Differentiation of some functionals of risk processes.: Applications to ruin theory and to determination of optimal reserve allocation for multidimensional risk processes.

Abstract : For general risk processes, the expected time-integrated negative part of the process on a fixed time interval is introduced and studied. Differentiation theorems are stated and proved. They make it possible to derive the expected value of this risk measure, and to link it with the average total time below zero studied by Dos Reis (1993) and the probability of ruin. Differentiation of other functionals of unidimensional and multidimensional risk processes with respect to the initial reserve level are carried out. Applications to ruin theory, and to the determination of the optimal allocation of the global initial reserve which minimizes one of these risk measures, illustrate the variety of application fields and the benefits deriving from an efficient and effective use of such tools.
Type de document :
Article dans une revue
Journal of Applied Probability, Applied Probability Trust, 2005, 42 (2), pp.379-392. <10.1239/jap/1118777177>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00157739
Contributeur : Stéphane Loisel <>
Soumis le : jeudi 26 juillet 2007 - 15:53:51
Dernière modification le : jeudi 31 décembre 2015 - 01:03:04
Document(s) archivé(s) le : mardi 21 septembre 2010 - 13:24:34

Fichier

Loisel-ISFA-WP2026.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Stéphane Loisel. Differentiation of some functionals of risk processes.: Applications to ruin theory and to determination of optimal reserve allocation for multidimensional risk processes.. Journal of Applied Probability, Applied Probability Trust, 2005, 42 (2), pp.379-392. <10.1239/jap/1118777177>. <hal-00157739v2>

Partager

Métriques

Consultations de
la notice

234

Téléchargements du document

130