Tree inclusion problems

Abstract : Given two trees (a target $T$ and a pattern $P$) and a natural number $w$, {\em window embedded subtree problems} consist in deciding whether $P$ occurs as an embedded subtree of $T$ and/or finding the number of size (at most) $w$ windows of $T$ which contain pattern $P$ as an embedded subtree. $P$ is an embedded subtree of $T$ if $P$ can be obtained by deleting some nodes from $T$ (if a node $v$ is deleted, all edges adjacent to $v$ are also deleted, and outgoing edges are replaced by edges going from the parent of $v$ (if it exists) to the children of $v$). Deciding whether $P$ is an embedded subtree of $T$ is known to be NP-complete. Our algorithms run in time $O(|T| 2^{2^{|P|}})$ where $|T|$ (resp. $|P|$) is the size of $ T$ (resp. $P$).
Type de document :
Pré-publication, Document de travail
2007
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00159125
Contributeur : Irene Guessarian <>
Soumis le : mardi 3 juillet 2007 - 13:02:30
Dernière modification le : jeudi 15 novembre 2018 - 20:26:55
Document(s) archivé(s) le : jeudi 8 avril 2010 - 19:40:09

Fichier

cgm.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00159125, version 1

Collections

Citation

Patrick Cegielski, Irene Guessarian, Yuri Matiyasevich. Tree inclusion problems. 2007. 〈hal-00159125〉

Partager

Métriques

Consultations de la notice

157

Téléchargements de fichiers

130