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Stationary convection-diffusion between two

co-axial cylinders

F. Plouraboué, * C. Pierre?

aDépartement de Mathématiques et Statistique,
Université d’Ottawa 585 King Edward KIN 6NJ,
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Abstract

In this note, we examine the high Péclet number limit of the stationary extended
Graetz problem for which two families of real and imaginary eigenvalues are as-
sociated respectively with a downstream convective relaxation and the upstream
diffusive establishment. The asymptotic behavior of both families of eigenvalues is
studied, in the limit of large Péclet number and thin wall, which bring to the fore a
single parameter dependence, previously mentioned in the literature from numerical
investigations [2]. The fully developed region is specifically studied thanks to the
first eigenvalue dependence on the Péclet number, on the thermal conductivity co-
efficients and on the diameter ratio of the cylinders. The effective transport between
the fluid and the solid is investigated through the evaluation of the fully developed

Nusselt number and compared with available experimental measurements.
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Nomenclature:

DI DI | Thermal diffusivity in the fluid (I) and in the solid (IT)

Fpr Eigenfunction in the solid cylinder

G Graetz eigenfunction

I Dimensionless asymptotic parameter
Jo, J1 Zeroth and first Bessel functions of the first kind
Kl kM Thermal conductivity coefficents

Yo, V1 Zeroth and first Bessel functions of the second kind

Nu Nusselt number
S Surface of the cylinder

Ta,Th Internal radius of the inner and outer cylinder
Pe Péclet number
r Radial coordinate
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UMR CNRS-INPT/UPS No.5502 Avenue du Professeur Camille Soula

31400 Toulouse France, tel 33 5 61 28 58 80, fax 33 5 61 28 58 78
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R = :—Z: Aspect ratio between the inner and the outer cylinder
P Fluid pressure
S Surface of the inner pipe
T Temperature
Ty Reference temperature at infinity
e0=T-1T, Intrinsic temperature
U Averaged longitudinal velocity
U Fluid longitudinal velocity
z Longitudinal coordinate

Greek symbols

n=i Dimensionless radial coordinate
A Eigenvalue of the coupled thermic problem
®(a,b, z) Confluent hyper-geometric function
C=£ Dimensionless longitudinal coordinate

1 Introduction

We hereby analyze some special limit of the Extended Graetz problem using

variable separation eigenfunctions. The mathematical and numerical solutions
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Fig. 1. Schematic representation of the two symmetrical configurations under study.
for this problem has been developed obtained in numerous previous contribu-
tion [5, 6, 11, 10, 9]. From the precursory contribution of Papoutsakis et al
[5, 6], a complete representation of the solution relies on an orthogonal eigen-
function expansion of this problem, independently from the applied boundary
conditions for the external cylinder, the input and the output conditions. The
core of any explicit numerical computation of the temperature field relies on
the evaluation of a subset of the infinite discrete spectrum of eigenvalues, and
eigenfunctions.

In this note we focus on some simple expression for the asymptotic behavior of
the solution, which put forward a simple parameter already heuristically pro-
posed in previous contribution. The effective transfer between the tube and
the co-axial solid cylinder in the fully developed region is studied through the
computation of the Nusselt number in section four. A comparison with the

available experimental results is discussed in the last section.

2 General solution and eigenvalue problem

The extended Graetz problem is considered for two complementary configura-

tions sketched on figure 1 that we will subsequently refer to as 1a and 1b. The



following non-dimensional variables are introduced to describe the problem,

2Ur,
n Ta’ C Ta’ Ta’ € D! ’

where 7} is the radius of the solid co-axial cylinder. A fully developed hydrody-
namic flow inside the tube is considered. The velocity longitudinal component
u along the z axis of the tube has a Poiseuille parabolic profile which is pro-

portional to the mean applied pressure gradient 0, P:

1 s . 2U , 2
u:zazP(ra—r) w7 (r —r) U== / _éourdr’

where U is the averaged fluid velocity inside the tube having section S and
radius r,. Only axi-symmetric boundary conditions will be considered in the
following. The non-dimensional Stationary convection-diffusion of heat is de-

scribed by

PedcO = 76 (n0,0) in I

AO =0 in 11,
where © = 1T'—Tj is a relative temperature built on the reference temperature
Ty in the fluid tube I and the solid region IT at z — +oo for configuration
la and at z — —oo for configuration 1b, as already used in [5, 6]. We restrict

our attention to the solution region where there is an adiabatic isolated solid

cylinder ¢.e ¢ > 0 in configuration la, and ¢ < 0 in configuration 1b.,

0,0"(R,() =0 (2)

Firstly we are looking at far-field decreasing boundary conditions,

ol -ef -0 |¢] = oo (3)



While the temperature and flux equilibrium between the fluid and solid region

reads
k'0,0'(1,¢) = k"0,0"(1,¢) (4)
0'(1,¢) =0"(1,¢) (5)

Where k!, k' are the thermal conductivity in the fluid and in the solid. One

can find a general solution to the problem (1) by writing it as :

91(777 C) = EneniG()\i,,” 77) e_A?tnC/Pe

O (1,¢) = Sz Fr(32n) e ¥int/Pe,

where

A2 A2 R R A2
()5 () (200 - e ) w3
R <P677> To <P€n> ! (/\"Pe Ti{ A Pe) ° Pe77

is the linear combinations of the Bessel harmonic eigenfunctions [1] which
fulfills the radial adiabatic boundary condition (2). G(A, n) is the Graetz func-
tion:
2 1 A
G()‘a 77) = 6_)\” /2(1)(_ R ]-a )‘772)a

2 4
where ®(a, b, z) is the confluent hyper-geometric function [1] (sometimes re-
ferred to as 1 F}) which possesses two a and b parameters and one variable z.
Unlike the solution of the Graetz problem, the solutions families (6) explicitly

depend on the Péclet number, on the radius ratio of the fluid and solid region

and on the conductivity ratio £’ /k’! through condition (4).

One of the most interesting features of these solutions is that in the region
where no flux is applied, one finds a longitudinal exponential decrease in tem-

perature whose characteristic length is directly related to the first eigenvalue of



the problem. The forward eigenvalue A, is associated with the temperature
relaxation convected downstream in la configuration while the “backward”
eigenvalue A\_, is associated with the upstream temperature rise induced by
the solid conduction in Figure 1b configuration. Using the solution family (6),
imposing the interface coupling conditions (4) and (5) leads to the following

eigenvalue problem on \,:

k! Pe Fr()\2/Pe) d(
KT FL(M2/Pe) " 28'( 1

where ' denotes the derivative of functions with respect to their variables.

3 Large Péclet number and small diameter limit

In the following sections the fully developed region where the first eigenfunc-
tion is dominant will be our main focus. The region for which the first eigen-
function prevails over all the other ones is given by the ( values for which
(A2 — A?)(/Pe > 3. The amplitude of this fully developed mode is the pro-
jection of the concentration field at { = 0 with the first eigenfunction. We
will not be interested by this amplitude in the following, focusing on the first
eigenvalue and Nusselt number. We investigate the large Péclet number limit
which is equivalent with a thin solid region. In this limit Pe > 1 the ratio
FR(M2/Pe)/Fr()\2/Pe) ~ \2(1 — R)R/Pe. Thus, one has merely to solve the
simplified eigenproblem:

1 A

A
—P(= — n
(2

1
A A) 428 (5 — 21, =
4’ Y )+ (2 4 )

CR'RR-1), 1 A
kT Pe?

to find the eigenvalue \,. Direct numerical results of the coupled problem (1)

have been carried out by [2] in this limit and have shown that the typical entry

A;’;cb(5 - Z”,l,)\n),(S)



length in figure (1b) configuration depends on a single parameter [
KT R(R - 1)
T kKT 2Pe? )
only. Eigenvalue problem (8) shows precisely the same dependence on the

geometrical, physical and hydrodynamical parameters of the problem.

3.1  Forward eigenvalue A,

Forward eigenvalues are associated with the downstream decrease of tempera-
ture in figure (1a) configuration. In the limit of infinite Péclet number, eigen-

values A, have finite values defined by the following transcendental equations

1A%, o TR,
(5 — LA, =20 (5 - S LT, (10)

In this limit Ay, does not depend on the three parameters of the problem
R, Pe and k!/k'! and exactly coincides with the Neumann-Graetz problem
eigenvalues. For large but finite Péclet numbers and for a small aspect ratio,
one can linearize (8) to get the asymptotic behavior of the eigenvalues, which

only depends on I

2223 a, KTR(1 — R)

A =A== kT Pe? (1
AP AP A2 o Az, 0
where oy = 1/ ((3 = 22)(3 — 22)0(3 — 22,3,0%) — (1/4)®(5 — =2, 1,1%,))

. When the diffusivity ratio decreases to zero, or when the solid radius cylinder
decreases to 1, the transport in region I and /I becomes decoupled and, of
course, one finds the asymptotic Graetz-Neumann solution. Again, the asymp-
totic validity of the linearization (11) is interesting to compare with numeri-

cal computations. The full eigenproblem (7) has been solved with a Newton
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Fig. 2. (a) First eigenvalues A, versus Pe, for R = 2, ,f% = 1. The inset represents
a log-log representation of the difference A1 — A% with A3y = 5.067505 versus
the Péclet number; the asymptotic (11) is represented with dotted lines. (b) Same
conventions as in figure (a) versus the aspect ratio R for Pe = 200 . Dotted line

illustrates the asymptotic (11)

method using the numerical evaluation of the confluent hyper-geometric func-
tion proposed in [4]. The eigenvalues have been tracked with a continuation
method. Figures 2(a) and (b) display the behavior of the first eigenvalue A ;.
We used a Figure 2(a) shows that when the diameter of the outer cylinder is
twice as large as that of the inner one and when diffusivity is the same in both,
linearization (11) gives good approximation for the first eigenvalue even for
moderate values of the Péclet Number. A careful inspection of the numerical
values represented in Figure 2(a) shows that the prediction (11) is already
4% accurate for Péclet number value as low as 30. Figure 2(b) compares the
proposed scalings for the eigenvalues as a function of the cylinder aspect ratio
R. It shows that even if the asymptotic prediction is supposed to hold for
1 — R < 1, it is still very good for large values of R when the Péclet number

is large.
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3.2  Backward eigenvalue A_,

Backward eigenvalues are associated with the upstream decrease of temper-
ature in figure (1b) configuration. The eigenvalue A_; has previously been
studied with direct numerical simulations by [2] when the outer cylinder is
thin (R — 1 < 1). They have described the temperature decrease observed in
the domain ¢ < 0 of Figure 1b configuration. Using these numerical simula-
tions as a heuristic base, [7] found the simplified eigenproblem (8) by averaging
the temperature field in the solid. In this domain, fluid convection in region
I and solid diffusion in region I play antagonist roles for the temperature
rises from the far field applied reference to the ( = 0 heat source. The more
convection there is, the smaller the temperature of establishment length will
be, while conversely, the more diffusion in the solid, the larger the distance for
the temperature to be established. Thus establishing length tends to zero as
the Péclet number goes to infinity while conversely the eigenvalue A _; tends
to infinity. The divergence of this backward eigenvalue with the Péclet number

is illustrated on figure 3a.

0 r

60

30

1 10 100 1000 10
Pe (b) I

Fig. 3. (a) Imaginary part of the first backward eigenvalue A_; versus Pe, for R = 1.1
with circle symbols and R = 1.05 for square symbols with li% = 1. (b) Same

conventions for A_1;1 1/3 versus parameter I in semi-logarithmic representation.
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The full eigenvalue problem (7) is solved here and represented on Figure 3a.
In section 5 it is compared to the numerical solution of the approximated
problem (8) and to experimental measurements. On the other hand, the ap-
proximated eigenproblem (8) can be used to find an asymptotic expression for
the eigenvalue A_, with the Péclet number

'(1/2-AW/41,A0) 1 kK'R(R- 1)(/\in)
B(1/2 - /4,1, ,) 2 k12 Pe?

(12)

Nevertheless it is not easy to get the asymptotic behavior of the confluent
hyper-geometric function when both its first parameter and its variable tend
to infinity. [3] have thoroughly discussed the numerous asymptotic behav-
ior of function ®(a,b, A) in this limit, for fixed values of the ratio a/4A. In
the presently interesting limit where 4a/\ — 1, their results show that the
logarithmic derivative of the confluent geometric function does not diverge
algebraically when a — oo and A — oo. The numerical calculation confirms
this result leading to logarithmic dependence on A_;. As illustrated on fig-
ure 3b the asymptotic behavior of the first upstream eigenvalue A _; display
a logarithmic dependence with the single parameter I, which collapse into a
single master curve when changing the aspect ratio parameter R. This leads to
the following expression of the backward eigenvalue dependence on the Péclet

number,

Ay =T 13(0.026InT 4 0.915) (13)

The linear behavior with the logarithm of parameter I requires two constants
that have been obtained from fitting the numerical computation sketched on

Figure 3b.
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4 Fully developed transfer

The Nusselt number is defined by the non dimensional flux between region [

and I1:

1 00

BENGEENGRTY "

Nu(¢)

where ©,, = ©(1, () is the wall temperature and O, is given by

_ 1 10l _ 1 I
@b—SIUS[u@dS, U= [uds",

SI

where ST is the region I disk surface, and ©, is the flow weighted averaged
temperature or “mixing cup” temperature. Another definition is sometimes
found in the literature omitting the 6,,(¢) term of the denominator. We have
kept this definition here to be able to compare with some experimental data
in the backward configuration. Looking for a simplified far field expression
for the Nusselt number one finds that its fully developed asymptotic behavior
reaches a constant value which depends only on the first eigenfunction and
eigenvalue. This can be done from averaging with a “mixing cup” weight the
convection-diffusion equation (1) in the liquid. This leads to a relation between

O, and the transverse temperature variation at the inner wall:

1
ZP@(?C@,, = 87]@(1, C) (15)

Using this relation and solution (6), one can then find the fully developed

approximation of these fields in the limit where |(| > 1,

Op O e M2 M/Pe Cb(% - —A41,1,A1) (16)
91 ~A )2 1 )\]_ ]. A]_
~ 4L e N2 NPe (9 (- — LA —a(c - LA ). (1

12



From these expressions, one is then able to find an explicit formulation of the

fully-developed Nusselt number from using definition (14) :

A
Nu = 5 -

CD(%_TJ:AI)

—28(2 2L 1 00)+49" (3 -2, 1,)

(18)

2
TR

Although explicit, this expression can be even further simplified in the context
of the large Péclet numbers and small solid diameter previously considered in

Eq.(8) for which it simply reads

Nu =~ 4\}1, (19)

k" R(R-1)
kT 2Pe?

where, again, the limit I = < 1 is considered. Now, using the
asymptotic expression obtained in (11) leads to the explicit formula, in terms
of the physical, geometrical, and hydrodynamical parameters of the problem,

for the forward eigenvalue :

(20)

oo 3 11 . II _
Nu+:2Ao+o14(1_8A+l o K" R(R 1)>k R(R-1)

r kI Pe2 K Pe?

It is interesting to note that, to the leading order neglecting O(1/Pe?) ef-
fects, the forward transfer is not increasing with the Péclet number. On the
contrary it decreases quadratically with this parameter. This result is not
intuitive since increasing the flow enhances the temperature longitudinal gra-
dient. The typical axial decreasing length of the temperature field ¢, scales as
¢y ~ Pe/X2,. When the fluid is increased this length asymptotically increases
linearly with the Péclet number. A side effect of this increase is nevertheless
that, conversely, normal gradients shrink when the stationary temperature
field is stretched by convection, so that the transverse gradient scales as 1/¢..

Most of the temperature variations are concentrated at the tube center, and

13
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Fig. 4. Fully developed Forward Nusselt number for different parameters. Bullet
symbols are associated with R = 1.1, square symbols for R = 2 and black triangular
symbols with R = 5. (a) Versus the Péclet number. (b) Versus the parameter I
defined in (9). The leading order asymptotic behavior (20) is shown with dotted

lines, while the next order is represented with long dashed lines.

decrease rapidly to reach a quasi-constant value near the tube inner wall. In
this limit, the temperature difference between the liquid and the wall is thus
grossly proportional to .. Moreover, since the radial temperature gradient
scales as 1/£,, the Nusselt number which is the product between the inverse
of temperature difference and the temperature gradient should then scale as
Nuy ~ 1/€2, so that Nuy ~ 1/Pe?®. These physical arguments thus allows to
recover the leading order scaling (20). Both asymptotic are compared with the
numerical solution of (19) in figure 4. One can observed the convergence to
the quadratic leading order dependence with the Péclet number found in (20)
on figure 4a for different values of the aspect ratio R. This figure again shows
that the range of value of R for which the the asymptotic regime applies can
be quite broad reaching values as large as 5, for moderate value of the Péclet

number of the order of 100. Figure 4b compares the leading and first order

14
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Fig. 5. Fully developed Backward Nusselt number for different parameters. Black
Bullet symbols are associated with R = 1.05, while white ones are for R = 1.1 and
square symbols for R = 2. (a) Versus the Péclet number. (b) Versus the parameter
I defined in (9).

asymptotic behaviors given above, while all different sets collapse into a single
master curve when plotted as a function of parameter 7, in the limit of small

values of this parameter.

In the case of the backward Nusselt number, an asymptotic expression can
also be obtained from (13) and (19), in the limit of small values of parameter

I, so that one finds :

Nu_ = 1734 (0.026InT + 0.915)" . (21)
This asymptotic behavior leads to larger and larger Nusselt numbers when
increasing the Péclet number, as opposed to the forward case. This trend is

confirmed from the computation of the Nusselt number from (19) depicted

on figure 5a, from which it can be observed that the Nusselt number reaches

15



values an order of magnitude larger than in the forward case, even for moderate
values of the Péclet number. The transfer from the solid to the fluid is thus
much more important in the backward direction, even if the length-scale ¢_
associated with the typical axial decreasing length of the temperature field
is much more smaller. From the definition of parameter I given in (9), it
is easy to see that the leading order scaling in Péclet, is Nu_ ~ Pe?? up to
logarithmic corrections. This leading order behavior can be grossly understood
from the same physical argument previously developed for the forward Nusselt
number, indicating that in the backward case it should scale as Nu_ ~ 1/¢2.
Since £ ~ Pe/)2, ~ Pe~'/3 we then find that the transfer should scale as
Nu_ ~ Pe?/3. The logarithmic correction that have been previously obtained
should be viewed as a particularity of the cylindrical geometry that has been
chosen here, and should not appear in the similar planar problem. It is also
interesting to note that the validity range of the asymptotic behavior (21)
is much more restrain than in the forward case as illustrated on figure 5b.
For moderate values of the Péclet number such as 100, the value of R for
which it applies are not larger than 1.1. One can observed for instance that
the behavior of the Nusselt number associated with R = 2 on figure 5b does
not collapse on the same master curve associated with the asymptotic limit.
In the limit of extremely small values of parameter I it should nevertheless

merge with the other curves.

5 Comparison with experiments

It is interesting to compare theory and experiments using the single parame-

ter I to collapse different geometrical, physical or hydrodynamical situations

16
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Fig. 6. (a) 2A\? = m, parameter used in [8]) plotted versus the non-dimensional
parameter I. The numerical solution of (7) is represented with continuous line for
1 — R = 102 and dashed lines for 1 — R = 10~!. Numerical solution of the ap-
proximated eigenvalue problem (8) represented with dotted lines. The experimental
results of [8]) are represented with crosses.(b) Same conventions as Figure (a) for
the comparison between theory and experiments for the Nusselt number

when the solid cylinder wall is small. To our knowledge, only experimental
measurements in the figure 1b configuration are available in the literature.
Using a copper tube the radius of which is one tenth of the inner cylinder, and
using water as a working fluid [8]) carried out a large number of experiments
for Péclet numbers ranging from 1180 to 5000. The heat conductivity of copper
being much larger than that of water, the conductivity ratio was in their case
equal to k11 /k! = 549 +19. Two major parameters are interesting to compare
with the experimental measurements. First, let us consider the longitudinal
entry length ¢ (called m in [8]) characterizing the exponential decrease in
temperature. This parameter is determined from the log-linear best slope fit
of the temperature variations measured with thermocouples placed along the
longitudinal direction of the external face of the solid cylinder. The 25 data
measurements of [8] are represented on figure 6a and compared with theoreti-

cal predictions. A prediction in the case of the thin solid wall limit is derived

17



from solving equation (8). It is interesting to note that this prediction is in
very good agreement with experimental measures, as already found in [7]. This
approximated theory compares very closely to the exact solution of Eq.(7) in
the case of radius ratio R = 1072. A difference between this approximated
theory and the exact one is nevertheless observed in the case of R = 107!
which corresponds to experimental conditions. Thus, even if the theoretical
predictions are very satisfyingly close to experiments, a discrepancy of about
10% is observed, which could be within the experimental error bars. Another
interesting parameter to compare with the experiments is the Nusselt number
represented on figure 6b. The Nusselt number can not be directly measured
in the experiments; it is rather extrapolated from temperature measurements.
Here again, theory and experiments can compare in a satisfactory way, within

a 10% difference.

Conclusion

We found simple asymptotic expression for the first upward and backward
eigenvalues of the extended Graetz-problem. Those results should be useful
for testing numerical estimation or experimental results in the limit of large

Péclet number.
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