N

N

Min-max and min-max regret versions of some
combinatorial optimization problems: a survey

Hassene Aissi, Cristina Bazgan, Daniel Vanderpooten

» To cite this version:

Hassene Aissi, Cristina Bazgan, Daniel Vanderpooten. Min-max and min-max regret versions of some
combinatorial optimization problems: a survey. 2007. hal-00158652

HAL Id: hal-00158652
https://hal.science/hal-00158652

Preprint submitted on 29 Jun 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00158652
https://hal.archives-ouvertes.fr

Min-max and min-max regret versions of some
combinatorial optimization problems : a survey

Hassene Aissj Cristina Bazgah and Daniel Vanderpootén

Résumé

Les criteres min-max et min-max regret sont souvent utilisés en vue dipbten
des solutions robustes. Aprés avoir motivé I'utilisation de ces critéres, présen-
tons des résultats généraux. Ensuite, nous donnons des résultataplexi® des
versions min-max et min-max regret de quelques probléemes d’optimisation combi-
natoire : plus court chemin, arbre couvrant, affectation, cosdpe coupe, sac a
dos. Comme la plupart de ces problémes $didifficiles, nous présentons des al-
gorithmes d’approximation ainsi que des algorithmes exacts de résolution.

Mots-clefs : Min-max, min-max regret, optimisation combinatoire, complexité, ap-
proximation, analyse de robustesse.

Abstract

Min-max and min-max regret criteria are commonly used to define robust solu-
tions. After motivating the use of these criteria, we present generdtgedihen,
we survey complexity results for the min-max and min-max regret versiorenoé s
combinatorial optimization problems: shortest path, spanning tree, assigrougn
s-t cut, knapsack. Since most of these problems\drdnard, we also investigate
the approximability of these problems. Furthermore, we present algorithrob/to s
these problems to optimality.

Key words : Min-max, min-max regret, combinatorial optimization, complexity,
approximation, robustness analysis.

*LAMSADE, Université Paris-Dauphine, 75775 Paris cedex 16,France.
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1 Introduction

The definition of an instance of a combinatorial optimizatwoblem requires to spec-
ify parameters, in particular coefficients of the objecfivection, which may be uncertain
or imprecise. Uncertainty/imprecision can be structuredugh the concept afcenario
which corresponds to an assignment of plausible values ttehparameters. There exist
two natural ways of describing the set of all possible sdesatin thediscrete scenario
case the scenario set is described explicitly. In theerval scenario caseeach numerical
parameter can take any value between a lower and an upped.bdise min-max and
min-max regret criteria, stemming from decision theorg aften used to obtain solu-
tions hedging against parameters variations. The min-mgetion aims at constructing
solutions having the best possible performance in the waist. The min-max regret cri-
terion, less conservative, aims at obtaining a solutionmiing the maximum deviation,
over all possible scenarios, between the value of the solaind the optimal value of the
corresponding scenario.

The study of these criteria is motivated by practical agions where an anticipa-
tion of the worst case is crucial. For instance, considerstitesor placement problem
when designing contaminant warning systems for waterildigton networks [16, 47]. A
key deployment issue is identifying where the sensors shiogllplaced in order to max-
imize the level of protection. Quantifying the protecti@vél using the expected impact
of a contamination event is not completely satisfactorgeithe issue of how to guard
against potentially high-impact events, with low prob#ilis only partially handled.
Consequently, standard approaches, such as determimnisticahastic approaches, will
fail to protect against exceptional high-impact eventstfepakes, hurricanes, 9/11-style
attacks,...). In addition, reliable estimation of contaation event probabilities is ex-
tremely difficult. Min-max and min-max regret criteria anggpaopriate in this context by
focusing on a subset of high-impact contamination evemd,pacing sensors to mini-
mize the impact of such events.

The purpose of this paper is to review the existing litematon the min-max and
min-max regret versions of combinatorial optimizationigemms with an emphasis on the
complexity, the approximation and the exact resolutionhefse problems, both for the
discrete and interval scenario cases.

The rest of the paper is organized as follows. Section 2 doices, illustrates and
motivates the min-max and min-max regret criteria. Genesults for these two criteria
are presented in section 3. Section 4 provides complexgyltefor the min-max and
min-max regret versions of various combinatorial optirtiaa problems. Since most of
these problems afdP-hard, section 5 describes the approximability of thesdlpruos.
Section 6 describes exact procedures to solve min-max andmax regret versions in
the discrete and interval scenario cases. Conclusions evelpd in the final section.
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2 Presentation and motivations

We consider in this paper the clas®f 0-1 problems with a linear objective function
defined as:

re X c{0,1}"

This class encompasses a large variety of classical cotobi@igoroblems, some of which
are polynomial-time solvable (shortest path problem, minn spanning tree, ...) and
others areNP-difficult (knapsack, set covering, ...).

{ min(Or max) » ., ¢x; ¢ €N

In the following, all the definitions and results are presdnfior minimization pro-
blemsP € C. In general, they also hold with minor modifications for nraiation
problems, except for some cases that will be explicitly nozrad.

2.1 Min-max, min-max regret versions

In the discrete scenario case, the min-max or min-max regsion associated to a
minimization problen € C has as input a finite sét of scenarios where each scenario
s € Sis represented by a vector = (cf,...,c3).

r n

In the interval scenario case, each coefficientan take any value in the interval
[c;,@]. In this case, the scenario sgtis the cartesian product of the intervats, ¢,
i=1,...,n. An extreme scenarit a scenario where¢ = ¢, or¢;,i = 1,...,n.

We denote byal(z,s) = >, c;x; the value of solution: € X under scenarie €
S, by z* an optimal solution under scenasipand byval? = val(x?, s) the corresponding
optimal value.

The min-max version corresponding®oconsists of finding a solution having the best
worst case value across all scenarios, which can be stated as

min max val(z, s) (1)
This version is denoted byIBCRETEMIN-MAX P in the discrete scenario case, and by
INTERVAL MIN-MAX P in the interval scenario case.

Given a solutionz € X, its regret R(z,s), under scenaria € S is defined as
R(z,s) = val(x,s) — valf. Themaximum regref?,,...(x) of solutionz is then defined
asRu: (1) = maxges R(z, s).

The min-max regret version correspondingRaconsists of finding a solution mini-
mizing its maximum regret, which can be stated as:

min Rppoe(z) = min I?Gakg((val(x, s) —val?) (2)
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This version is denoted by IBCRETE MIN-MAX REGRET P in the discrete scenario
case, and byNTERVAL MIN-MAX REGRETP in the interval scenario case.

For maximization problems, corresponding max-min and max regret versions can
be defined.

2.2 An illustrative example

In order to illustrate the previous definitions and to show ihterest of using the
min-max and min-max regret criteria, we consider a capiaigeting problem with un-
certainty or imprecision on the expected profits. Supposevish to invest a capital
and we have identified investment opportunities. Investmentequires a cash outflow
w; at present time and yields an expected profiat some termj = 1,...,n. Due to
various exogenous factors (evolution of the market, irdtatgonditions, ...), the profits
are evaluated with uncertainty/imprecision.

The capital budgeting problem is a knapsack problem wheréoule for a subset
I € {1,...,n} of items such thad_._, w; < b which maximizes the total expected

profit, i.e.,> .., pi.

Depending on the type of uncertainty or imprecision, we ueeediscrete or in-
terval scenarios. When the profits of investments are infleéry the occurrence of
well-defined future events (e.g., different levels of mameactions, public decisions of
constructing or not a facility which would impact on the istrent projects), it is natural
to define discrete scenarios corresponding to each eventn Waevaluation of the profit
is simply imprecise, a definition using interval scenargsipre appropriate.

As an illustration, consider a small size capital budgegirgblem where profit uncer-
tainty or imprecision is modelled with three discrete scarsaor with interval scenarios.
Numerical values are given in Table 1 with= 12 andn = 6.

AR P, |
1134 3 335
21 5118|4626
312|513 |13|2]|5
41 4| 3|1 24|23
5/ 512|821 3]9
6| 3| 4|6|2|1]|7

Table 1: Cash outflows and profits of the investments



Annales du LAMSADE n°7

|1]2] 3] Optimal solution |
17| 10| 12 scenario 1: (1,1,1,0,0,0)
1117\ 7 scenario 2: (0,0,1,0,1,1)
16| 9 |13 scenario 3: (0,1,1,1,0,0)
1511212 max-min: (0,1,0,1,0,1)
15| 15| 11 | min-max regret: (0,1,1,0,1,d

N

Table 2: Optimal values and solutions (discrete scenage)ca

In the discrete scenario case, we observe in Table 2 thatptivaal solutions of the
three scenarios are not completely satisfactory sinceglveyow profits in some scenar-
i0S. An appropriate solution should behave well under amatian of the future profits.
In this example, optimal solutions to max-min and min-magre¢ versions are more ac-
ceptable solutions since their performances are moreestabiisk-averse decision maker
would favor the max-min solution that guarantees at leash B2 scenarios. If the deci-
sion maker is willing to accept a small degradation of thdgrarance in the worst case
scenario with an increase of the average performance dwreadarios, then the optimal
solution of the min-max regret version is more appropriftntthe optimal solution of
the min-max version.

In the interval scenario case, the optimal solution to th&-méan version is obtained
by considering only the worst-case scenario (see sect@naBd corresponds to; =
x3 = x5 = 1; 19 = 14 = ¢ = 0 With aworst value 8. The obtained solution only depends
on one scenario and, in particular, is completely indepethadkthe interval upper bound
values. An optimal solution of the min-max regret versiogiwen byz, = x5 = ¢ = 1;
x9 = x3 = x4 = 0 with a worst value and a maximum regret 7. Unlike for the mar-m
criterion, the optimal min-max regret solution does depamthe interval lower and upper
bound values. In particular, when an interval upper bounceiases, the maximum regret
of each feasible solution either increases or remainsestabbviously, this may impact
on the resulting optimal solution. For instance, if we ira@ep, from 5 to 8, the new
min-max regret optimal solution becomes= x5 = 24 = 1; 1 = 5 = x4 = O with a
worst value 6 and a maximum regret 8. Observe, in the prevarasple, that improving
the prospects of investment 3 leads to include this investinghe new optimal solution.

2.3 Relevance and limits of the min-max (regret) criteria

When uncertainty or imprecision on the parameter values@sa aiding models is
a crucial issue, decision makers may not feel confident usisigjits derived from parame-
ters taking precise valueRobustness analyssa theoretical framework that enables the

decision maker to take into account uncertainty or impregig order to produce deci-

5
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sions that will behave reasonably under any likely inpuadate, e.g., Roy [42], Vincke
[45] for general contexts, Kouvelis and Yu [30] in combinaboptimization, and Mul-

vey, Verderbel, and Zenios [39] in mathematical progranghniifferent criteria can be
used to select among robust decisions. The min-max and raxregret criteria are often
used to obtain conservative decisions to hedge againsttizars of the input data [41].
We briefly review situations where each criterion is appiaipt

The min-max criterion is suited for non-repetitive decisqconstruction of a high
voltage line, highway, ...) and for decision environmentgere precautionary measures
are needed (nuclear accidents, public health). In suchscatsssical approaches like
deterministic or stochastic optimization are not relevaiis criterion is also appropriate
in competitive situations [41] or when the decision makeshraach a pre-defined goal
(sales, inventory, ...) under any variation of the inpuadat

The min-max regret criterion is suitable in situations vehdre decision maker may
feel regret if he/she makes a wrong decision. He/she thes thks anticipated regret into
account when deciding. For instance, in finance, an investy observe not only his
own portfolio performance but also returns on other stocksootfolios in which he was
able to invest but decided not to [20]. Therefore, it seenng matural to assume that the
investor may feel joy/disappointment if his own portfoliatperformed/underperformed
some benchmark portfolio or portfolios. The min-max regmeterion reflects such a
behavior and is less conservative than the min-max critesiace it considers missed
opportunities. It has also been shown that, in the presehaacrtainty on prices and
yields, the behavior of some economical agents (farmerdg@mmetimes be better pre-
dicted using a min-max regret criterion, rather than a adasgrofit maximization crite-
rion [29].

Maximum regret can also serve as an indicator of how much #nfopnance of a
decision can be improved if all uncertainties/imprecisi@ould be resolved [30]. The
min-max regret criterion is relevant in situations where tlecision maker is evaluated
ex-post.

Another justification of the min-max regret criterion is aidws. In uncertain/impre-
cise decision contexts, a reasonable objective is to findwti@o with performances as
close as possible from the optimal values under all scenafibis amounts to setting a
threshold: and looking for a solution € X such thaval(x, s) —val: < ¢, forall s € S.
Equivalently,z should satisfyR,,...(z) < . Then, looking for such a solution withas
small as possible is equivalent to determining a min-maretegplution.

Min-max and min-max regret criteria are simple to use sihey tlo not require any
additional information unlike other approaches based obatoility or fuzzy set theory.
Furthermore, they are often considered as referenceiaréed a starting point in robust-
ness analysis. However, the min-max and min-max regretri@iare sometimes inappro-
priate. In some situations, these criteria are too pessmia decision makers who are

6
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willing to accept some degree of risk. In addition, theyétta great importance to worst
case scenarios which are sometimes unlikely to occur. Idliderete scenario case, this
difficulty could be handled, at the modelling stage, by idahg only relevant scenarios
in the scenario set. In the interval scenario case, min-maxnain-max regret optimal
solutions are obtained for extreme scenarios, as will be/shie section 3.2. Clearly not
all these scenarios are likely to happen and this limits pg@ieability of these criteria.
This difficulty becomes all the more important than the s get larger.

Some approaches have been designed so as to reduce thesaatksavin the discrete
scenario case, Daskin, Hesse, and ReVelle [19] propose al roalted thea-reliable
min-max regret model that identifies a solution that mingsithe maximum regret with
respect to a selected subset of scenarios whose probaibibtycurrence is at least some
user-defined value.. Kalai, Aloulou, Vallin, and Vanderpooten [25] propose trey
approach called lexicographicrobustness which, instead of focusing on the worst case,
considers all scenarios in lexicographic order, from thestio the best, and also includes
a tolerance threshold in order not to discriminate among solutions with similatues.

In the interval scenario case, Bertsimas and Sim [15] propos#ustness model with
a scenario set restricted to scenarios where the numberarfpéers that are pushed to
their upper bounds is limited by a user-specified paramétes. robust version obtained
using this model has the same approximation complexity @astdssical version. This
is a clear advantage over the classical robustness crgigga their robust counterpart
are generallyNP-hard. The main difficulty is, however, the definition of thechnical
parameter whose value may impact on the resulting solution.

3 General results on min-max (regret) versions

We present in this section general results that give anhihgig the nature and dif-
ficulty of min-max (regret) versions. They also serve as asbfas further results or
algorithms presented in the next sections.

3.1 Discrete scenario case

3.1.1 Relationships between min-max (regret) and classikc@ersions

We investigate, in this part, the quality of the solutionganired by solvingP for
specific scenarios.

A first attempt to solve BBCRETEMIN-MAX (REGRET) P is to construct an optimal
solutionz? for each scenarie € S, computemax,cg val(z%, s) (Or Rq. (%)), and then,
select the best of the obtained candidate solutions. Haw#vs solution can be very

7
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bad, since the gap between its value and the optimal valuemiegase exponentially in
the size of the instance as we can see in the following exan(amsider for example
a pathological instance ofIBCRETEMIN-MAX (REGRET) SHORTESTPATH. Figure 1
depicts a grapttz = (V, A) with 2n vertices where each arc is valued by costs on 2
scenarios. The optimal solution in the first scenario ismglepathl, n+1,...,2n—1,2n
with values(0,2" — 1), a worst value2” — 1 and a maximum regrex® — 1, whereas
the optimal solution in the second scenario is given by pafh. .., n, 2n with values
(2" — 1,0), a worst value™ — 1, and a maximum regreX* — 1. However, the optimal
solution of the min-max and min-max regret versions is givgmpath1, 2n with a worst
value 1 and a maximum regret 1. Thus the gap between the Hast (vagret) among
the optimal solutions of each scenario and the optimum ofmmx (min-max regret) is
2n — 2.

(0271
n+1 n+ 2 2n—1

Figure 1:A critical instance of DSCRETEMIN-MAX (REGRET) SHORTESTPATH where opti-
mal solutions in each scenario are very bad

The previous example shows that by solviidor all scenarios ir§, we cannot guar-
antee the performance of the obtained solution. Anothex isi¢o solve problen® for
a fictitious scenario in the hope that the obtained solut@s dngood performance. The
following proposition considers theedianscenario, i.e. with costs corresponding to the
average value over all scenarios.

Proposition 1 ([30]) Consider an instancé of DISCRETEMIN-MAX P (or DISCRETE
MIN-MAX REGRET P) with £ scenarios where each scenarsoc S is represented

by (ci,...,c;) and whereP is a minimization problem. Consider also an instance
I' of P where each coefficient of the objective function is defined;by >-*_ <,
i =1,...,n. Thenz’ an optimal solution of’ is such thaimaxcg val(z’, s) < k.opt(I)

(Or Rpaz(z") < k.opt(I)) whereopt(I) denotes the optimal value of instante

Proof: Consider an instancé of DISCRETE MIN-MAX REGRET P. Let 2’ be an
optimal solution ofl’. We first show thal. = %~ __. 1 (val(2/, s) —val?) is a lower bound
of opt(I).
1 . 1 .
L = min z Z(val(x, s) —wval?) < min —k max(val(z, s) — vall) = opt(I)

zeX zeX k  ses
ses
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Moreover,U = maxgegs(val(z', s) —val) is clearly an upper bound opt(7) and we get

gél)r(l IES;((UGZ(ZE s) —wall) < I?Gagi(val(x ,s) —wall) < ;(Ual(x ,s) —wall)

= kL < k.opt(l)

The proof for DSCRETE MIN-MAX P is exactly the same except that we take=
>ees zval(z’,s) andU = max,egsval(2/, s) as lower and upper bounds @ft(7), and
we removeval’ everywhere in the proof. O

Considering a maximization problef, we can define lower and upper bouridand
U similarly. For the min-max regret version, we also obtaih-approximate solution
in this way. However, the previous result does not hold fer itiex-min version since
the ratio% is not bounded. In particular, for the knapsack problens thtio can be
exponential in the size of the input, as noticed in [49].

An alternative idea is to solve problef on a fictitious scenario, callgokessimistic
scenario, with costs corresponding to the worst values al/scenarios.

Proposition 2 Consider an instancéof DISCRETEMIN-MAX P with k£ scenarios where
each scenaria € S is represented byc;, . .., ¢¢) and whereP is a minimization prob-
lem. Consider also an instandéof P where each coefficient of the objective function is
defined by, = maxscscf, i = 1,...,n. Thenz’ an optimal solution of’ is such that
max,cs val(z', s) < k.opt(l) whereopt(I) denotes the optimal value of instankte

Proof: Letx* denote an optimal solution of instanéeWe have

n n
max cx<§c Sgc;xfgg chxf
ses

i=1

i=1 se€S

:Zi <kr£1€axz x; = k.opt(I)

ses i=1
O

The same result cannot be extended to the min-max regrébneFsgure 2 illustrates
a critical instance of BSCRETEMIN-MAX REGRET SHORTESTPATH with two scenar-
ios. The optimal solution for the first and second scenaribeéssame and corresponds
to pathl,n — 1,n. Thus, this path is the min-max regret optimal solution vatmaxi-
mum regret 0. However, the optimal solution for the pesdimgcenario is given by path
1,2,...,n with maximum regrep”.
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2 (277,7271,) 3 (0’0) 4 n—2

@2n,2n) Oo——>0——>0- -~ (0,0)

1

02" +1)
n—1
Figure 2: A critical instance of DSCRETE MIN-MAX REGRET SHORTEST PATH where the
optimal solution in the pessimistic scenario is very bad

Extension of Proposition 2 to a maximization problémdoes not hold neither for
DISCRETEMAX-MIN P nor for DISCRETEMIN-MAX REGRETP.

Quite interestingly, however, solvirg for the pessimistic scenario leads to optimal
solutions for the specific class of bottleneck problems eefizs

minmax;—y _, ¢%; c; €N
reX c{0,1}"

This class encompasses bottleneck versions of classitalipation problems (short-
est path, spanning tree, ...). The min-max and min-max régriieneck versions are
defined by (1) and (2) respectively, with!(z, s) = max;—;

-----

These versions are denotedsBRETE MIN-MAX (REGRET) BOTTLENECK P in
the discrete scenario case, andERVAL MIN-MAX (REGRET) BOTTLENECK P in the
interval scenario case.

Proposition 3 Consider an instancé of DISCRETEMIN-MAX BOTTLENECK P with

k scenarios where each scenatice S is represented bycs, ..., ¢¢) and whereP is a
minimization problem. Consider also an instaneof P where each coefficient of the
objective function is defined by = max,cs ¢}, i = 1,...,n. Thenz’ an optimal solution
of I’ is also an optimal solution af.

Proof:
. . . . /
min max val(z, s) = minmax max c¢;z; = min max maxc;r; = min max cx;

zeX seS zeX s€S i=l1,...,n zeX i=1,....n s€S zeX i=1,...,n

O

The next proposition gives a reduction fromd@RETE MIN-MAX REGRET BOT-
TLENECK P to DISCRETEMIN-MAX BOTTLENECK P.

10
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Proposition 4 Consider an instancé of DISCRETEMIN-MAX REGRETBOTTLENECK
P with k scenarios where each scenatice S is represented byci, . .., ¢;) and where
P is a minimization problem. Consider also an instancef DISCRETE MIN-MAX
BOTTLENECK P where each coefficient of the objective function is defined;by-

max{c} — val?,0}, i = 1,...,n. ThenZ, an optimal solution of , is also an optimal
solution of/.
Proof:

min max(val(z, s) — vall) = min max( max c;x; — val}) = min max max cx;
rzeX seS rzeX seS i=1l,...n rzeX s€eS i=1,..n

The previous propositions are summarized in the followiogtary.

Corollary 1 GivenP an optimization problenDISCRETEMIN-MAX BOTTLENECK P
andDISCRETEMIN-MAX REGRETBOTTLENECK P reduce toP.

3.1.2 Relationships between min-max (regret) and multi-gjective versions

It is natural to consider scenarios as objective functidrss leads us to investigate
relationships between min-max (regret) and multi-obyectiersions.

The multi-objective version associated B € C, denoted by MILTI-OBJECTIVE
P, has for inputt objective functions where thith objective function has coefficients
ch, ..., c. We denote byal(z,h) = >_;" | c'z; the value of solution: € X on criterion
h, and assume w.l.0.g. that all criteria are to be minimizegte®two feasible solutions
x andy, we say that: dominatesy if val(x, h) < wval(y, h) for h = 1,... k with at least
one strict inequality. The problem consists of finding thesef efficient solutions. A
feasible solutiorx is efficientif there is no other feasible solutionthat dominates:. In
general MULTI-OBJECTIVEP is intractable in the sense that it admits instances for lwhic

the size ofF is exponential in the size of the input (see, e.qg., Ehrgdi})[2

11
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val(zx, s2)

. « : Efficient solutions

Opt A e . .

val(z, s1)
opt

Figure 3: Relationships between min-max and multi-objectersions

Proposition 5 Given a minimization probler®, at least one optimal solution fdDis-
CRETEMIN-MAX P is necessarily an efficient solution.

Proof: If z € X dominategy € X thenmaxcs val(x,s) < maxgegval(y, s). There-
fore, we obtain an optimal solution foriBCRETEMIN-MAX P by taking, among the
efficient solutions, one that has a minimumax,. s val(z, s), see Figure 3. O

Proposition 6 Given a minimization probler®, at least one optimal solution fdDis-
CRETEMIN-MAX REGRETP is necessarily an efficient solution.

Proof: If x € X dominatey; € X thenval(z,s) < val(y, s), for eachs € S, and thus
Rinaz () < Rpaz(y). Therefore, we obtain an optimal solution fordBRETEM IN-MAX
REGRET P by taking, among the efficient solutions, a solutiothat has a minimum
Rz (), See Figure 4. 0

12
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. « : Efficient solutions

valy, +opt | Ae e o o . o

val* = (val}, ,val},)

: val(x, 1
valy, + opt ( )

Figure 4: Relationships between min-max regret and mujgalve versions

Observe that if DSCRETEMIN-MAX (REGRET) P admit several optimal solutions,
some of them may not be efficient, but at least one is effices® Figures 3 and 4).

3.2 Interval scenario case

For a minimization probler® € C, solving INTERVAL MIN-MAX P is equivalent to
solving’P on the scenario = (¢4, . . ., ¢,) where the values of all coefficientsare set to
their upper bounds (for a maximization problem, considdy scenariac = (¢, ..., ¢,))-

Therefore, the rest of the section is devotedNDHRVAL MIN-MAX REGRETP.

In order to compute the maximum regret of a solutios X, we only need to consider
its worst scenario (z). Yaman, Karagsan and Pinar [48] propose an approach toroohst
this scenario for NTERVAL MIN-MAX REGRET SPANNING TREE and characterize the
optimal solution. These approaches can, however, be deeelto any problenP < C.

Proposition 7 Given a minimization problen®, the regret of a solutiomr € X is maxi-
mized for scenarie™ (x) defined as follows:

if €T; = ]_,

_ e o
ci(x)—{g if =0, i=1,...,n

12

13
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Proof: Given a solutionz € X, letI(z) = {i € 1,...,n : z; = 1}. For any scenario
s € S, we have

R(z,s) =val(z,s) —val(x,s) = Z ¢ — Z c

i€l(z)\I(z}) iel(z5)\I(z)
> G- > o«
el (x)\I(x €l (x)\I(x)

)
val(z, ¢ (x)) —val(x}, ¢ (x))
c ( -

IN

IN

val(z, e (z)) —val(z;- (), ¢ (v))

= R(z,c (2))
O

The following proposition shows that an optimal solutionleffERVAL MIN-MAX
REGRETP is an optimal solution of for one of the extreme scenarios.

Proposition 8 Given a minimization probler®, an optimal solutionz* of INTERVAL
MIN-MAX REGRETP corresponds to an optimal solution &ffor at least one extreme
scenario, in particular its most favorable scenario(z*) defined as follows:

Proof: Let z* denote an optimal solution oNIFERVAL MIN-MAX REGRET P and
I(x)={iel,...,n:z; =1}. Foranys € S, we have

val(z”, s) — val(Tis 4, ) = Z ¢ — Z e
ie[(x*)\l(ac:+<z*>) ie[(:c:ﬂz*))\f(w*)

> P N
iEI(w*)\I(J:Z_l_(m*)) ie[(x:+<$*))\1(ac*)

- val(z*, ¢ (x*)) — val(x5+ ey, ¢ (27))

Suppose that* is not an optimal solution oP for its most favorable scenario (x*).
Then the previous expression is strictly positive. Consetiyieve have

val(z”, s) —valy > val(vys v, 8) —valg, foralls € S

thus
Igleagc{val(x ,8) —wall} > rgleagc{val(xcﬂx*), s) —wval’}
This contradicts the optimality of* for INTERVAL MIN-MAX REGRETP. O
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The two previous propositions suggest the following diprocedure to solve exactly
the min-max regret version. First construct an optimal sofuz? for each extreme sce-
nario s and computeR,,....(z*) using Proposition 7. Then, select among these solutions
one having the minimum maximum regret. This procedure isenegal impracticable
since the number of extreme scenarios is up"toNevertheless, if the number< n of
uncertain/imprecise coefficients corresponding to non degenerate intervals, is constant
or bounded by the logarithm of a polynomial function in theesof the input, thenN-
TERVAL MIN-MAX REGRETP has the same complexity & as noticed by Averbakh
and Lebedev [14].

As for the discrete scenario case, we briefly investigategtradity of the solutions
obtained by solving® on a specific scenario.

Afirstidea, is to consider the worst scenatrie (¢4, .. ., ¢,), thatis to take an optimal
min-max solution as a candidate solution for the min-maxaegersion.

An optimal solution of NTERVAL MIN-MAX P has, in practice, a maximum regret
close to the optimal value of the min-max regret version iouthe worst case, its perfor-
mance is very bad. Figure 5 presents a critical exampleH@rS ESTPATH. The optimal
solution of the min-max version is given by pathn with a worst value and a maximum
regret2™. On the other hand, the optimal solution of the min-max regeesion is given
by pathl, 2, ..., n with a worst value™ 4+ 1 and a maximum regret 1.

2 3 4 n-1

[0,27 + 1] 0 O—O>O——— 0
1 T

2

Figure 5: A critical instance of NTERVAL MIN-MAX REGRET SHORTEST PATH where the
optimal min-max solution is very bad

Kasperski and Ziefiski [28] show that, by solving problefa on a particular scenario,
we can obtain a good upper bound of the optimal valualoERVAL MIN-MAX REGRET
P.

Proposition 9 ([28]) Given an instancé of INTERVAL MIN-MAX REGRETP, consider
an instancel’ of P where each coefficient of the objective function is defined. by

(¢, + ). Thenz’ an optimal solution off’ has R,q.(z') < 20pt(I) whereopt([)

denotes the optimal value of instante

For the class of bottleneck problems, as for the discretessecase (see Propositions
3 and 4), an optimal solution oNIFTERVAL MIN-MAX REGRETBOTTLENECK P can be
obtained by solving BTTLENECK P on a carefully selected scenario. Letdenote the
scenario where; = ¢; andc; = ¢; for j #4,andi = 1,... n.
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Proposition 10 ([9]) Given an instanced of INTERVAL MIN-MAX REGRET BOTTLE-
NECK P, consider an instancé& of BOTTLENECK P where each coefficient of the objec-
tive function is defined by, = max{¢; — val;,0}. Thenz’ an optimal solution of’ is
also an optimal solution of.

4 Complexity of min-max and min-max regret versions

Complexity of the min-max (regret) versions has been stueigensively during the
last decade. Clearly, the min-max version of problenis at least as hard &8 since
P is a particular case of BCRETEMIN-MAX P when the scenario set contains only
one scenario anf® is a particular case oNITERVAL MIN-MAX P when all coefficients
are degenerate. Similarly, the min-max regret versio®a$ at least as difficult a®
sinceP reduces to IBCRETE(INTERVAL) MIN-MAX REGRETP when the scenario set
is reduced to one scenario. For this reason, in the folloyegconsider only min-max
(regret) versions of polynomial or pseudo-polynomial tisaévable problems, for which
we could hope to preserve the complexity.

For the discrete scenario case, Kouvelis and Yu [30] giveptexity results for sev-
eral combinatorial optimization problems, including@RTESTPATH, SPANNING TREE,
ASSIGNMENT, and KNAPSACK. In general, these versions are shown to be harder than
the classical versions. More precisely, if the number ohades is non-constant (the
number of scenarios is part of the input), these problemsrhecstronglyNP-hard, even
when the classical problems are solvable in polynomial ti@a the other hand, for a
constant number of scenarios, it is only partially knowrngge problems are strongly or
weakly NP-hard. Indeed, the reductions described in [30] to proveNReéhardness are
based on transformations from the partition problem whgchkriown to be weakI\\P-
hard [23]. These reductions give no indications on the peestatus of these problems.
Most of the problems which are known to be weakli?-hard are those for which there
exists a pseudo-polynomial algorithm based on dynamicraroging [30] (MN-MAX
(REGRET) SHORTESTPATH, MAX-MIN KNAPSACK, MIN-MAX REGRETKNAPSACK,
MIN-MAX (REGRET) SPANNING TREEON grid graphs, ...)

As an example for this family of algorithms, we describe augeepolynomial algo-
rithm to solve DSCRETEMAX-MIN KNAPSACK. The standard procedure to solve the
classical knapsack problem is based on dynamic programniileggive an extension to
the multi-scenario case which is very similar to the proceduesented in [22] by Er-
lebach, Kellerer and Pferschy to solve multi-objectivepgssck problem. This procedure
is easier and more efficient than the one originally preskinyeYu [49].

Consider a knapsack instance where each itdras a weightv; and profitp;, for
i=1,...,nands=1,..., k, and a capacity.
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Let W;(vy, ..., v) denote the minimum weight of any subset of items among thte firs
i items with profitv, in each scenarie € S. The initial condition of the algorithm is
given by settindgV, (0, ...,0) = 0 andWy(vy, ..., vx) = b+ 1 for all other combinations.
The recursive relation is given by:

If v > pf forall s € S, then

Wi(vy, ..., o) = min{W,_y (v, ..., v), Wi_i(vg —pil, e, Up —pf) + w;}

else Wi(vy, ... o) = Wisi (v, ... o)
fori=1,... n.
Each entry ofiV,, satisfyingW,,(vy,...,v;) < b corresponds to a feasible solution

with profit v, in scenarios. The set of items leading to a feasible solution can be deter-
mined easily using standard bookkeeping techniques. Es#fie solutions are collected
and an optimal solution to BCRETE MAX-MIN KNAPSACK is obtained by picking

a feasible solution minimizingnax,cs vs. Since,v;, € {0,...,> " p{}, the running
time of this approach is given by going through the completdifpspace for every item
that isO(n(max.es >, p;)¥). The algorithm presented by Yu [49] has a running time

O(nb(maxses Y51 p7)").

SPANNING TREE is not known to have a dynamic programming scheme but can be
solved, for instance, using Kruskal's algorithm or Primigaaithm. A specific pseudo-
polynomial algorithm is given in [3] for BSCRETEMIN-MAX SPANNING TREE using
an extension of the matrix tree theorem to the multi-scerzase.

Aissi, Bazgan, and Vanderpooten investigate in [2] the cexipl of min-max and
min-max regret versions of two closely related polynontiiae solvable problems: @r
ands—t CuT. For a constant number of scenarios, the complexity stdthese problems
is widely contrasted. More preciselyJSCRETEMIN-MAX (REGRET) CUT are polyno-
mial, whereas DSCRETEMIN-MAX (REGRET) s — t CUT are stronglyNP-hard even
for two scenarios. It is interesting to observe that ¢t CuUT is the first polynomial-time
solvable problem, whose min-max and min-max regret vessaoa strongl\NP-hard.

Network location models are characterized by two types o&paters (weights of
nodes and lengths of edges) and by a location site (on nodes edges). Kouvelis
and Yu [30] show that BSCRETE MIN-MAX (REGRET) 1-MEDIAN can be solved in
polynomial time for trees with scenarios both on node wesigihtd edge lengths. If the
location sites are limited to nodesJSZRETEMIN-MAX (REGRET) 1-MEDIAN can be
solved in polynomial time using an exhaustive search algor.i

The complexity of the min-max (regret) versions of schaaylproblems has also
been investigated. Daniels and Kouvelis [18] show th&#dRETEMIN-MAX (REGRET)
1|| - w;C; areNP-hard. Aloulou and Della Croce [6] show thatSLRETEMIN-MAX
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L|prec| fmaz iS polynomial-time solvable whereasSLRETEMIN-MAX 1|| > U; is NP-
hard.

In the interval scenario case, extensive research has lm@ted for studying the
complexity of min-max regret versions of various optimiaatproblems including SORT-
EST PATH [14], SPANNING TREE([8, 14], ASSIGNMENT([1], CuT ands — ¢ CUT [2]. In
general, all these problems are shown to be stroNghhard.

For network locations problems, if edge lengths are uncentaprecise, NTERVAL
MIN-MAX REGRET 1-MEDIAN is shown to be strongl\NP-hard for general graphs
[11] but polynomial-time solvable on trees [17]. Howevédryertex weights are uncer-
tain/imprecise, this problem is polynomial-time solvaf8]. For 1-CENTER, a closely
related problem,NTERVAL MIN-MAX REGRET1-CENTERIS shown to be strongIjP-
hard for general graphs if edge lengths are uncertain/iogedut polynomial-time solv-
able on trees [13]. Nevertheless, if vertex weights are daicgimprecise, this problem
is polynomial-time solvable [12].

For scheduling problems, Kasperski [27] shows thatHdRVAL MIN-MAX REGRET
L|prec| fma. is polynomial-time solvable. Lebedev and Averbakh [31]vgltbat INTER-
VAL MIN-MAX REGRET1|| > w;C}; is NP-hard.

Tables 3-5 summarize the complexity of min-max (regret¥mars of several classical
combinatorial optimization problems. For all studied geshs, min-max and min-max
regret versions have the same complexity in the discret@asicecase. In general, there
is no reduction between the min-max and the min-max regneti@s or vice versa.
However, in all known reductions establishing thE-hardness of min-max versions [30,
1, 2], the obtained instances of min-max versions have besigied so as to get an
optimal value on each scenario equal to zero. This way, trexhgctions also imply the
NP-hardness of the min-max regret associated versions. Camgpaow the complexity
of the min-max regret version in the discrete scenario caseirathe interval scenario
case, we observe some slight differences. As shown by Akbifi®], there even exists a
simple combinatorial optimization problem, the selecpooblem, whose min-max regret
version is solvable in polynomial time in the interval scem@ase whereas it P-hard
even for two scenarios.
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Table 3: Complexity of the min-max (regret) versions of dleelscombinatorial problems
(constant number of scenarios)

Problems Constant
Min-max Min-max regret

SHORTESTPATH  NP-hard, pseudo-poly [30] NP-hard, pseudo-poly [30]
SPANNING TREE NP-hard [30], pseudo-poly [3] NP-hard [30], pseudo-poly [3]

ASSIGNMENT NP-hard [30] NP-hard [30]

KNAPSACK NP-hard, pseudo-poly [30] NP-hard, pseudo-poly [30]
Cut polynomial [7] polynomial [2]

s—t CuT stronglyNP-hard [2] stronglyNP-hard [2]

Table 4: Complexity of the min-max (regret) versions of dleelscombinatorial problems
(non-constant number of scenarios)

Problems Non-constant
Min-max Min-max regret

SHORTESTPATH  stronglyNP-hard [30] strongyNP-hard [30]
SPANNING TREE stronglyNP-hard [30] stronglyNP-hard [4]
ASSIGNMENT stronglyNP-hard [1]  stronglyNP-hard [1]

KNAPSACK stronglyNP-hard [30] stronglyNP-hard [4]
Cut stronglyNP-hard [2]  stronglyNP-hard [2]
s—tCuT stronglyNP-hard [2]  stronglyNP-hard [2]

5 Approximation of the min-max (regret) versions

The approximation of the min-max (regret) versions of atzdscombinatorial opti-
mization problems has received great attention recentsiABazgan, and Vanderpooten
initiated in [4] a systematic study of this question in theadete scenario case. More
precisely, they investigate the relationships betweenrmax, min-max regret and multi-
objective versions, and show the existence, in the caseafstant number of scenarios,
of fully polynomial-time approximation schemes (fptas) fain-max (regret) versions
of several classical optimization problems. They alsostilié case of a non-constant
number of scenarios. In this setting, they provide non-axprability results for min-
max (regret) versions of shortest path and spanning trej@] they adopt an alternative
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Table 5: Complexity of min-max regret versions of classi@aahbinatorial problems (in-
terval scenario case)

Problems Min-max regret

SHORTESTPATH  stronglyNP-hard [14]
SPANNING TREE stronglyNP-hard [14]
ASSIGNMENT stronglyNP-hard [1]

KNAPSACK NP-hard
CuTt polynomial [2]
s —1tCuT stronglyNP-hard [2]

perspective and develop a general approximation schenrgy the scaling technique,
which can be applied to min-max (regret) versions of someélpros, provided that some
conditions are satisfied. The advantage of this second apipiis that the resulting fptas
usually have much better running times than those derivied usulti-objective fptas for
the multi-objective versions.

The interval scenario case has been much less studied. \Weepdrt one general
result due to Kasperski and Ziesiki [28].

5.1 Discrete scenario case

As a first general result, Proposition 1 giveg-approximation algorithm for G-
CRETE MIN-MAX (REGRET) P when the underlying probler® is polynomial-time
solvable. In some cases, however, we can derive fptas foe poablems.

5.1.1 Relationships between min-max (regret) and multi-gjective versions

Exploiting the results mentioned in section 3.1.2 conaggrthe relationships with
the multi-objective version, we can derive approximatitgpathms, with a noticeable
difference between the min-max and the min-max regret @essi

Min-max version

Proposition 11 ([4]) Given a minimization problerR, for any functionf : N — (1, o),
if MULTI-OBJECTIVEP has a polynomial-tim¢ (n)-approximation algorithm, theDis-
CRETEMIN-MAX P has a polynomial-tim¢ (n)-approximation algorithm.
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Proof: Let F be anf(n)-approximation of the set of efficient solutions. Since astene
optimal solutionz* for DISCRETEMIN-MAX P is efficient as shown in Proposition 5,
there exists a solutiom € F' such thaval(y, s) < f(n)val(z*,s), forall s € S. Consider
among sef’ a solution:z that has a minimumax;cg val(z, s). Thus,maxgecg val(z, s) <
maxes val(y, s) < f(n) maxses val(z*, s). O

Corollary 2 ([4]) For a constant number of scenarid3|SCRETEMIN-MAX SHORTEST
PATH, DISCRETEMIN-MAX SPANNING TREE, andDISCRETEMAX-MIN KNAPSACK
have an fptas.

Proof: For a constant number of objectives, multi-objective \@rsiof SHORTEST
PATH, SPANNING TREE, and KNAPSACK have an fptas as shown by Papadimitriou and
Yannakakis in [40]. O

Min-max regret version

As shown in Proposition 6, at least one optimal solutignfor DISCRETE MIN-
MAX REGRETP is efficient. Unfortunately, giver#' an f(n)-approximation of the set
of efficient solutions, a solutiom € F with a minimumR,,,...(x) is not necessarily an
f(n)-approximation for the optimum value since the minimum maxin regret could be
very small compared with the error that was allowedin

However, it is sometimes possible to derive an approximagigorithm working di-
rectly in the regret space instead of the criterion spacés Why, an fptas is obtained in
[4] for DISCRETEMIN-MAX REGRET SHORTESTPATH using a dynamic programming
algorithm that computes at each stage the set of efficiembrseof regrets.

5.1.2 A general approximation scheme in the discrete scenarcase

A standard approach for designing fptas KP-hard problems is to use tisealing
techniqug43] in order to transform an input instance into an instahegis easy to solve.
Then an optimal solution for this new instance is computadgua pseudo-polynomial
algorithm. This solution will serve as an approximate solut This general scheme
usually relies on the determination of a lower bound thatolymomially related to the
maximum value of the original instance. However, for the-miax (regret) versions, we
need to adapt this scheme in order to obtain an fptas.

Proposition 12 ([3]) Given a problenDISCRETEMIN-MAX (REGRET) P, if

21



Min-max (regret) versions of some combinatorial optimizaiproblems: a survey

1. for any instancd, a lower and an upper bountl andU of the optimal valuept
can be computed in timg(|/|), such thatU < ¢(|I|)L, wherep and ¢ are two
polynomials withy non decreasing andl(|/|) > 1, and

2. there exists an algorithm that finds for any instardcan optimal solution in time
r(|],U) wherer is a non decreasing polynomial,

thenDISCRETEMIN-MAX (REGRET) P has an fptas.

We discuss now the two conditions of the previous theorene.fifst condition can be
satisfied easily for polynomial-time solvable problems fagw in Proposition 1 where
we exhibit boundd. andU such thatU < kL. Furthermore, ifP is polynomially ap-
proximable, then the first condition of Proposition 12 casodle satisfied for BCRETE
MIN-MAX P using Proposition 1. More precisely,Ais f(n)-approximable wherg(n)
is a polynomial, given an instandeof DISCRETEMIN-MAX P, letz’ be anf(|I|/k)-
approximate solution i’ (defined as in the proof of Proposition 1), then we have
m > ees pval(z’,s) andU = max,eg val(2/, s), and thud/ < kf(|1|/k)L.

The second condition of Proposition 12 can be weakened feCRETEMIN-MAX
‘P by requiring only a pseudo-polynomial algorithm, that isadgorithm polynomial in
|I| andmax(I) = max;, c;. Indeed, knowing an upper bouid we can eliminate any
variablez; such thatf > U on at least one scenarsoc S. Condition 2 is then satisfied
by applying the pseudo-polynomial algorithm on this modifiestance.

Min-max (regret) versions of some problems, likeGRTESTPATH, KNAPSACK, ad-
mit pseudo-polynomial time algorithms based on dynamigmmming [30]. For some
dynamic programming formulations, we can easily obtaimalgms satisfying condition
2, by discarding partial solutions with value more tiHaron at least one scenario. For
other problems, like BANNING TREE, which are not known to admit pseudo-polynomial
algorithms based on dynamic programming, specific algmstare required [3].

Corollary 3 ([3]) For a constant number of scenarid3|SCRETEMIN-MAX (REGRET)
SHORTESTPATH, DISCRETEMIN-MAX (REGRET) SPANNING TREE have an fptas.

The resulting fptas obtained using Corollary 3 are much mdfeient than those
obtained using Corollary 2.

Table 6 summarizes approximation results in the discrez@asto case for several
combinatorial optimization problems.
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Table 6: Approximation of the min-max and min-max regretsuans in the discrete
scenario case

Problems Constant Non-constant

Min-max  Min-max regret Min-max Min-max regret
SHORTESTPATH fptas [46] fptas [4, 3] not2 — ¢) apx. [4] not(2 — ¢) apx. [4]
SPANNING TREE fptas [4, 3] fptas [4, 3] not3 — <) apx. [4] not(2 — ¢) apx. [4]
KNAPSACK fptas [4] non apx. [4] non apx. [4] non apx. [4]

5.2 Interval scenario case

In this case, most of the min-max regret versions of clabsmabinatorial optimiza-
tion problems become stronglP-hard (see Table 5). Kasperski and Ziski [28] give
a 2-approximation algorithm for the min-max regret versiohpolynomial-time solvable
problems as a direct consequence of Proposition 9.

6 Resolution of the min-max (regret) versions

We review in this section exact procedures for solving the-max and min-max
regret versions of classical combinatorial optimizatioolgpems.

6.1 Discrete scenario case

Kouvelis and Yu [30] implement a branch-and-bound procedorsolve the min-
max (regret) versions of several combinatorial optim@atproblems. A lower bound on
each node of the arborescence is calculated using surnegaxation as explained in the
following.

Consider DSCRETEMIN-MAX REGRETP which can be stated as:
min y
y > val(z,s) —valt, Vs € S (3)
reX,y>0

Letp = (1, .., i) be amultiplier vector such that, > 0, Vs € S, and)_ o s = 1.
The surrogate relaxation of (3) is formulated as follows:

{ Lla) = min 2 ocs pa(val(a, 5) = val) (4)
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The efficiency of the relaxation procedure rests on finding&or.* providing the best
lower boundL(u*) < opt whereopt is the optimum value of the input considered. A
sub-gradient procedure is used in [30] to find the tightest. omhe later is based on
solving, at each iteration, problem (4) with a multipliecct@ i« = (4, . . ., p) and the
result is exploited in order to find a new multiplier vectoatimproves the bound given
by the surrogate relaxation. Furthermore, the optimaltawiuc(;) of (4) is a feasible
solution of (3) and thus provides an upper boudng:) = maxges(val(z(p),s) — val?)

on the optimal value. The best upper bound obtained so fangltine execution of the
sub-gradient procedure is saved.

The Best-Node First search strategy is adopted in the brandHound procedure
presented in [30]. The choice of the branching variable idepiby the surrogate relax-
ation.

DISCRETE MIN-MAX P can be solved in a similar way by removing!l’ in (3)
and (4).

6.2 Interval scenario case

In the interval scenario case, Inuiguchi and Sakawa [24]ystbhe min-max regret
version of linear programs. Their algorithm is based on axaion procedure developed
initially by Shimizu and Aiyochi [44]. Karasan, Pinar andrvan [26, 48] formulate
the min-max regret versions oHORTESTPATH and SPANNING TREE as mixed integer
linear programs. A generalization of this formulation tolplems with zero duality gap
is presented in section 6.2.1. Montemanni and Gambard&iaJ7] propose branch-
and-bound algorithms for solving these problems. ReceAilssi, Vanderpooten and
Vanpeperstraete [5], Montemanni [34], Montemanni and Ganaddla [38], and Mon-
temanni, Barta and Gambardella [35] proposed a relaxationegiure for solving the
min-max regret versions of problems frai

In this section, we give a formulation of the min-max regrtsions of problems with
a zero duality gap (section 6.2.1) and we present a gendaakten procedure to solve
the min-max regret versions of polynomial-time solvableNé&-hard problems (section
6.2.2).

6.2.1 Formulation of the min-max regret versions of problens with a zero duality
gap

Consider a minimization probler® € C with a zero duality gap and where the fea-
sible solution set is defined by = {z : Az > b, x € {0,1}"}. The maximum regret
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Rq.(z) Of @ solutionz is given as follows:

Riaz () = Selgz;gx{csx — 'y} =c (v)r —c (2)r) () = Cr — rzlél)l(l c (x)z
wherec = (¢4, ...,¢,) andz? is an optimal solution for scenario

Therefore, NTERVAL MIN-MAX REGRETP can be written as follows:

WD Rygq(v) = min{ee —min e ()2} (5)
SinceP has a zero duality gap, we can replace in (5) the probiémcx ¢ (x)z by its
dual:

max b’y
yey

whereY = {y : A'y < ¢ (z), y > 0}. Consequently,NTERVAL MIN-MAX REGRET
‘P can be formulated as follows:

jcpin | {ex — by}

In the following, we illustrate this approach with the asgigent problem. A linear
programming formulation of this problem is given as follows

. n
min s Cijii

s.t.

YT =li=1,...n (6)
St ay=1j=1,....n

;> 0;0,5=1,...,n

The dual of (6) is given by

max y ., (u; + vj)

S.t.
u +v; < ¢y L,g=1,...,n
u,v; 20;4,7=1,...,n

Thus, a formulation ofNTERVAL MIN-MAX REGRETASSIGNMENTIS

((min ) F @iy — Do (i £ )
s.t.

Z?zlxij = 1, 1= 1,...,n
Z:.L:lxij = 1, j: 1,...,77,

ui +v; < ¢y + (€5 — ¢y)vigs ,5=1,...,n
iL‘Z‘jE{O,l}; i,jzl,...,n
L w05 205 4,5=1,...,n
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6.2.2 A relaxation procedure for the min-max regret versiors

A general linear formulation of min-max regret versionsiigeg by:

min 7
S.t.

MMR r>cx—c'xl, VseS
reX,r>0

where constraint > ¢*z — ¢®z% is referred to as a cut of type 1.

From Proposition 7, we know that, in the interval scenarisecave can restrict the
scenario sef to the set of extreme scenarios. However, since the numbextcgme
scenarios is up t@", formulationMMR is exponential.

In order to handle this difficulty, a standard approach iss®e a relaxation procedure
which starts with an initial subset of scenari§’sand iteratively takes into account one
additional scenario, by adding a cut of type 1, until we camaldsh that the current
solution is optimal.

Considering the following formulation, defined at iteratiomith a current subset of
scenarioss”:

min r
S.t.
MMR"
r>cz— sz, VseSh
re X,r>0

we denote by andz” the optimal value and an optimal solutionMMR" at steph.

The details of the relaxation procedure, originally pragabm [24, 32, 33] for solving
min-max regret versions of linear programming problems,given as follows:

Algorithm 1 Relaxation procedure

1: Initialisation. LB « 0, S° < ), h «— 0, and construct’ € X.

2: Computec” and R, ... (z") by solvingmax,cg e x {c*z" — c*z}.

3: if Ryae(2") < LB then

4:  END: 2" is an optimal solution.

5: ShHl— Shu{ct}).

6: h < h+ 1, computer” andz" by solvingMMR", LB « r" and go to step 2.

In the linear programming case, step 2 is the most computtiodemanding part of
the algorithm since it requires solving a quadratic programg problem. On the other
hand, step 6 requires only solving a linear programming lprab
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This algorithm can be extendedQel linear programming problems. In this case, we
do not need to solve a quadratic programming problem at st@pc2 we know, from
Proposition 7, that we can take as scenatithe worst case scenario for fof, ¢ (z").
Hence, step 2 of Algorithm 1 can be replaced by:

2: 7" «— ¢ (2"), compute an optimal solutiart, of min,ex ¢z,
Ropaz(zh) o — Ehxzh.

Now step 6 becomes computationally expensive sMMR" is a mixed integer pro-
gramming problem whose difficulty increases with the nundfesidded cuts. This ex-
plains why a straightforward application of this algorithonsolve min-max regret ver-
sions of0-1 linear programming problems is not satisfactory. We canraw signifi-

cantly the performance of the algorithm by using altermatuts, called cuts of type 2,
which were found independently in [5] and [34, 38]. Theses @k defined as follows:

*

r >t —c (T)T- (on)

These cuts can be derived easily foralinear programming problem, sinég,,..(z) >
cx — ¢ (x)y foranyz,y € X, and in particular foy = xj_(xh).

Proposition 13 Given a minimization probler® < C, cuts of type 2 dominate cuts of
type 1.

Proof: We need to prove that for any z" € X, we haveex — ¢ (z)a*_
¢ (a")x}_ - Thus, we consider the following difference:

e — c (2)x) oy — ¢ (@M + ¢ (@)l g =
=1
If 2} = 1, we have(e; — ¢;) (2} (n); — T} () 2 0fori =1, n. If 2 = 0, we
have(Ei—gi)(a:i—:cixj,( )i) >0fori=1,...,n. 0

zh

7 Conclusions

We reviewed in this paper motivations, complexity, appmadion, and exact resolu-
tion for the min-max and min-max regret versions of seveoahlginatorial optimization
problems. We conclude this survey by listing some open guest

For all studied problems, min-max and min-max regret vesioave the same com-
plexity in the discrete scenario case. As observed at theoésdction 4, there is no
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general reduction between the min-max and the min-max regrsions or vice versa,
except for bottleneck problems. The construction of suockdaiction would be interest-
ing since only one algorithm (d&P-hardness proof) would be sufficient for both versions.

Almost all problems discussed in this paper have a clear toaty status, see, e.g.,
Tables 3-5. However, a felWP-hard problems still need to be precisely classified (weakly
or stronglyNP-hard). As a first exampleNITERVAL MIN-MAX REGRETKNAPSACK is
clearly NP-hard, but its precise status is not known. A second exangp@3$CRETE
MIN-MAX (REGRET) ASSIGNMENT for a constant number of scenarios. The original
proofs of theNP-hardness of these problems are obtained in [30] using atiedurom
partition, which has a pseudo-polynomial time algorithr8][2Therefore, it remains an
open question whether these problems have pseudo-polghtime algorithms or are
stronglyNP-hard.

Approximation results, which are quite recent, should helisd more thoroughly.
In particular, for a non-constant number of scenarios gtlea gap between the general
k-approximation result given at the beginning of sectiondnd specific negative results
indicated in Table 6. In the interval scenario case, findiettds approximation algorithms
than the general 2-approximation algorithm referred inise&.2, for the min-max regret
versions of specific polynomial-time solvable problemsalso an interesting research
perspective.

Finally, the efficient exact resolution of the min-max andhymax regret versions of
combinatorial optimization problems remains a compuretily challenging question.
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