The two-dimensional Keller-Segel model after blow-up - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series B Année : 2009

The two-dimensional Keller-Segel model after blow-up

Résumé

In the two-dimensional Keller-Segel model for chemotaxis of biological cells, blow-up of solutions in finite time occurs if the total mass is above a critical value. Blow-up is a concentration event, where point aggregates are created. In this work global existence of generalized solutions is proven, allowing for measure valued densities. This extends the solution concept after blow-up. The existence result is an application of a theory developed by Poupaud, where the cell distribution is characterized by an additional defect measure, which vanishes for smooth cell densities. The global solutions are constructed as limits of solutions of a regularized problem. A strong formulation is derived under the assumption that the generalized solution consists of a smooth part and a number of smoothly varying point aggregates. Comparison with earlier formal asymptotic results shows that the choice of a solution concept after blow-up is not unique and depends on the type of regularization. This work is also concerned with local density profiles close to point aggregates. An equation for these profiles is derived by passing to the limit in a rescaled version of the regularized model. Solvability of the profile equation can also be obtained by minimizing a free energy functional.
Fichier principal
Vignette du fichier
DolbSchm-6.pdf (162.74 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00158767 , version 1 (29-06-2007)

Identifiants

  • HAL Id : hal-00158767 , version 1

Citer

Jean Dolbeault, Christian Schmeiser. The two-dimensional Keller-Segel model after blow-up. Discrete and Continuous Dynamical Systems - Series B, 2009, 25, pp.109-121. ⟨hal-00158767⟩
446 Consultations
343 Téléchargements

Partager

Gmail Facebook X LinkedIn More