is pushed onto the stack. During step c the
stack contains only one value, so computation of the “ADD” instruction is impossible:
the instruction is simply skipped with no effect on the operand stack. In most cases,
problems addressed using GP are defined with multiple fitness cases and a compilation
phase can easily removed those unexpected instructions to speed up evaluation.

Let us note that after step f, the operand stack contains the values 1 and 3. This
means that there are two independent sub-programs, “1” and “5,2,SUB”, in the se-
quence “1,ADD,5,2,SUB”. We propose to make the whole set of sub-programs involved
in the fitness evaluation. The idea is to combine the results of each sub-programs, i.e.
all the elements of the final stack, according to the nature of the problem addressed. For
example, in the case of a Symbolic Regression Problem, any linear combination of the
sub-programs outputs may be investigated. Using this kind of evaluation, the evolution-
ary process should be able to tune the effect of the genetic operators by changing the
number and the nature of sub-programs and so modifying the contribution of each of them
to the final fitness. Moreover the amount of useless code usually found in stack-based
representation programs is significantly decreased leading to improved performance.
This approach may be viewed as the evolution of teams of predictors corresponding to
the combination of sub-programs.

2.2 Different Combinations

Let us consider a program with m instructions giving a team T having k ∈ [1, m]
predictors pi. The team output O(T ) consists of a combination of the k predictors
outputs o(pi). Several combinations have been tested :
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Team combination O(T )
Sum : Sum of each predictor output

∑k

i=1 o(pi)
AMean : Arithmetic mean of predictors outputs 1

k

∑k

i=1 o(pi)
Pi : Product of each predictor output

∏k

i=1 o(pi)

GMean : Geometric mean of each predictor output k

√∏k

i=1 o(pi)

EMean : Mean of each predictor output weighted by their error 1∑k

i=1
wi

∑k

i=1 wio(pi)

WTA : Winner predictor output Takes All o(argminpi,i∈[1,k](E(pi)))
Top : Top of stack predictor output o(pk)

with E(pi) the training error of pi and with wi = e−βE(pi), β a positive scaling factor.

3 Experimental Results

3.1 Symbolic Regression

In this section, the evolutionary parameters’ tuning is extensively investigated on a Sym-
bolic Regression Problem. We choose the Poly 10 problem [13], where the target function
is the 10-variate cubic polynomial x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10. In this
study, the fitness is the classical Root Mean-Square Error. The dataset contains 50 test
points and is generated by randomly assigning values to the variables xi in the range
[−1, 1]. We perform 50 independent runs with various mutation and crossover rates.
Populations of 500 individuals are randomly created according to a maximum creation
size of 50. The instructions set contains: the four arithmetic instructions ADD, SUB,
MUL, DIV, the ten variables X1 . . . X10 and one stack-based GP specific instruction
DUP which duplicates the top of the operand stack. The evolution, with elitism, maxi-
mum program size of 500, 16-tournament selection, and steady-state replacement, takes
place over 100 generations 1. We use a statistical unpaired, two-tailed t-test with 95%
confidence to determine if results are significantly different.

In Table 1, the best performances on the Poly 10 problem with different combinations
of predictors are presented, using the best settings of evolutionary parameters found,
crossover rate varying from 0 to 1.0 and mutation rate from 0 to 2.0. Let us notice that a
mutation rate of 1.0 means that each program involved in reproduction will undergo, on
average, one insertion, one deletion and one substitution. In the first row, results obtained
using a Tree GP implementation2 are reported in order to give an absolute reference. We
see that the classical Top of stack and WTAmethods work badly, which is to be expected,
since in this case, teams’ outputs correspond to single predictor outputs. The Sum and
AMean methods report good results compared to the Tree method. In contrast, the
Pi and GMean methods are not suitable for this problem, perhaps because the Poly 10
problem is easiest to decompose as a sum. Finally, EMean undoubtedly outperforms

1 In a steady state system, the generation concept is somewhat artificial and is used only for com-
parison with generational systems. Here, a generation corresponds to a number of replacement
equal to the number of individual in the population, i.e. 500.

2 We note that an optimization of parameters has been also performed for Tree GP.
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Table 1. Best Results on Poly 10 Table 2. Results on Mackey-Glass (10−2)

Train
Team Mean Std Dev Best Worst

Tree 0.250 0.072 0.085 0.407
Top 0.353 0.105 0.172 0.520
WTA 0.443 0.048 0.347 0.541
Sum 0.173 0.031 0.120 0.258
AMean 0.165 0.034 0.109 0.251
Pi 0.361 0.063 0.220 0.456

GMean 0.222 0.027 0.151 0.301
EMean 0.066 0.017 0.029 0.141

Train Valid Test
Team Mean Std Dev Mean Std Dev Mean Std Dev

Tree 0.61 0.14 1.06 0.43 1.21 0.71
Top 1.09 0.24 0.99 0.35 0.95 0.33
WTA 1.87 1.04 1.97 1.06 1.95 0.36
Sum 0.64 0.05 0.83 0.21 1.38 0.39
AMean 0.63 0.06 0.81 0.20 0.83 0.40
Pi 0.71 0.15 0.84 0.27 1.10 0.44
GMean 0.67 0.04 0.78 0.14 0.76 0.15
EMean 0.59 0.03 0.74 0.07 0.71 0.06

other methods. We note that results presented here correspond to a scaling factor β of
10. In Figure 2, the average training error is plotted as a function of β. The training error
is clearly related to β and gives a minimum for β = 10.
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3.2 Chaotic Time Series

In this Section, we choose the IEEE benchmark Mackey-Glass chaotic time series (see
http://neural.cs.nthu.edu.tw/jang/benchmark/, τ=17, 1201 data points, sampled ev-
ery 0.1) to examine the performances of different teams in the context of over-fitting.
This problem has already been tested in LGP, see [10] for example, and seems to have
sufficient difficulty to allow appearance of over-fitting behaviors.

We have discarded the first 900 points of the dataset to remove the initial transients
and we have decomposed the last 300 in three sets of same size, the Train, Validation
and Test sets. The goal for GP is, given 8 historical values, to predict the value at time
t + 1. Thus, each set contains 100 vectors with values at times t − 128, t − 64, t − 32,
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t − 16, t − 8, t − 4, t − 2 and t. The evolutionary parameters are identical to those used
to solve the Poly 10 problem. The instruction set is limited to handle only the 8 inputs
and an Ephemeral Random Constant (cf. [8]) in the range [-1, 1] has been added onto
the instructions set.

In Table 2, the performances on the Mackey-Glass problem with different combina-
tions of predictors are presented, using the best settings of evolutionary parameters found
on Poly 10 problem. The train errors reported here tend to confirm the previous results on
Poly 10. Indeed, the Top and WTA combinations give the worst results while, with other
combinations, we have obtained performances equivalent to Tree GP. We see important
variations between Train and Test errors, in particular for Tree and Sum combination.
However we have found only 2 or 3 programs with very bad test errors (among 50 per
each combination) that are responsible of the main part of these variations. The EMean
team has obtained the best results, for both train and test errors, and seems to over-fit less
than the others. It is important to note that the programs discovered during our different
experiments on the Mackey-Glass problem with Stack GP have approximatively the
same number of instructions than programs obtained with the Tree GP implementation.

The results of EMean combination presented here correspond to a scaling factor β
of 0.01. In Figure 3, the average test error is plotted as a function of β. The test error is
clearly related to β and gives a minimum for β=0.01.

3.3 Inverse Problem

The real-world inverse problem addressed here deals with atmospheric aerosol char-
acteristics. An accurate knowledge of these characteristics is central, for example, in
satellite remote sensing validation. A large amount of data is necessary to train inverse
models properly. The teaching phase should be performed with truthful data so that
inverse models are learned with the influence of natural variabilities and measurement
errors. However, according to the inverse problem to deal with, it may be difficult to
gather enough measurements to cover the data space with sufficient density. It is com-
mon to use simulated data for the training step and to add some geophysical noise in
the data set to account for measurement errors [7][4]. Therefore, in this paper, synthetic
data obtained with a radiative transfer model were used to perform the learning step.

We want to inverse a radiative transfer model, called Ordres Successifs Ocean At-
mosphere (OSOA) model, which is described in detail by Chami et al [5]. The direct
model solves a radiative transfer equation (RTE) by the successive orders of scattering
method for the ocean-atmosphere system. It takes into account the multiple scattering
events and the polarization state of light for both atmospheric and oceanic media. The
atmosphere is a mixture of molecules and aerosols. Aerosols are supposed to be homo-
geneous spheres. The aerosol model is defined (refractive index and size distribution)
and its optical properties (phase function, single scattering albedo) are computed using
Mie theory. The air-water interface is modeled as a planar mirror. Consequently, the
reflection by a rough surface is not taken into account in the radiative transfer code. The
OSOA outputs the angular distribution of the radiance field and its degree of polarization
at any desired level (any depth, the surface or the top of atmosphere).

In this study, the solar zenith angle is fixed to 70 degrees. Each row of the dataset
corresponds to sky radiances at 440 nm, 675 nm and 870 nm for 10 scattering angles
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Table 3. Results on Inverse Problem

Train Valid Test
Team Mean Std Dev Mean Std Dev Mean Std Dev

Tree 0.018 0.004 0.018 0.004 0.021 0.006
Top 0.035 0.006 0.032 0.006 0.035 0.006
WTA 0.040 0.013 0.037 0.012 0.041 0.014
Sum 0.019 0.004 0.018 0.004 0.020 0.005
AMean 0.021 0.004 0.019 0.004 0.022 0.005
Pi 0.022 0.004 0.021 0.004 0.023 0.005
GMean 0.017 0.002 0.019 0.006 0.022 0.009
EMean 0.013 0.002 0.012 0.001 0.014 0.003
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ranging from 3 to 150 degrees. From these 30 inputs, the inverse model has to retrieve
the aerosol optical depth τa at 675 nm. To avoid over fitting, we have decomposed the
dataset into three parts, 500 samples are devoted to the learning step, 250 to validation
and test steps. The evolutionary parameters are identical to those used to solve the Poly
10 problem. The instruction set is extended to handle the 30 inputs. Finally, a LOG
instruction (ln|x|) and an Ephemeral Random Constant (cf. [8]) in the range [-10, 10]
have been also added onto the instructions set.

In Table 3, the performances on the inverse problem with different combinations of
predictors are presented. As previously, for similar reasons, we see that the classical
Top of stack and WTA methods works badly. Contrary to results reported for Poly 10
problem, EMean is the only method that significantly outperforms Tree. We note that
results presented here correspond to a scaling factor β fixed to 0.1. Figure 4 shows
performances on test data of the best team found with EMean and β = 0.1. We see that
a good agreement is obtained between expected and predicted τa giving a nearly perfect
inversion.

In Figure 5, the average test error is plotted as a function of β. The test error is
clearly related to β and gives a minimum for β = 0.1. We have also trained two ANNs
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on this inverse problem : one ANN with feed-forward topology and no hidden layer
(to handle linear relationships only) and one ANN with feed-forward topology and one
hidden layer (optimal number of nodes found experimentally). The corresponding test
errors are also plotted in Figure 5. We see that the use of teams of predictors improves
the performances of the GP system in such a way that it outperforms a linear ANN.
Nevertheless, the accuracy of a non-linear ANN can not be obtained with the parameters
used in this study. Let us notice that they are many sophisticated techniques, such as
Automatic Define Functions, Demes, . . . , well known in the GP community, that could
significantly improve the results presented here. Our aim was not to compare ANN and
GP, but rather to quantify the benefit of optimizing the β parameter.

4 Discussion

In this paper, a team of predictors corresponds to a combination of the sub-programs of a
stack-based GP individual. Contrary to previous studies addressing teams of predictors in
GP, here, the number of members of a team is not apriori fixed but can change during the
evolutionary process. We had hoped that the dynamic of the algorithm would optimize
the number of members. Unfortunately, the team size tends to increase quickly as of
the early generations and is strongly correlated to the size of individuals. Moreover, it
is well known that GP suffers from an uncontrolled growth of the size of individuals,
a phenomenon called bloat. Thus, the team size can not be directly managed by the
system. In Figure 6, the average number of predictors on the inverse problem is reported
for EMean with β = 0.1. The limit, around 200 predictors, is probably due to the
’maximum allowed size of programs’parameter (500 instructions).We have also reported
the number of predictors having a weight wi (almost) equal to zero and the number of
predictors whose weight is positive. We see that around a third of the predictors are
all but eliminated from teams. So, the use of combinations of predictors that take into
account the response quality of each team member gives a way to control team size.
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However, we have seen that the best tuning of β depends on the problem addressed.
Figure 7 shows the weights wi as a function of the predictor errors for different β. We
have limited the error to the range [0, 1]. We see that for small values of β, weights are
almost equal to 1, as for the AMean combination, whereas when β is equal to 100, the
majority of weights are null, as for WTA combination. From Figures 2, 3 and 5, we see
that EMean is able to cover the entire performance spectrum between AMean and WTA.

5 Conclusion

In this paper, our aim is not to compare our work with other learning methods, such
as boosting for example, but rather to improve the performance of stack-based GP
systems. Thus, we start with one of their main drawbacks : they provide many outputs,
that is sub-programs, instead of only one. A naive way to overcome this is to keep
only one arbitrary output as the output of the program. This method exhibits very poor
results, notwithstanding the waste of resources needed to evolve part of programs that
are never used. Keeping only the best sub-program leads to even worse results, as the
system undergoes premature convergence. Taking the arithmetic mean or the sum of sub-
programs outputs gives our system the same performances as a tree-based GP system,
which evolves individual predictors.

The best results we obtain are when the output of the program is a weighted sum of
the sub-programs, where each sub-program receives a weight depending on its individual
performance. This way programs are not penalized by bad sub-programs, since they do
not contribute, or only lightly, to the final output. Moreover, this supplementary degree
of freedom promotes the emergence of dynamically sized teams. Indeed, even if the
total number of predictors in a team is strongly correlated to the maximum number
of instructions in programs, only some of them contribute to the program output and
so really participate in the team. The number of such sub-programs is free. Genetic
operations may cause it to vary, with the introduction of a new "good" sub-program or
the destruction of a former "good" one.

This paper represents the first step of our work and empirical results should be
confirmed by experiments on other problems and theoretical studies. Moreover, some
choices we have made are arbitrary, such as the use of a linear combination of sub-
programs. Other types of combinations, e.g. logarithmic ones may improve perfor-
mances. Also, we need to better understand how the value of β influences performance,
and its effect on team composition.
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