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Abstract. Bounds on the risk play a crucial role in statistical learning theory.
They usually involve as capacity measure of the model studied the VC dimension or
one of its extensions. In classification, such “VC dimensions” exist for models taking
values in {0, 1}, {1, . . . , Q} and R. We introduce the generalizations appropriate
for the missing case, the one of models with values in R

Q. This provides us with a
new guaranteed risk for M-SVMs which appears superior to the existing one.
Keywords: Large margin classifiers, Generalized VC dimensions, M-SVMs.

1 Introduction

Vapnik’s statistical learning theory [Vapnik, 1998] deals with three types of
problems: pattern recognition, regression estimation and density estimation.
However, the theory of bounds has primarily been developed for the compu-
tation of dichotomies only. Central in this theory is the notion of “capacity”
of classes of functions. In the case of binary classifiers, the measure of this ca-
pacity is the famous Vapnik-Chervonenkis (VC) dimension. Extensions have
also been proposed for real-valued bi-class models and multi-class models tak-
ing theirs values in the set of categories. Strangely enough, no generalized VC
dimension was available so far for Q-category classifiers taking their values
in R

Q. This was all the more unsatisfactory as many classifiers exhibit this
property, such as the multi-layer perceptrons, or the multi-class support vec-
tor machines (M-SVMs). In this paper, the scale-sensitive Ψ -dimensions are
introduced to fill this gap. A generalization of Sauer’s lemma [Sauer, 1972] is
given, which relates the covering numbers appearing in the standard guaran-
teed risk for large margin multi-category discriminant models to one of these
dimensions, the margin Natarajan dimension. This latter dimension is then
bounded from above for the architecture shared by all the M-SVMs proposed
so far. This provides us with a sharper bound on their sample complexity.
The organization of the paper is as follows. Section 2 introduces the basic
bound on the risk of large margin multi-category discriminant models. In
Section 3, the scale-sensitive Ψ -dimensions are defined, and the generalized
Sauer lemma is formulated. The upper bound on the margin Natarajan di-
mension of the M-SVMs is then described in Section 4. For lack of space,
proofs are omitted. They can be found in [Guermeur, 2004].
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2 Basic theory of large margin Q-category classifiers

We consider Q-category pattern recognition problems, with 3 ≤ Q < ∞. A
pattern is represented by its description x ∈ X and the set of categories Y
is identified with the set of indices of the categories, {1, . . . , Q}. The link
between patterns and categories is supposed to be probabilistic. X and Y
are probability spaces, and X ×Y is endowed with a probability measure P ,
fixed but unknown. Let (X,Y ) be a random pair distributed according to
P . Training consists in using a m-sample sm = ((Xi, Yi))1≤i≤m of indepen-
dent copies of (X,Y ) to select, in a given class of functions G, a function
classifying data in an optimal way. The criterion to be optimized, the risk,
is the expectation with respect to P of a given loss function. The way the
functions in G perform classification must be specified. We consider classes
of functions from X into R

Q. g = (gk)1≤k≤Q ∈ G assigns x ∈ X to the
category l if and only if gl(x) > maxk 6=l gk(x). Cases of ex æquo are treated
as errors. This calls for the choice of a loss function ℓ defined on G × X × Y
by ℓ (y, g(x)) = 1l{gy(x)≤maxk 6=y gk(x)}. The risk of g is then given by:

R(g) = E [ℓ (Y, g (X))] =

∫

X×Y

1l{gy(x)≤maxk 6=y gk(x)}dP (x, y).

This study deals with large margin classifiers, when the underlying notion of
multi-class margin is the following one.

Definition 1 (Multi-class margin). Let g be a function from X into R
Q.

Its margin on (x, y) ∈ X × Y, Mxy(g, x, y), is given by:

Mxy(g, x, y) =
1

2

{

gy(x) − max
k 6=y

gk(x)

}

.

Basically, the central elements to assign a pattern to a category and to derive
a level of confidence in this assignation are the index of the highest output
and the difference between this output and the second highest one. The class
of functions of interest is thus the image of G by application of an appropriate
operator. Two such “margin operators” are considered here, ∆ and ∆∗.

Definition 2 (∆ operator). Define ∆ as an operator on G such that:

∆ : G −→ ∆G
g 7→ ∆g = (∆gk)1≤k≤Q

∀x ∈ X , ∆g(x) =
1

2

(

gk(x) − max
l 6=k

gl(x)

)

1≤k≤Q

.

∀ (g, x) ∈ G × X , let Mx(g, x) = maxk ∆gk(x).
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Definition 3 (∆∗ operator). Define ∆∗ as an operator on G such that:

∆∗ : G −→ ∆∗G
g 7→ ∆∗g = (∆∗gk)1≤k≤Q

∀x ∈ X , ∆∗g(x) = (sign (∆gk(x)) ·Mx(g, x))1≤k≤Q .

In the sequel, ∆# is used in place of ∆ and ∆∗ in the formulas that hold true
for both operators. The empirical margin risk is defined as follows.

Definition 4 (Margin risk). Let γ ∈ R
∗
+. The risk with margin γ of g,

Rγ(g), and its empirical estimate on sm, Rγ,sm
(g), are defined as:

Rγ(g) =

∫

X×Y

1l{∆#gy(x)<γ}dP (x, y), Rγ,sm
(g) =

1

m

m
∑

i=1

1l{∆#gYi
(Xi)<γ}.

For technical reasons, it is useful to squash the functions ∆#gk as much
as possible without altering the value of the empirical margin risk. This is
achieved by application of another operator.

Definition 5 (πγ operator [Bartlett, 1998]). For γ ∈ R
∗
+, define πγ as

an operator on G such that:

πγ : G −→ πγG
g 7→ πγg = (πγgk))1≤k≤Q

∀x ∈ X , πγg(x) = (sign (gk(x)) · min (|gk(x)|, γ))1≤k≤Q .

Let ∆#
γ denote πγ ◦ ∆# and ∆#

γ G be defined as the set of functions ∆#
γ g.

The capacity of ∆#
γ G is characterized by its covering numbers.

Definition 6 (ǫ-cover, ǫ-net and covering numbers). Let (E, ρ) be a
pseudo-metric space, E′ ⊂ E and ǫ ∈ R

∗
+. An ǫ-cover of E′ is a coverage of

E′ with open balls of radius ǫ the centers of which belong to E. These centers
form an ǫ-net of E′. A proper ǫ-net of E′ is an ǫ-net of E′ included in E′. If
E′ has an ǫ-net of finite cardinality, then its covering number N (ǫ, E′, ρ) is
the smallest cardinality of its ǫ-nets. If there is no such finite cover, then the
covering number is defined to be ∞. N (p)(ǫ, E′, ρ) will designate the covering
number of E′ obtained by considering proper ǫ-nets only.

The covering numbers of interest use the following pseudo-metric:

Definition 7 (functional pseudo-metric). Let G be a class of functions
from X into R

Q. For a set sXn ⊂ X of cardinality n, define the pseudo-metric
dℓ∞,ℓ∞(sXn ) on G as:

∀(g, g′) ∈ G2, dℓ∞,ℓ∞(sXn )(g, g
′) = max

x∈sXn

‖g(x) − g′(x)‖∞ .
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Let N
(p)
∞,∞(ǫ,∆#

γ G, n) = supsXn⊂X N (p)(ǫ,∆#
γ G, dℓ∞,ℓ∞(sXn )). The following

theorem extends to the multi-class case Corollary 9 in [Bartlett, 1998].

Theorem 1 (Theorem 1 in [Guermeur, 2004]). Let sm be a m-sample

of examples independently drawn from a probability distribution on X × Y.

With probability at least 1 − δ, for every value of γ in (0, 1], the risk of any

function g in a class G is bounded from above by:

R(g) ≤ Rγ,sm
(g) +

√

2

m

(

ln
(

2N
(p)
∞,∞(γ/4, ∆#

γ G, 2m)
)

+ ln

(

2

γδ

))

+
1

m
.

(1)

Studying the sample complexity of a classifier G can thus amount to comput-

ing an upper bound on N
(p)
∞,∞(γ/4, ∆#

γ G, 2m). In [Guermeur et al., 2005],
we reached this goal by relating these numbers to the entropy numbers of
the corresponding evaluation operator. In the present paper, we follow the
traditional path of VC bounds, by making use of a generalized VC dimension.

3 Bounding covering numbers in terms of the margin

Natarajan dimension

The Ψ -dimensions are the generalized VC dimensions that characterize the
learnability of classes of {1, . . . , Q}-valued functions.

Definition 8 (Ψ-dimensions [Ben-David et al., 1995]). Let F be a class
of functions on a set X taking their values in the finite set {1, . . . , Q}. Let
Ψ be a set of mappings ψ from {1, . . . , Q} into {−1, 1, ∗}, where ∗ is thought
of as a null element. A subset sXn = {xi : 1 ≤ i ≤ n} of X is said to be
Ψ -shattered by F if there is a mapping ψn =

(

ψ(1), . . . , ψ(i), . . . , ψ(n)
)

in Ψn

such that for each vector vy of {−1, 1}n, there is a function fy in F satisfying

(

ψ(i) ◦ fy(xi)
)

1≤i≤n
= vy.

The Ψ -dimension of F , denoted by Ψ -dim(F), is the maximal cardinality of
a subset of X Ψ -shattered by F , if it is finite, or infinity otherwise.

One of these dimensions needs to be singled out, the Natarajan dimension.

Definition 9 (Natarajan dimension [Ben-David et al., 1995]). Let F
be a class of functions on a set X taking their values in {1, . . . , Q}. The
Natarajan dimension of F , N-dim(F), is the Ψ -dimension of F in the specific
case where Ψ is the set of Q(Q − 1) mappings ψk,l, (1 ≤ k 6= l ≤ Q), such
that ψk,l takes the value 1 if its argument is equal to k, the value −1 if its
argument is equal to l, and ∗ otherwise.
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The fat-shattering dimension characterizes the uniform Glivenko-Cantelli
classes among the classes of real-valued functions.

Definition 10 (fat-shattering dimension [Alon et al., 1997]). Let G
be a class of functions from X into R. For γ ∈ R

∗
+, sXn = {xi : 1 ≤ i ≤ n} ⊂

X is said to be γ-shattered by G if there is a vector vb = (bi) ∈ R
n such that,

for each vector vy = (yi) ∈ {−1, 1}n, there is a function gy ∈ G satisfying

∀i ∈ {1, . . . , n} , yi (gy(xi) − bi) ≥ γ.

The fat-shattering dimension of G, Pγ-dim (G), is the maximal cardinality of
a subset of X γ-shattered by G, if it is finite, or infinity otherwise.

Given the results available for the Ψ -dimensions and the fat-shattering dimen-
sion, it appears natural, to study the generalization capabilities of classifiers
taking values in R

Q, to consider the use of capacity measures obtained as
mixtures of the two concepts, namely scale-sensitive Ψ -dimensions.

Definition 11 (Ψ-dimension with margin γ). Let G be a class of func-
tions on a set X taking their values in R

Q. Let Ψ be a family of map-
pings ψ from {1, . . . , Q} into {−1, 1, ∗}. For γ ∈ R

∗
+, a subset sXn =

{xi : 1 ≤ i ≤ n} of X is said to be γ-Ψ -shattered by ∆#G if there is a mapping
ψn =

(

ψ(1), . . . , ψ(i), . . . , ψ(n)
)

in Ψn and a vector vb = (bi) in R
n such that,

for each vector vy = (yi) of {−1, 1}n
, there is a function gy in G satisfying

∀i ∈ {1, . . . , n} ,

{

if yi = 1, ∃k : ψ(i)(k) = 1 ∧ ∆#gy,k(xi) − bi ≥ γ

if yi = −1, ∃l : ψ(i)(l) = −1 ∧ ∆#gy,l(xi) + bi ≥ γ
.

The γ-Ψ -dimension of ∆#G, Ψ -dim(∆#G, γ), is the maximal cardinality of a
subset of X γ-Ψ -shattered by ∆#G, if it is finite, or infinity otherwise.

The margin Natarajan dimension is defined accordingly.

Definition 12 (Natarajan dimension with margin γ). Let G be a class
of functions on a set X taking their values in R

Q. For γ ∈ R
∗
+, a subset

sXn = {xi : 1 ≤ i ≤ n} of X is said to be γ-N-shattered by ∆#G if there is
a set I(sXn) = {(i1(xi), i2(xi)) : 1 ≤ i ≤ n} of n pairs of distinct indices in
{1, . . . , Q} and a vector vb = (bi) in R

n such that, for each binary vector
vy = (yi) ∈ {−1, 1}n, there is a function gy in G satisfying

∀i ∈ {1, . . . , n} ,

{

if yi = 1, ∆#gy,i1(xi)(xi) − bi ≥ γ
if yi = −1, ∆#gy,i2(xi)(xi) + bi ≥ γ

.

The Natarajan dimension with margin γ of the class ∆#G, N-dim(∆#G, γ),
is the maximal cardinality of a subset of X γ-N-shattered by ∆#G, if it is
finite, or infinity otherwise.

For this scale-sensitive Ψ -dimension, the connection with the covering num-
bers of interest, or generalized Sauer lemma, is the following one.
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Theorem 2 (Theorem 4 in [Guermeur, 2004]). Let G be a class of func-

tions from a domain X into R
Q. For every value of γ in (0, 1] and every

m ∈ N
∗ satisfying 2m ≥ N-dim (∆γG, γ/24), the following bound is true:

N (p)
∞,∞(γ/4, ∆∗

γG, 2m) < 2
(

288 m Q2(Q− 1)
)⌈d log2(23emQ(Q−1)/d)⌉

(2)

where d = N-dim (∆γG, γ/24).

This theorem is the central result of the paper (and the novelty in the revised
version of [Guermeur, 2004]). What makes it a nontrivial Q-class extension
of Lemma 3.5 in [Alon et al., 1997] is the presence of both margin operators.
The reason why ∆∗ appears in the covering number instead of ∆ is the very
principle at the basis of all the variants of Sauer’s lemma: two functions sep-
arated with respect to the functional pseudo-metric used (here dℓ∞,ℓ∞(sXn ))
shatter (at least) one point in sXn . This is true for ∆∗

γG, or more precisely its
η-discretization, not for∆γG (see Section 5.3 in [Guermeur, 2004] for details).
One can derive a variant of Theorem 2 involving N-dim

(

∆∗
γG, γ/24

)

. This
alternative is however of lesser interest, for reasons that will appear below.

4 Margin Natarajan dimension of the M-SVMs

We now compute an upper bound on the margin Natarajan dimension of in-
terest when G is the class of functions computed by the M-SVMs. These large
margin classifiers are built around a Mercer kernel. Let κ be such a kernel
on X and

(

Hκ, 〈., .〉Hκ

)

the corresponding reproducing kernel Hilbert space
(RKHS) [Aronszajn, 1950]. Let Φ be any of the mappings on X satisfying:

∀ (x, x′) ∈ X 2, κ (x, x′) = 〈Φ (x) , Φ (x′)〉, (3)

where 〈., .〉 is the dot product of the ℓ2 space. “The” feature space tradi-
tionally designates any of the Hilbert spaces

(

EΦ(X ), 〈., .〉
)

spanned by the

Φ (X ). By definition of a RKHS, H =
((

Hκ, 〈., .〉Hκ

)

+ {1}
)Q

is the class of

functions h = (hk)1≤k≤Q from X into R
Q of the form:

h(.) =

(

lk
∑

i=1

βikκ (xik, .) + bk

)

1≤k≤Q

where the xik are elements of X (the βik and bk are scalars), as well as the
limits of these functions when the sets {xik : 1 ≤ i ≤ lk} become dense in X
in the norm induced by the dot product. Due to (3), H can also be seen as
a multivariate affine model on Φ (X ). Functions h can then be rewritten as:

h(.) = (〈wk, .〉 + bk)1≤k≤Q

where vectors wk are elements of EΦ(X ). They are thus described by the
pair (w,b) with w = (wk)1≤k≤Q and b = (bk)1≤k≤Q. Let H̄ stand for the
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product space HQ
κ . Its norm ‖.‖H̄ is given by

∥

∥h̄
∥

∥

H̄
=
√

∑Q
k=1 ‖wk‖2 = ‖w‖.

Definition 13 (M-SVM). A M-SVM is a large margin multi-category dis-

criminant model obtained by minimizing over the hyperplane
∑Q

k=1 hk = 0
of H an objective function of the form:

J (h) =

m
∑

i=1

ℓM-SVM (yi, h (xi)) + λ ‖w‖2

where the empirical term, used in place of the empirical risk, involves a loss
function ℓM-SVM which is convex.

The M-SVMs only differ in the nature of ℓM-SVM. The specification of this
function is such that the introduction of the penalizer ‖w‖2

tends to maxi-
mize a notion of margin directly connected with the one of Definition 1. The
formulation of the generalized Sauer lemma provided here (Theorem 2) is
the one obtained under the weakest hypotheses. Proceeding as in the bi-class
case, we express below a bound on the margin Natarajan dimension of the
M-SVMs as a function of the volume occupied by data in EΦ(X ) and con-
straints on (w,b), thus restricting the study to functions with a well-defined
range. In that case, a variant of Theorem 2 can be derived from Lemma 7 in
[Guermeur, 2004] which does not involve πγ but relates the covering numbers
of ∆∗G to the margin Natarajan dimension of ∆G. Its use for M-SVMs is
advantageous since N-dim

(

∆H̄, ǫ
)

is easier to bound than N-dim (∆γH, ǫ)
(nonlinearity is difficult to handle). This change of generalized Sauer lemma
calls for the use of an intermediate formula relating the covering numbers of
∆∗

γH and ∆∗H̄. It is provided by the following lemma.

Lemma 1 (Lemmas 9 and 10 in [Guermeur, 2004]). Let H be the class

of functions that a Q-category M-SVM can implement under the hypothesis

b ∈ [−β, β]
Q
. Let (γ, ǫ) ∈ R

2 satisfy 0 < ǫ ≤ γ ≤ 1. Then

N (p)
∞,∞(ǫ,∆∗

γH,m) ≤

(

2

⌈

β

ǫ

⌉

+ 1

)Q

N (p)
∞,∞(ǫ/2, ∆∗H̄,m). (4)

A final theorem then completes the construction of the guaranteed risk.

Theorem 3 (Theorem 5 in [Guermeur, 2004]). Let H̄ be the class of

functions that a Q-category M-SVM can implement under the hypothesis that

Φ(X ) is included in the closed ball of radius ΛΦ(X ) about the origin in EΦ(X )

and the constraints 1/2 max1≤k<l≤Q ‖wk − wl‖ ≤ Λw and b = 0. Then, for

any positive real value ǫ, the following bound holds true:

N-dim
(

∆H̄, ǫ
)

≤ C2
Q

(

ΛwΛΦ(X )

ǫ

)2

. (5)
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The proof follows the line of argument of the corresponding bi-class result,
Theorem 4.6 in [Bartlett and Shawe-Taylor, 1999]. This involves a general-
ization of Lemma 4.2 which can only be performed for the ∆ operator. The
discussion on the presence of both ∆ and ∆∗ in Theorem 2 is thus completed.
Putting things together, the control term of the guaranteed risk decreases
with the size of the training sample as ln(m) · m−1/2. This represents an
improvement over the rate obtained in [Guermeur et al., 2005], m−1/4.

5 Conclusions and future work

A new class of generalized VC dimensions dedicated to large margin multi-
category discriminant models has been introduced. They can be seen either
as multivariate extensions of the fat-shattering dimension or scale-sensitive
Ψ -dimensions. Their finiteness (for all positive values of the scale parameter
γ) is also a necessary and sufficient condition for learnability. A general-
ized Sauer lemma has been provided for one of these capacity measures,
the margin Natarajan dimension. This latter dimension has been bounded
from above in the case where the classifier is a multi-class SVM. This study
provides us with new arguments to support the thesis that the theory of
multi-category pattern recognition cannot be developed by extending in a
straightforward way bi-class results. We are currently making use of the
specificities identified here to extend new concentration inequalities to the
multi-class case with the goal to obtain improved convergence rates.
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