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Min-max and min-max regret versions of some
combinatorial optimization problems : a survey

Hassene Aissi∗, Cristina Bazgan∗, and Daniel Vanderpooten∗

Résumé

Les critères min-max et min-max regret sont souvent utilisés en vue d’obtenir
des solutions robustes. Après avoir motivé l’utilisation de ces critères, nous présen-
tons des résultats généraux. Ensuite, nous donnons des résultats de complexité des
versions min-max et min-max regret de quelques problèmes d’optimisation combi-
natoire : plus court chemin, arbre couvrant, affectation, coupe,s − t coupe, sac à
dos. Comme la plupart de ces problèmes sontNP-difficiles, nous présentons des al-
gorithmes d’approximation ainsi que des algorithmes exacts de résolution.

Mots-clefs : Min-max, min-max regret, optimisation combinatoire, complexité, ap-
proximation, analyse de robustesse.

Abstract

Min-max and min-max regret criteria are commonly used to define robust solu-
tions. After motivating the use of these criteria, we present general results. Then,
we survey complexity results for the min-max and min-max regret versions of some
combinatorial optimization problems: shortest path, spanning tree, assignment, cut,
s-t cut, knapsack. Since most of these problems areNP-hard, we also investigate
the approximability of these problems. Furthermore, we present algorithms to solve
these problems to optimality.

Key words : Min-max, min-max regret, combinatorial optimization, complexity,
approximation, robustness analysis.
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1 Introduction

The definition of an instance of a combinatorial optimization problem requires to spec-
ify parameters, in particular coefficients of the objectivefunction, which may be uncertain
or imprecise. Uncertainty/imprecision can be structured through the concept ofscenario
which corresponds to an assignment of plausible values to model parameters. There exist
two natural ways of describing the set of all possible scenarios. In thediscrete scenario
case, the scenario set is described explicitly. In theinterval scenario case, each numerical
parameter can take any value between a lower and an upper bound. The min-max and
min-max regret criteria, stemming from decision theory, are often used to obtain solu-
tions hedging against parameters variations. The min-max criterion aims at constructing
solutions having the best possible performance in the worstcase. The min-max regret cri-
terion, less conservative, aims at obtaining a solution minimizing the maximum deviation,
over all possible scenarios, between the value of the solution and the optimal value of the
corresponding scenario.

The study of these criteria is motivated by practical applications where an anticipa-
tion of the worst case is crucial. For instance, consider thesensor placement problem
when designing contaminant warning systems for water distribution networks [16, 47]. A
key deployment issue is identifying where the sensors should be placed in order to max-
imize the level of protection. Quantifying the protection level using the expected impact
of a contamination event is not completely satisfactory since the issue of how to guard
against potentially high-impact events, with low probability, is only partially handled.
Consequently, standard approaches, such as deterministic or stochastic approaches, will
fail to protect against exceptional high-impact events (earthquakes, hurricanes, 9/11-style
attacks,. . . ). In addition, reliable estimation of contamination event probabilities is ex-
tremely difficult. Min-max and min-max regret criteria are appropriate in this context by
focusing on a subset of high-impact contamination events, and placing sensors to mini-
mize the impact of such events.

The purpose of this paper is to review the existing literature on the min-max and
min-max regret versions of combinatorial optimization problems with an emphasis on the
complexity, the approximation and the exact resolution of these problems, both for the
discrete and interval scenario cases.

The rest of the paper is organized as follows. Section 2 introduces, illustrates and
motivates the min-max and min-max regret criteria. Generalresults for these two criteria
are presented in section 3. Section 4 provides complexity results for the min-max and
min-max regret versions of various combinatorial optimization problems. Since most of
these problems areNP-hard, section 5 describes the approximability of these problems.
Section 6 describes exact procedures to solve min-max and min-max regret versions in
the discrete and interval scenario cases. Conclusions are provided in the final section.
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2 Presentation and motivations

We consider in this paper the classC of 0-1 problems with a linear objective function
defined as: {

min(or max)
∑n

i=1 cixi ci ∈ N

x ∈ X ⊂ {0, 1}n

This class encompasses a large variety of classical combinatorial problems, some of which
are polynomial-time solvable (shortest path problem, minimum spanning tree, . . . ) and
others areNP-difficult (knapsack, set covering, . . . ).

In the following, all the definitions and results are presented for minimization pro-
blemsP ∈ C. In general, they also hold with minor modifications for maximization
problems, except for some cases that will be explicitly mentioned.

2.1 Min-max, min-max regret versions

In the discrete scenario case, the min-max or min-max regretversion associated to a
minimization problemP ∈ C has as input a finite setS of scenarios where each scenario
s ∈ S is represented by a vectorcs = (cs

1, . . . , c
s
n).

In the interval scenario case, each coefficientci can take any value in the interval
[ci, ci]. In this case, the scenario setS is the cartesian product of the intervals[ci, ci],
i = 1, . . . , n. An extreme scenariois a scenario whereci = ci or ci, i = 1, . . . , n.

We denote byval(x, s) =
∑n

i=1 cs
ixi the value of solutionx ∈ X under scenarios ∈

S, byx∗
s an optimal solution under scenarios, and byval∗s = val(x∗

s, s) the corresponding
optimal value.

The min-max version corresponding toP consists of finding a solution having the best
worst case value across all scenarios, which can be stated as:

min
x∈X

max
s∈S

val(x, s) (1)

This version is denoted by DISCRETEM IN-MAX P in the discrete scenario case, and by
INTERVAL M IN-MAX P in the interval scenario case.

Given a solutionx ∈ X, its regret, R(x, s), under scenarios ∈ S is defined as
R(x, s) = val(x, s) − val∗s . Themaximum regretRmax(x) of solutionx is then defined
asRmax(x) = maxs∈S R(x, s).

The min-max regret version corresponding toP consists of finding a solution mini-
mizing its maximum regret, which can be stated as:

min
x∈X

Rmax(x) = min
x∈X

max
s∈S

(val(x, s) − val∗s) (2)
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This version is denoted by DISCRETE M IN-MAX REGRET P in the discrete scenario
case, and by INTERVAL M IN-MAX REGRETP in the interval scenario case.

For maximization problems, corresponding max-min and min-max regret versions can
be defined.

2.2 An illustrative example

In order to illustrate the previous definitions and to show the interest of using the
min-max and min-max regret criteria, we consider a capital budgeting problem with un-
certainty or imprecision on the expected profits. Suppose wewish to invest a capitalb
and we have identifiedn investment opportunities. Investmenti requires a cash outflow
wi at present time and yields an expected profitpi at some term,i = 1, . . . , n. Due to
various exogenous factors (evolution of the market, inflation conditions, . . . ), the profits
are evaluated with uncertainty/imprecision.

The capital budgeting problem is a knapsack problem where welook for a subset
I ⊆ {1, . . . , n} of items such that

∑
i∈I wi ≤ b which maximizes the total expected

profit, i.e.,
∑

i∈I pi.

Depending on the type of uncertainty or imprecision, we use either discrete or in-
terval scenarios. When the profits of investments are influenced by the occurrence of
well-defined future events (e.g., different levels of market reactions, public decisions of
constructing or not a facility which would impact on the investment projects), it is natural
to define discrete scenarios corresponding to each event. When the evaluation of the profit
is simply imprecise, a definition using interval scenarios is more appropriate.

As an illustration, consider a small size capital budgetingproblem where profit uncer-
tainty or imprecision is modelled with three discrete scenarios or with interval scenarios.
Numerical values are given in Table 1 withb = 12 andn = 6.

i wi p1
i p2

i p3
i p

i
pi

1 3 4 3 3 3 5
2 5 8 4 6 2 6
3 2 5 3 3 2 5
4 4 3 2 4 2 3
5 5 2 8 2 3 9
6 3 4 6 2 1 7

Table 1: Cash outflows and profits of the investments
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1 2 3 Optimal solution

17 10 12 scenario 1: (1,1,1,0,0,0)
11 17 7 scenario 2: (0,0,1,0,1,1)
16 9 13 scenario 3: (0,1,1,1,0,0)
15 12 12 max-min: (0,1,0,1,0,1)
15 15 11 min-max regret: (0,1,1,0,1,0)

Table 2: Optimal values and solutions (discrete scenario case)

In the discrete scenario case, we observe in Table 2 that the optimal solutions of the
three scenarios are not completely satisfactory since theygive low profits in some scenar-
ios. An appropriate solution should behave well under any variation of the future profits.
In this example, optimal solutions to max-min and min-max regret versions are more ac-
ceptable solutions since their performances are more stable. A risk-averse decision maker
would favor the max-min solution that guarantees at least 12in all scenarios. If the deci-
sion maker is willing to accept a small degradation of the performance in the worst case
scenario with an increase of the average performance over all scenarios, then the optimal
solution of the min-max regret version is more appropriate than the optimal solution of
the min-max version.

In the interval scenario case, the optimal solution to the max-min version is obtained
by considering only the worst-case scenario (see section 3.2) and corresponds tox1 =
x3 = x5 = 1; x2 = x4 = x6 = 0 with a worst value 8. The obtained solution only depends
on one scenario and, in particular, is completely independent of the interval upper bound
values. An optimal solution of the min-max regret version isgiven byx1 = x5 = x6 = 1;
x2 = x3 = x4 = 0 with a worst value and a maximum regret 7. Unlike for the max-min
criterion, the optimal min-max regret solution does dependon the interval lower and upper
bound values. In particular, when an interval upper bound increases, the maximum regret
of each feasible solution either increases or remains stable. Obviously, this may impact
on the resulting optimal solution. For instance, if we increasep3 from 5 to 8, the new
min-max regret optimal solution becomesx3 = x5 = x6 = 1; x1 = x2 = x4 = 0 with a
worst value 6 and a maximum regret 8. Observe, in the previousexample, that improving
the prospects of investment 3 leads to include this investment in the new optimal solution.

2.3 Relevance and limits of the min-max (regret) criteria

When uncertainty or imprecision on the parameter values of decision aiding models is
a crucial issue, decision makers may not feel confident usingresults derived from parame-
ters taking precise values.Robustness analysisis a theoretical framework that enables the
decision maker to take into account uncertainty or imprecision in order to produce deci-
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sions that will behave reasonably under any likely input data (see, e.g., Roy [42], Vincke
[45] for general contexts, Kouvelis and Yu [30] in combinatorial optimization, and Mul-
vey, Verderbel, and Zenios [39] in mathematical programming). Different criteria can be
used to select among robust decisions. The min-max and min-max regret criteria are often
used to obtain conservative decisions to hedge against variations of the input data [41].
We briefly review situations where each criterion is appropriate.

The min-max criterion is suited for non-repetitive decisions (construction of a high
voltage line, highway, . . . ) and for decision environments where precautionary measures
are needed (nuclear accidents, public health). In such cases, classical approaches like
deterministic or stochastic optimization are not relevant. This criterion is also appropriate
in competitive situations [41] or when the decision maker must reach a pre-defined goal
(sales, inventory, . . . ) under any variation of the input data.

The min-max regret criterion is suitable in situations where the decision maker may
feel regret if he/she makes a wrong decision. He/she thus takes this anticipated regret into
account when deciding. For instance, in finance, an investormay observe not only his
own portfolio performance but also returns on other stocks or portfolios in which he was
able to invest but decided not to [20]. Therefore, it seems very natural to assume that the
investor may feel joy/disappointment if his own portfolio outperformed/underperformed
some benchmark portfolio or portfolios. The min-max regretcriterion reflects such a
behavior and is less conservative than the min-max criterion since it considers missed
opportunities. It has also been shown that, in the presence of uncertainty on prices and
yields, the behavior of some economical agents (farmers) could sometimes be better pre-
dicted using a min-max regret criterion, rather than a classical profit maximization crite-
rion [29].

Maximum regret can also serve as an indicator of how much the performance of a
decision can be improved if all uncertainties/imprecisions could be resolved [30]. The
min-max regret criterion is relevant in situations where the decision maker is evaluated
ex-post.

Another justification of the min-max regret criterion is as follows. In uncertain/impre-
cise decision contexts, a reasonable objective is to find a solution with performances as
close as possible from the optimal values under all scenarios. This amounts to setting a
thresholdε and looking for a solutionx ∈ X such thatval(x, s)−val∗s ≤ ε, for all s ∈ S.
Equivalently,x should satisfyRmax(x) ≤ ε. Then, looking for such a solution withε as
small as possible is equivalent to determining a min-max regret solution.

Min-max and min-max regret criteria are simple to use since they do not require any
additional information unlike other approaches based on probability or fuzzy set theory.
Furthermore, they are often considered as reference criteria and a starting point in robust-
ness analysis. However, the min-max and min-max regret criteria are sometimes inappro-
priate. In some situations, these criteria are too pessimistic for decision makers who are
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willing to accept some degree of risk. In addition, they attach a great importance to worst
case scenarios which are sometimes unlikely to occur. In thediscrete scenario case, this
difficulty could be handled, at the modelling stage, by including only relevant scenarios
in the scenario set. In the interval scenario case, min-max and min-max regret optimal
solutions are obtained for extreme scenarios, as will be shown in section 3.2. Clearly not
all these scenarios are likely to happen and this limits the applicability of these criteria.
This difficulty becomes all the more important than the intervals get larger.

Some approaches have been designed so as to reduce these drawbacks. In the discrete
scenario case, Daskin, Hesse, and ReVelle [19] propose a model called theα-reliable
min-max regret model that identifies a solution that minimizes the maximum regret with
respect to a selected subset of scenarios whose probabilityof occurrence is at least some
user-defined valueα. Kalai, Aloulou, Vallin, and Vanderpooten [25] propose another
approach called lexicographicα-robustness which, instead of focusing on the worst case,
considers all scenarios in lexicographic order, from the worst to the best, and also includes
a tolerance thresholdα in order not to discriminate among solutions with similar values.
In the interval scenario case, Bertsimas and Sim [15] proposea robustness model with
a scenario set restricted to scenarios where the number of parameters that are pushed to
their upper bounds is limited by a user-specified parameter.The robust version obtained
using this model has the same approximation complexity as the classical version. This
is a clear advantage over the classical robustness criteriasince their robust counterpart
are generallyNP-hard. The main difficulty is, however, the definition of thistechnical
parameter whose value may impact on the resulting solution.

3 General results on min-max (regret) versions

We present in this section general results that give an insight on the nature and dif-
ficulty of min-max (regret) versions. They also serve as a basis for further results or
algorithms presented in the next sections.

3.1 Discrete scenario case

3.1.1 Relationships between min-max (regret) and classical versions

We investigate, in this part, the quality of the solutions obtained by solvingP for
specific scenarios.

A first attempt to solve DISCRETEM IN-MAX (REGRET) P is to construct an optimal
solutionx∗

s for each scenarios ∈ S, computemaxs∈S val(x∗
s, s) (or Rmax(x

∗
s)), and then,

select the best of the obtained candidate solutions. However, this solution can be very
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bad, since the gap between its value and the optimal value mayincrease exponentially in
the size of the instance as we can see in the following example. Consider for example
a pathological instance of DISCRETEM IN-MAX (REGRET) SHORTESTPATH. Figure 1
depicts a graphG = (V,A) with 2n vertices where each arc is valued by costs on 2
scenarios. The optimal solution in the first scenario is given by path1, n+1, . . . , 2n−1, 2n
with values(0, 2n − 1), a worst value2n − 1 and a maximum regret2n − 1, whereas
the optimal solution in the second scenario is given by path1, 2, . . . , n, 2n with values
(2n − 1, 0), a worst value2n − 1, and a maximum regret2n − 1. However, the optimal
solution of the min-max and min-max regret versions is givenby path1, 2n with a worst
value 1 and a maximum regret 1. Thus the gap between the best value (regret) among
the optimal solutions of each scenario and the optimum of min-max (min-max regret) is
2n − 2.

1

2 3 n

n + 1 n + 2 2n − 1

2n

(20,0)

(0,20)

(2n−1,0)

(0,2n−1)

(21,0)

(0,21)

(1,1)

Figure 1:A critical instance of DISCRETEM IN-MAX (REGRET) SHORTESTPATH where opti-
mal solutions in each scenario are very bad

The previous example shows that by solvingP for all scenarios inS, we cannot guar-
antee the performance of the obtained solution. Another idea is to solve problemP for
a fictitious scenario in the hope that the obtained solution has a good performance. The
following proposition considers themedianscenario, i.e. with costs corresponding to the
average value over all scenarios.

Proposition 1 ([30]) Consider an instanceI of DISCRETEM IN-MAX P (or DISCRETE

M IN-MAX REGRET P) with k scenarios where each scenarios ∈ S is represented
by (cs

1, . . . , c
s
n) and whereP is a minimization problem. Consider also an instance

I ′ of P where each coefficient of the objective function is defined byc′i =
∑k

s=1
cs

i

k
,

i = 1, . . . , n. Thenx′ an optimal solution ofI ′ is such thatmaxs∈S val(x′, s) ≤ k.opt(I)
(or Rmax(x

′) ≤ k.opt(I)) whereopt(I) denotes the optimal value of instanceI.

Proof : Consider an instanceI of DISCRETE M IN-MAX REGRET P. Let x′ be an
optimal solution ofI ′. We first show thatL =

∑
s∈S

1
k
(val(x′, s)−val∗s) is a lower bound

of opt(I).

L = min
x∈X

1

k

∑

s∈S

(val(x, s) − val∗s) ≤ min
x∈X

1

k
k max

s∈S
(val(x, s) − val∗s) = opt(I)
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Moreover,U = maxs∈S(val(x′, s)− val∗s) is clearly an upper bound ofopt(I) and we get

min
x∈X

max
s∈S

(val(x, s) − val∗s) ≤ max
s∈S

(val(x′, s) − val∗s) ≤
∑

s∈S

(val(x′, s) − val∗s)

= kL ≤ k.opt(I)

The proof for DISCRETE M IN-MAX P is exactly the same except that we takeL =∑
s∈S

1
k
val(x′, s) andU = maxs∈S val(x′, s) as lower and upper bounds ofopt(I), and

we removeval∗s everywhere in the proof. 2

Considering a maximization problemP, we can define lower and upper boundsL and
U similarly. For the min-max regret version, we also obtain ak-approximate solution
in this way. However, the previous result does not hold for the max-min version since
the ratio U

L
is not bounded. In particular, for the knapsack problem, this ratio can be

exponential in the size of the input, as noticed in [49].

An alternative idea is to solve problemP on a fictitious scenario, calledpessimistic
scenario, with costs corresponding to the worst values overall scenarios.

Proposition 2 Consider an instanceI of DISCRETEM IN-MAX P withk scenarios where
each scenarios ∈ S is represented by(cs

1, . . . , c
s
n) and whereP is a minimization prob-

lem. Consider also an instanceI ′ of P where each coefficient of the objective function is
defined byc′i = maxs∈S cs

i , i = 1, . . . , n. Thenx′ an optimal solution ofI ′ is such that
maxs∈S val(x′, s) ≤ k.opt(I) whereopt(I) denotes the optimal value of instanceI.

Proof : Let x∗ denote an optimal solution of instanceI. We have

max
s∈S

n∑

i=1

cs
ix

′
i ≤

n∑

i=1

c′ix
′
i ≤

n∑

i=1

c′ix
∗
i ≤

n∑

i=1

∑

s∈S

cs
ix

∗
i

=
∑

s∈S

n∑

i=1

cs
ix

∗
i ≤ k. max

s∈S

n∑

i=1

cs
ix

∗
i = k.opt(I)

2

The same result cannot be extended to the min-max regret version. Figure 2 illustrates
a critical instance of DISCRETEM IN-MAX REGRET SHORTESTPATH with two scenar-
ios. The optimal solution for the first and second scenario isthe same and corresponds
to path1, n − 1, n. Thus, this path is the min-max regret optimal solution witha maxi-
mum regret 0. However, the optimal solution for the pessimistic scenario is given by path
1, 2, . . . , n with maximum regret2n.
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1

2 3 4 n − 2

n − 1

n

(2n, 2n)

(0,2n + 1)

(2n, 2n) (0, 0)

(0, 0)

(2n,0)

Figure 2: A critical instance of DISCRETE M IN-MAX REGRET SHORTEST PATH where the
optimal solution in the pessimistic scenario is very bad

Extension of Proposition 2 to a maximization problemP does not hold neither for
DISCRETEMAX -M IN P nor for DISCRETEM IN-MAX REGRETP.

Quite interestingly, however, solvingP for the pessimistic scenario leads to optimal
solutions for the specific class of bottleneck problems defined as

{
min maxi=1,...,n cixi ci ∈ N

x ∈ X ⊂ {0, 1}n

This class encompasses bottleneck versions of classical optimization problems (short-
est path, spanning tree, . . . ). The min-max and min-max regret bottleneck versions are
defined by (1) and (2) respectively, withval(x, s) = maxi=1,...,n cs

ixi.

These versions are denoted DISCRETE M IN-MAX (REGRET) BOTTLENECK P in
the discrete scenario case, and INTERVAL M IN-MAX (REGRET) BOTTLENECK P in the
interval scenario case.

Proposition 3 Consider an instanceI of DISCRETE M IN-MAX BOTTLENECK P with
k scenarios where each scenarios ∈ S is represented by(cs

1, . . . , c
s
n) and whereP is a

minimization problem. Consider also an instanceI ′ of P where each coefficient of the
objective function is defined byc′i = maxs∈S cs

i , i = 1, . . . , n. Thenx′ an optimal solution
of I ′ is also an optimal solution ofI.

Proof :

min
x∈X

max
s∈S

val(x, s) = min
x∈X

max
s∈S

max
i=1,...,n

cs
ixi = min

x∈X
max

i=1,...,n
max
s∈S

cs
ixi = min

x∈X
max

i=1,...,n
c′ixi

2

The next proposition gives a reduction from DISCRETE M IN-MAX REGRET BOT-
TLENECK P to DISCRETEM IN-MAX BOTTLENECK P.

10
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Proposition 4 Consider an instanceI of DISCRETEM IN-MAX REGRETBOTTLENECK

P with k scenarios where each scenarios ∈ S is represented by(cs
1, . . . , c

s
n) and where

P is a minimization problem. Consider also an instanceĨ of DISCRETE M IN-MAX

BOTTLENECK P where each coefficient of the objective function is defined byc̃s
i =

max{cs
i − val∗s , 0}, i = 1, . . . , n. Thenx̃, an optimal solution of̃I, is also an optimal

solution ofI.

Proof :

min
x∈X

max
s∈S

(val(x, s) − val∗s) = min
x∈X

max
s∈S

( max
i=1,...,n

cs
ixi − val∗s) = min

x∈X
max
s∈S

max
i=1,...,n

c̃s
ixi

2

The previous propositions are summarized in the following corollary.

Corollary 1 GivenP an optimization problem,DISCRETEM IN-MAX BOTTLENECK P
andDISCRETEM IN-MAX REGRETBOTTLENECK P reduce toP.

3.1.2 Relationships between min-max (regret) and multi-objective versions

It is natural to consider scenarios as objective functions.This leads us to investigate
relationships between min-max (regret) and multi-objective versions.

The multi-objective version associated toP ∈ C, denoted by MULTI -OBJECTIVE

P, has for inputk objective functions where thehth objective function has coefficients
ch
1 , . . . , c

h
n. We denote byval(x, h) =

∑n
i=1 ch

i xi the value of solutionx ∈ X on criterion
h, and assume w.l.o.g. that all criteria are to be minimized. Given two feasible solutions
x andy, we say thatx dominatesy if val(x, h) ≤ val(y, h) for h = 1, . . . , k with at least
one strict inequality. The problem consists of finding the set E of efficient solutions. A
feasible solutionx is efficientif there is no other feasible solutiony that dominatesx. In
general MULTI -OBJECTIVEP is intractable in the sense that it admits instances for which
the size ofE is exponential in the size of the input (see, e.g., Ehrgott [21]).

11



Min-max (regret) versions of some combinatorial optimization problems: a survey

val(x, s2)

val(x, s1)

u

u

u

u

u

u

u

u

u

u

u

u

u

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

opt

opt

: Efficient solutionsu

Figure 3: Relationships between min-max and multi-objective versions

Proposition 5 Given a minimization problemP, at least one optimal solution forDIS-
CRETEM IN-MAX P is necessarily an efficient solution.

Proof : If x ∈ X dominatesy ∈ X thenmaxs∈S val(x, s) ≤ maxs∈S val(y, s). There-
fore, we obtain an optimal solution for DISCRETE M IN-MAX P by taking, among the
efficient solutions, one that has a minimummaxs∈S val(x, s), see Figure 3. 2

Proposition 6 Given a minimization problemP, at least one optimal solution forDIS-
CRETEM IN-MAX REGRETP is necessarily an efficient solution.

Proof : If x ∈ X dominatesy ∈ X thenval(x, s) ≤ val(y, s), for eachs ∈ S, and thus
Rmax(x) ≤ Rmax(y). Therefore, we obtain an optimal solution for DISCRETEM IN-MAX

REGRET P by taking, among the efficient solutions, a solutionx that has a minimum
Rmax(x), see Figure 4. 2
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: Efficient solutionsu

Figure 4: Relationships between min-max regret and multi-objective versions

Observe that if DISCRETEM IN-MAX (REGRET) P admit several optimal solutions,
some of them may not be efficient, but at least one is efficient (see Figures 3 and 4).

3.2 Interval scenario case

For a minimization problemP ∈ C, solving INTERVAL M IN-MAX P is equivalent to
solvingP on the scenarioc = (c1, . . . , cn) where the values of all coefficientsci are set to
their upper bounds (for a maximization problem, consider only scenarioc = (c1, . . . , cn)).
Therefore, the rest of the section is devoted to INTERVAL M IN-MAX REGRETP.

In order to compute the maximum regret of a solutionx ∈ X, we only need to consider
its worst scenarioc−(x). Yaman, Karaşan and Pinar [48] propose an approach to construct
this scenario for INTERVAL M IN-MAX REGRET SPANNING TREE and characterize the
optimal solution. These approaches can, however, be generalized to any problemP ∈ C.

Proposition 7 Given a minimization problemP, the regret of a solutionx ∈ X is maxi-
mized for scenarioc−(x) defined as follows:

c−i (x) =

{
ci if xi = 1,
ci if xi = 0,

i = 1, . . . , n

13
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Proof : Given a solutionx ∈ X, let I(x) = {i ∈ 1, . . . , n : xi = 1}. For any scenario
s ∈ S, we have

R(x, s) = val(x, s) − val(x∗
s, s) =

∑

i∈I(x)\I(x∗

s)

cs
i −

∑

i∈I(x∗

s)\I(x)

cs
i

≤
∑

i∈I(x)\I(x∗

s)

ci −
∑

i∈I(x∗

s)\I(x)

ci

= val(x, c−(x)) − val(x∗
s, c

−(x))

≤ val(x, c−(x)) − val(x∗
c−(x), c

−(x))

= R(x, c−(x))

2

The following proposition shows that an optimal solution ofINTERVAL M IN-MAX

REGRETP is an optimal solution ofP for one of the extreme scenarios.

Proposition 8 Given a minimization problemP, an optimal solutionx∗ of INTERVAL

M IN-MAX REGRETP corresponds to an optimal solution ofP for at least one extreme
scenario, in particular its most favorable scenarioc+(x∗) defined as follows:

c+
i (x∗) =

{
ci if x∗

i = 1,
ci if x∗

i = 0,
i = 1, . . . , n

Proof : Let x∗ denote an optimal solution of INTERVAL M IN-MAX REGRET P and
I(x) = {i ∈ 1, . . . , n : xi = 1}. For anys ∈ S, we have

val(x∗, s) − val(x∗
c+(x∗), s) =

∑

i∈I(x∗)\I(x∗

c+(x∗)
)

cs
i −

∑

i∈I(x∗

c+(x∗)
)\I(x∗)

cs
i

≥
∑

i∈I(x∗)\I(x∗

c+(x∗)
)

ci −
∑

i∈I(x∗

c+(x∗)
)\I(x∗)

ci

= val(x∗, c+(x∗)) − val(x∗
c+(x∗), c

+(x∗))

Suppose thatx∗ is not an optimal solution ofP for its most favorable scenarioc+(x∗).
Then the previous expression is strictly positive. Consequently, we have

val(x∗, s) − val∗s > val(x∗
c+(x∗), s) − val∗s , for all s ∈ S

thus
max
s∈S

{val(x∗, s) − val∗s} > max
s∈S

{val(x∗
c+(x∗), s) − val∗s}

This contradicts the optimality ofx∗ for INTERVAL M IN-MAX REGRETP. 2
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The two previous propositions suggest the following directprocedure to solve exactly
the min-max regret version. First construct an optimal solution x∗

s for each extreme sce-
narios and computeRmax(x

∗
s) using Proposition 7. Then, select among these solutions

one having the minimum maximum regret. This procedure is in general impracticable
since the number of extreme scenarios is up to2n. Nevertheless, if the numberu ≤ n of
uncertain/imprecise coefficientsci, corresponding to non degenerate intervals, is constant
or bounded by the logarithm of a polynomial function in the size of the input, then IN-
TERVAL M IN-MAX REGRETP has the same complexity asP, as noticed by Averbakh
and Lebedev [14].

As for the discrete scenario case, we briefly investigate thequality of the solutions
obtained by solvingP on a specific scenario.

A first idea, is to consider the worst scenarioc = (c1, . . . , cn), that is to take an optimal
min-max solution as a candidate solution for the min-max regret version.

An optimal solution of INTERVAL M IN-MAX P has, in practice, a maximum regret
close to the optimal value of the min-max regret version but,in the worst case, its perfor-
mance is very bad. Figure 5 presents a critical example for SHORTESTPATH. The optimal
solution of the min-max version is given by path1, n with a worst value and a maximum
regret2n. On the other hand, the optimal solution of the min-max regret version is given
by path1, 2, . . . , n with a worst value2n + 1 and a maximum regret 1.

1

2 3 4 n − 1

n

[0, 2n + 1]

2n

0 0

0

Figure 5: A critical instance of INTERVAL M IN-MAX REGRET SHORTEST PATH where the
optimal min-max solution is very bad

Kasperski and Zielínski [28] show that, by solving problemP on a particular scenario,
we can obtain a good upper bound of the optimal value of INTERVAL M IN-MAX REGRET

P.

Proposition 9 ([28])Given an instanceI of INTERVAL M IN-MAX REGRETP, consider
an instanceI ′ of P where each coefficient of the objective function is defined byc′i =
1
2
(ci + ci). Thenx′ an optimal solution ofI ′ has Rmax(x

′) ≤ 2opt(I) whereopt(I)
denotes the optimal value of instanceI.

For the class of bottleneck problems, as for the discrete scenario case (see Propositions
3 and 4), an optimal solution of INTERVAL M IN-MAX REGRETBOTTLENECK P can be
obtained by solving BOTTLENECK P on a carefully selected scenario. Letsi denote the
scenario whereci = ci andcj = cj for j 6= i, andi = 1, . . . , n.
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Proposition 10 ([9]) Given an instanceI of INTERVAL M IN-MAX REGRET BOTTLE-
NECK P, consider an instanceI ′ of BOTTLENECKP where each coefficient of the objec-
tive function is defined byc′i = max{ci − val∗si

, 0}. Thenx′ an optimal solution ofI ′ is
also an optimal solution ofI.

4 Complexity of min-max and min-max regret versions

Complexity of the min-max (regret) versions has been studiedextensively during the
last decade. Clearly, the min-max version of problemP is at least as hard asP since
P is a particular case of DISCRETE M IN-MAX P when the scenario set contains only
one scenario andP is a particular case of INTERVAL M IN-MAX P when all coefficients
are degenerate. Similarly, the min-max regret version ofP is at least as difficult asP
sinceP reduces to DISCRETE(INTERVAL) M IN-MAX REGRETP when the scenario set
is reduced to one scenario. For this reason, in the following, we consider only min-max
(regret) versions of polynomial or pseudo-polynomial timesolvable problems, for which
we could hope to preserve the complexity.

For the discrete scenario case, Kouvelis and Yu [30] give complexity results for sev-
eral combinatorial optimization problems, including SHORTESTPATH, SPANNING TREE,
ASSIGNMENT, and KNAPSACK. In general, these versions are shown to be harder than
the classical versions. More precisely, if the number of scenarios is non-constant (the
number of scenarios is part of the input), these problems become stronglyNP-hard, even
when the classical problems are solvable in polynomial time. On the other hand, for a
constant number of scenarios, it is only partially known if these problems are strongly or
weaklyNP-hard. Indeed, the reductions described in [30] to prove theNP-hardness are
based on transformations from the partition problem which is known to be weaklyNP-
hard [23]. These reductions give no indications on the precise status of these problems.
Most of the problems which are known to be weaklyNP-hard are those for which there
exists a pseudo-polynomial algorithm based on dynamic programming [30] (MIN-MAX

(REGRET) SHORTESTPATH, MAX -M IN KNAPSACK, M IN-MAX REGRETKNAPSACK,
M IN-MAX (REGRET) SPANNING TREE on grid graphs, . . . )

As an example for this family of algorithms, we describe a pseudo-polynomial algo-
rithm to solve DISCRETE MAX -M IN KNAPSACK. The standard procedure to solve the
classical knapsack problem is based on dynamic programming. We give an extension to
the multi-scenario case which is very similar to the procedure presented in [22] by Er-
lebach, Kellerer and Pferschy to solve multi-objective knapsack problem. This procedure
is easier and more efficient than the one originally presented by Yu [49].

Consider a knapsack instance where each itemi has a weightwi and profitps
i , for

i = 1, . . . , n ands = 1, . . . , k, and a capacityb.
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Let Wi(v1, . . . , vk) denote the minimum weight of any subset of items among the first
i items with profitvs in each scenarios ∈ S. The initial condition of the algorithm is
given by settingW0(0, . . . , 0) = 0 andW0(v1, . . . , vk) = b+1 for all other combinations.
The recursive relation is given by:

If vs ≥ ps
i for all s ∈ S, then

Wi(v1, . . . , vk) = min{Wi−1(v1, . . . , vk),Wi−1(v1 − p1
i , . . . , vk − pk

i ) + wi}

else Wi(v1, . . . , vk) = Wi−1(v1, . . . , vk)

for i = 1, . . . , n.

Each entry ofWn satisfyingWn(v1, . . . , vk) ≤ b corresponds to a feasible solution
with profit vs in scenarios. The set of items leading to a feasible solution can be deter-
mined easily using standard bookkeeping techniques. The feasible solutions are collected
and an optimal solution to DISCRETE MAX -M IN KNAPSACK is obtained by picking
a feasible solution minimizingmaxs∈S vs. Since,vs ∈ {0, . . . ,

∑n
i=1 ps

i}, the running
time of this approach is given by going through the complete profit space for every item
that isO(n(maxs∈S

∑n
i=1 ps

i )
k). The algorithm presented by Yu [49] has a running time

O(nb(maxs∈S

∑n
i=1 ps

i )
k).

SPANNING TREE is not known to have a dynamic programming scheme but can be
solved, for instance, using Kruskal’s algorithm or Prim’s algorithm. A specific pseudo-
polynomial algorithm is given in [3] for DISCRETE M IN-MAX SPANNING TREE using
an extension of the matrix tree theorem to the multi-scenario case.

Aissi, Bazgan, and Vanderpooten investigate in [2] the complexity of min-max and
min-max regret versions of two closely related polynomial-time solvable problems: CUT

ands−t CUT. For a constant number of scenarios, the complexity status of these problems
is widely contrasted. More precisely, DISCRETEM IN-MAX (REGRET) CUT are polyno-
mial, whereas DISCRETE M IN-MAX (REGRET) s − t CUT are stronglyNP-hard even
for two scenarios. It is interesting to observe thats − t CUT is the first polynomial-time
solvable problem, whose min-max and min-max regret versions are stronglyNP-hard.

Network location models are characterized by two types of parameters (weights of
nodes and lengths of edges) and by a location site (on nodes oron edges). Kouvelis
and Yu [30] show that DISCRETE M IN-MAX (REGRET) 1-MEDIAN can be solved in
polynomial time for trees with scenarios both on node weights and edge lengths. If the
location sites are limited to nodes, DISCRETEM IN-MAX (REGRET) 1-MEDIAN can be
solved in polynomial time using an exhaustive search algorithm.

The complexity of the min-max (regret) versions of scheduling problems has also
been investigated. Daniels and Kouvelis [18] show that DISCRETEM IN-MAX (REGRET)
1||

∑
wjCj areNP-hard. Aloulou and Della Croce [6] show that DISCRETEM IN-MAX
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1|prec|fmax is polynomial-time solvable whereas DISCRETEM IN-MAX 1||
∑

Uj is NP-
hard.

In the interval scenario case, extensive research has been devoted for studying the
complexity of min-max regret versions of various optimization problems including SHORT-
EST PATH [14], SPANNING TREE [8, 14], ASSIGNMENT [1], CUT ands − t CUT [2]. In
general, all these problems are shown to be stronglyNP-hard.

For network locations problems, if edge lengths are uncertain/imprecise, INTERVAL

M IN-MAX REGRET 1-MEDIAN is shown to be stronglyNP-hard for general graphs
[11] but polynomial-time solvable on trees [17]. However, if vertex weights are uncer-
tain/imprecise, this problem is polynomial-time solvable[13]. For 1-CENTER, a closely
related problem, INTERVAL M IN-MAX REGRET1-CENTER is shown to be stronglyNP-
hard for general graphs if edge lengths are uncertain/imprecise but polynomial-time solv-
able on trees [13]. Nevertheless, if vertex weights are uncertain/imprecise, this problem
is polynomial-time solvable [12].

For scheduling problems, Kasperski [27] shows that INTERVAL M IN-MAX REGRET

1|prec|fmax is polynomial-time solvable. Lebedev and Averbakh [31] show that INTER-
VAL M IN-MAX REGRET1||

∑
wjCj is NP-hard.

Tables 3-5 summarize the complexity of min-max (regret) versions of several classical
combinatorial optimization problems. For all studied problems, min-max and min-max
regret versions have the same complexity in the discrete scenario case. In general, there
is no reduction between the min-max and the min-max regret versions or vice versa.
However, in all known reductions establishing theNP-hardness of min-max versions [30,
1, 2], the obtained instances of min-max versions have been designed so as to get an
optimal value on each scenario equal to zero. This way, thesereductions also imply the
NP-hardness of the min-max regret associated versions. Comparing now the complexity
of the min-max regret version in the discrete scenario case and in the interval scenario
case, we observe some slight differences. As shown by Averbakh [10], there even exists a
simple combinatorial optimization problem, the selectionproblem, whose min-max regret
version is solvable in polynomial time in the interval scenario case whereas it isNP-hard
even for two scenarios.

18



Annales du LAMSADE n˚7

Table 3: Complexity of the min-max (regret) versions of classical combinatorial problems
(constant number of scenarios)

Problems Constant
Min-max Min-max regret

SHORTESTPATH NP-hard, pseudo-poly [30] NP-hard, pseudo-poly [30]
SPANNING TREE NP-hard [30], pseudo-poly [3] NP-hard [30], pseudo-poly [3]
ASSIGNMENT NP-hard [30] NP-hard [30]
KNAPSACK NP-hard, pseudo-poly [30] NP-hard, pseudo-poly [30]
CUT polynomial [7] polynomial [2]
s − t CUT stronglyNP-hard [2] stronglyNP-hard [2]

Table 4: Complexity of the min-max (regret) versions of classical combinatorial problems
(non-constant number of scenarios)

Problems Non-constant
Min-max Min-max regret

SHORTESTPATH stronglyNP-hard [30] stronglyNP-hard [30]
SPANNING TREE stronglyNP-hard [30] stronglyNP-hard [4]
ASSIGNMENT stronglyNP-hard [1] stronglyNP-hard [1]
KNAPSACK stronglyNP-hard [30] stronglyNP-hard [4]
CUT stronglyNP-hard [2] stronglyNP-hard [2]
s − t CUT stronglyNP-hard [2] stronglyNP-hard [2]

5 Approximation of the min-max (regret) versions

The approximation of the min-max (regret) versions of classical combinatorial opti-
mization problems has received great attention recently. Aissi, Bazgan, and Vanderpooten
initiated in [4] a systematic study of this question in the discrete scenario case. More
precisely, they investigate the relationships between min-max, min-max regret and multi-
objective versions, and show the existence, in the case of a constant number of scenarios,
of fully polynomial-time approximation schemes (fptas) for min-max (regret) versions
of several classical optimization problems. They also study the case of a non-constant
number of scenarios. In this setting, they provide non-approximability results for min-
max (regret) versions of shortest path and spanning tree. In[3] they adopt an alternative
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Table 5: Complexity of min-max regret versions of classical combinatorial problems (in-
terval scenario case)

Problems Min-max regret

SHORTESTPATH stronglyNP-hard [14]
SPANNING TREE stronglyNP-hard [14]
ASSIGNMENT stronglyNP-hard [1]
KNAPSACK NP-hard
CUT polynomial [2]
s − t CUT stronglyNP-hard [2]

perspective and develop a general approximation scheme, using the scaling technique,
which can be applied to min-max (regret) versions of some problems, provided that some
conditions are satisfied. The advantage of this second approach is that the resulting fptas
usually have much better running times than those derived using multi-objective fptas for
the multi-objective versions.

The interval scenario case has been much less studied. We only report one general
result due to Kasperski and Zieliński [28].

5.1 Discrete scenario case

As a first general result, Proposition 1 gives ak-approximation algorithm for DIS-
CRETE M IN-MAX (REGRET) P when the underlying problemP is polynomial-time
solvable. In some cases, however, we can derive fptas for some problems.

5.1.1 Relationships between min-max (regret) and multi-objective versions

Exploiting the results mentioned in section 3.1.2 concerning the relationships with
the multi-objective version, we can derive approximation algorithms, with a noticeable
difference between the min-max and the min-max regret versions.

Min-max version

Proposition 11 ([4])Given a minimization problemP, for any functionf : IN → (1,∞),
if MULTI -OBJECTIVEP has a polynomial-timef(n)-approximation algorithm, thenDIS-
CRETEM IN-MAX P has a polynomial-timef(n)-approximation algorithm.
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Proof : LetF be anf(n)-approximation of the set of efficient solutions. Since at least one
optimal solutionx∗ for DISCRETE M IN-MAX P is efficient as shown in Proposition 5,
there exists a solutiony ∈ F such thatval(y, s) ≤ f(n)val(x∗, s), for all s ∈ S. Consider
among setF a solutionz that has a minimummaxs∈S val(z, s). Thus,maxs∈S val(z, s) ≤
maxs∈S val(y, s) ≤ f(n) maxs∈S val(x∗, s). 2

Corollary 2 ([4]) For a constant number of scenarios,DISCRETEM IN-MAX SHORTEST

PATH, DISCRETEM IN-MAX SPANNING TREE, andDISCRETEMAX -M IN KNAPSACK

have an fptas.

Proof : For a constant number of objectives, multi-objective versions of SHORTEST

PATH, SPANNING TREE, and KNAPSACK have an fptas as shown by Papadimitriou and
Yannakakis in [40]. 2

Min-max regret version

As shown in Proposition 6, at least one optimal solutionx∗ for DISCRETE M IN-
MAX REGRETP is efficient. Unfortunately, givenF anf(n)-approximation of the set
of efficient solutions, a solutionx ∈ F with a minimumRmax(x) is not necessarily an
f(n)-approximation for the optimum value since the minimum maximum regret could be
very small compared with the error that was allowed inF .

However, it is sometimes possible to derive an approximation algorithm working di-
rectly in the regret space instead of the criterion space. This way, an fptas is obtained in
[4] for D ISCRETEM IN-MAX REGRET SHORTESTPATH using a dynamic programming
algorithm that computes at each stage the set of efficient vectors of regrets.

5.1.2 A general approximation scheme in the discrete scenario case

A standard approach for designing fptas forNP-hard problems is to use thescaling
technique[43] in order to transform an input instance into an instancethat is easy to solve.
Then an optimal solution for this new instance is computed using a pseudo-polynomial
algorithm. This solution will serve as an approximate solution. This general scheme
usually relies on the determination of a lower bound that is polynomially related to the
maximum value of the original instance. However, for the min-max (regret) versions, we
need to adapt this scheme in order to obtain an fptas.

Proposition 12 ([3])Given a problemDISCRETEM IN-MAX (REGRET) P, if
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1. for any instanceI, a lower and an upper boundL andU of the optimal valueopt
can be computed in timep(|I|), such thatU ≤ q(|I|)L, wherep and q are two
polynomials withq non decreasing andq(|I|) ≥ 1, and

2. there exists an algorithm that finds for any instanceI an optimal solution in time
r(|I|, U) wherer is a non decreasing polynomial,

thenDISCRETEM IN-MAX (REGRET) P has an fptas.

We discuss now the two conditions of the previous theorem. The first condition can be
satisfied easily for polynomial-time solvable problems as shown in Proposition 1 where
we exhibit boundsL andU such thatU ≤ kL. Furthermore, ifP is polynomially ap-
proximable, then the first condition of Proposition 12 can also be satisfied for DISCRETE

M IN-MAX P using Proposition 1. More precisely, ifP is f(n)-approximable wheref(n)
is a polynomial, given an instanceI of DISCRETE M IN-MAX P, let x′ be anf(|I|/k)-
approximate solution inI ′ (defined as in the proof of Proposition 1), then we haveL =

1
f(|I|/k)

∑
s∈S

1
k
val(x′, s) andU = maxs∈S val(x′, s), and thusU ≤ kf(|I|/k)L.

The second condition of Proposition 12 can be weakened for DISCRETEM IN-MAX

P by requiring only a pseudo-polynomial algorithm, that is analgorithm polynomial in
|I| andmax(I) = maxi,s cs

i . Indeed, knowing an upper boundU , we can eliminate any
variablexi such thatcs

i > U on at least one scenarios ∈ S. Condition 2 is then satisfied
by applying the pseudo-polynomial algorithm on this modified instance.

Min-max (regret) versions of some problems, like SHORTESTPATH, KNAPSACK, ad-
mit pseudo-polynomial time algorithms based on dynamic programming [30]. For some
dynamic programming formulations, we can easily obtain algorithms satisfying condition
2, by discarding partial solutions with value more thanU on at least one scenario. For
other problems, like SPANNING TREE, which are not known to admit pseudo-polynomial
algorithms based on dynamic programming, specific algorithms are required [3].

Corollary 3 ([3]) For a constant number of scenarios,DISCRETEM IN-MAX (REGRET)
SHORTESTPATH, DISCRETEM IN-MAX (REGRET) SPANNING TREE have an fptas.

The resulting fptas obtained using Corollary 3 are much more efficient than those
obtained using Corollary 2.

Table 6 summarizes approximation results in the discrete scenario case for several
combinatorial optimization problems.
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Table 6: Approximation of the min-max and min-max regret versions in the discrete
scenario case

Problems Constant Non-constant
Min-max Min-max regret Min-max Min-max regret

SHORTESTPATH fptas [46] fptas [4, 3] not(2 − ε) apx. [4] not(2 − ε) apx. [4]
SPANNING TREE fptas [4, 3] fptas [4, 3] not(3

2 − ε) apx. [4] not(3
2 − ε) apx. [4]

KNAPSACK fptas [4] non apx. [4] non apx. [4] non apx. [4]

5.2 Interval scenario case

In this case, most of the min-max regret versions of classical combinatorial optimiza-
tion problems become stronglyNP-hard (see Table 5). Kasperski and Zieliński [28] give
a 2-approximation algorithm for the min-max regret versions of polynomial-time solvable
problems as a direct consequence of Proposition 9.

6 Resolution of the min-max (regret) versions

We review in this section exact procedures for solving the min-max and min-max
regret versions of classical combinatorial optimization problems.

6.1 Discrete scenario case

Kouvelis and Yu [30] implement a branch-and-bound procedure to solve the min-
max (regret) versions of several combinatorial optimization problems. A lower bound on
each node of the arborescence is calculated using surrogaterelaxation as explained in the
following.

Consider DISCRETEM IN-MAX REGRETP which can be stated as:




min y
y ≥ val(x, s) − val∗s , ∀s ∈ S
x ∈ X, y ≥ 0

(3)

Let µ = (µ1, . . . , µk) be a multiplier vector such thatµs ≥ 0, ∀s ∈ S, and
∑

s∈S µs = 1.
The surrogate relaxation of (3) is formulated as follows:

{
L(µ) = min

∑
s∈S µs(val(x, s) − val∗s)

x ∈ X
(4)
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The efficiency of the relaxation procedure rests on finding a vectorµ∗ providing the best
lower boundL(µ∗) ≤ opt whereopt is the optimum value of the input considered. A
sub-gradient procedure is used in [30] to find the tightest one. The later is based on
solving, at each iteration, problem (4) with a multiplier vector µ = (µ1, . . . , µk) and the
result is exploited in order to find a new multiplier vector that improves the bound given
by the surrogate relaxation. Furthermore, the optimal solution x(µ) of (4) is a feasible
solution of (3) and thus provides an upper boundU(µ) = maxs∈S(val(x(µ), s) − val∗s)
on the optimal value. The best upper bound obtained so far during the execution of the
sub-gradient procedure is saved.

The Best-Node First search strategy is adopted in the branch-and-bound procedure
presented in [30]. The choice of the branching variable is guided by the surrogate relax-
ation.

DISCRETE M IN-MAX P can be solved in a similar way by removingval∗s in (3)
and (4).

6.2 Interval scenario case

In the interval scenario case, Inuiguchi and Sakawa [24] study the min-max regret
version of linear programs. Their algorithm is based on a relaxation procedure developed
initially by Shimizu and Aiyochi [44]. Karasan, Pinar and Yaman [26, 48] formulate
the min-max regret versions of SHORTESTPATH and SPANNING TREE as mixed integer
linear programs. A generalization of this formulation to problems with zero duality gap
is presented in section 6.2.1. Montemanni and Gambardella [36, 37] propose branch-
and-bound algorithms for solving these problems. Recently,Aissi, Vanderpooten and
Vanpeperstraete [5], Montemanni [34], Montemanni and Gambardella [38], and Mon-
temanni, Barta and Gambardella [35] proposed a relaxation procedure for solving the
min-max regret versions of problems fromC.

In this section, we give a formulation of the min-max regret versions of problems with
a zero duality gap (section 6.2.1) and we present a general relaxation procedure to solve
the min-max regret versions of polynomial-time solvable orNP-hard problems (section
6.2.2).

6.2.1 Formulation of the min-max regret versions of problems with a zero duality
gap

Consider a minimization problemP ∈ C with a zero duality gap and where the fea-
sible solution set is defined byX = {x : Ax ≥ b, x ∈ {0, 1}n}. The maximum regret
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Rmax(x) of a solutionx is given as follows:

Rmax(x) = max
s∈S,y∈X

{csx − csy} = c−(x)x − c−(x)x∗
c−(x) = cx − min

z∈X
c−(x)z

wherec = (c1, . . . , cn) andx∗
s is an optimal solution for scenarios.

Therefore, INTERVAL M IN-MAX REGRETP can be written as follows:

min
x∈X

Rmax(x) = min
x∈X

{cx − min
z∈X

c−(x)z} (5)

SinceP has a zero duality gap, we can replace in (5) the problemminz∈X c−(x)z by its
dual:

max
y∈Y

bty

whereY = {y : Aty ≤ c−(x), y ≥ 0}. Consequently, INTERVAL M IN-MAX REGRET

P can be formulated as follows:

min
x∈X, y∈Y

{cx − bty}

In the following, we illustrate this approach with the assignment problem. A linear
programming formulation of this problem is given as follows:





min
∑n

i,j=1 cijxij

s.t.∑n
j=1 xij = 1; i = 1, . . . , n∑n
i=1 xij = 1; j = 1, . . . , n

xij ≥ 0; i, j = 1, . . . , n

(6)

The dual of (6) is given by




max
∑n

i=1(ui + vj)
s.t.
ui + vj ≤ cij; i, j = 1, . . . , n
ui, vj ≷ 0; i, j = 1, . . . , n

Thus, a formulation of INTERVAL M IN-MAX REGRETASSIGNMENT is




min
∑n

i,j=1 cijxij −
∑n

i=1(ui + vj)

s.t.∑n
j=1 xij = 1; i = 1, . . . , n∑n
i=1 xij = 1; j = 1, . . . , n

ui + vj ≤ cij + (cij − cij)xij; i, j = 1, . . . , n
xij ∈ {0, 1}; i, j = 1, . . . , n
ui, vj ≷ 0; i, j = 1, . . . , n
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6.2.2 A relaxation procedure for the min-max regret versions

A general linear formulation of min-max regret versions is given by:

MMR





min r
s.t.
r ≥ csx − csx∗

s, ∀s ∈ S
x ∈ X, r ≥ 0

where constraintr ≥ csx − csx∗
s is referred to as a cut of type 1.

From Proposition 7, we know that, in the interval scenario case, we can restrict the
scenario setS to the set of extreme scenarios. However, since the number ofextreme
scenarios is up to2n, formulationMMR is exponential.

In order to handle this difficulty, a standard approach is to use a relaxation procedure
which starts with an initial subset of scenariosS0 and iteratively takes into account one
additional scenario, by adding a cut of type 1, until we can establish that the current
solution is optimal.

Considering the following formulation, defined at iterationh with a current subset of
scenariosSh:

MMRh





min r
s.t.
r ≥ csx − csx∗

s, ∀s ∈ Sh

x ∈ X, r ≥ 0

we denote byrh andxh the optimal value and an optimal solution ofMMRh at steph.

The details of the relaxation procedure, originally proposed in [24, 32, 33] for solving
min-max regret versions of linear programming problems, are given as follows:

Algorithm 1 Relaxation procedure
1: Initialisation.LB ← 0, S0 ← ∅, h ← 0, and constructx0 ∈ X.
2: Computêch andRmax(x

h) by solvingmaxs∈S,x∈X{c
sxh − csx}.

3: if Rmax(x
h) ≤ LB then

4: END: xh is an optimal solution.
5: Sh+1 ← Sh ∪ {ĉh}.
6: h ← h + 1, computerh andxh by solvingMMRh, LB ← rh and go to step 2.

In the linear programming case, step 2 is the most computationally demanding part of
the algorithm since it requires solving a quadratic programming problem. On the other
hand, step 6 requires only solving a linear programming problem.
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This algorithm can be extended to0-1 linear programming problems. In this case, we
do not need to solve a quadratic programming problem at step 2since we know, from
Proposition 7, that we can take as scenarioĉh the worst case scenario for forxh, c−(xh).
Hence, step 2 of Algorithm 1 can be replaced by:

2: ĉh ← c−(xh), compute an optimal solutionx∗
ĉh of minx∈X ĉhx,

Rmax(x
h) ← ĉhxh − ĉhx∗

ĉh.

Now step 6 becomes computationally expensive sinceMMRh is a mixed integer pro-
gramming problem whose difficulty increases with the numberof added cuts. This ex-
plains why a straightforward application of this algorithmto solve min-max regret ver-
sions of0-1 linear programming problems is not satisfactory. We can improve signifi-
cantly the performance of the algorithm by using alternative cuts, called cuts of type 2,
which were found independently in [5] and [34, 38]. These cuts are defined as follows:

r ≥ cx − c−(x)x∗
c−(xh)

These cuts can be derived easily for a0-1 linear programming problem, sinceRmax(x) ≥
cx − c−(x)y for anyx, y ∈ X, and in particular fory = x∗

c−(xh)
.

Proposition 13 Given a minimization problemP ∈ C, cuts of type 2 dominate cuts of
type 1.

Proof : We need to prove that for anyx, xh ∈ X, we havecx−c−(x)x∗
c−(xh)

≥ c−(xh)x−

c−(xh)x∗
c−(xh)

. Thus, we consider the following difference:

cx − c−(x)x∗
c−(xh) − c−(xh)x + c−(xh)x∗

c−(xh) =
m∑

i=1

(ci − ci)(xi − xix
∗
c−(xh),i − xix

h
i + xh

i x
∗
c−(xh),i)

If xh
i = 1, we have(ci − ci)(x

∗
c−(xh),i

− xix
∗
c−(xh),i

) ≥ 0 for i = 1, . . . , n. If xh
i = 0, we

have(ci − ci)(xi − xix
∗
c−(xh),i

) ≥ 0 for i = 1, . . . , n. 2

7 Conclusions

We reviewed in this paper motivations, complexity, approximation, and exact resolu-
tion for the min-max and min-max regret versions of several combinatorial optimization
problems. We conclude this survey by listing some open questions.

For all studied problems, min-max and min-max regret versions have the same com-
plexity in the discrete scenario case. As observed at the endof section 4, there is no
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general reduction between the min-max and the min-max regret versions or vice versa,
except for bottleneck problems. The construction of such a reduction would be interest-
ing since only one algorithm (orNP-hardness proof) would be sufficient for both versions.

Almost all problems discussed in this paper have a clear complexity status, see, e.g.,
Tables 3-5. However, a fewNP-hard problems still need to be precisely classified (weakly
or stronglyNP-hard). As a first example, INTERVAL M IN-MAX REGRET KNAPSACK is
clearly NP-hard, but its precise status is not known. A second example is DISCRETE

M IN-MAX (REGRET) ASSIGNMENT for a constant number of scenarios. The original
proofs of theNP-hardness of these problems are obtained in [30] using a reduction from
partition, which has a pseudo-polynomial time algorithm [23]. Therefore, it remains an
open question whether these problems have pseudo-polynomial time algorithms or are
stronglyNP-hard.

Approximation results, which are quite recent, should be studied more thoroughly.
In particular, for a non-constant number of scenarios, there is a gap between the general
k-approximation result given at the beginning of section 5.1and specific negative results
indicated in Table 6. In the interval scenario case, finding better approximation algorithms
than the general 2-approximation algorithm referred in section 5.2, for the min-max regret
versions of specific polynomial-time solvable problems, isalso an interesting research
perspective.

Finally, the efficient exact resolution of the min-max and min-max regret versions of
combinatorial optimization problems remains a computationally challenging question.
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