N
N

N

HAL

open science

Regular Model Checking Using Inference of Regular
Languages

Peter Habermehl, Tomas Vojnar

» To cite this version:

Peter Habermehl, Tomas Vojnar. Regular Model Checking Using Inference of Regular
Languages. Electronic Notes in Theoretical Computer Science, 2005, 138 (3), pp.21-36.

10.1016/j.entcs.2005.01.044 . hal-00156830

HAL Id: hal-00156830
https://hal.science/hal-00156830
Submitted on 22 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00156830
https://hal.archives-ouvertes.fr

Regular Model Checking Using Inference of
Regular Languages

Peter Habermehl 1.2

LIAFA, University Paris 7, Case 7014, 2, place Jussieu, F-75251 Paris Cedex 05, France

Toma3 Vojnar 3

FIT, Brno University of Technology, BoZetéchova 2, CZ-61266, Brno, Czech Republic

Abstract

Regular model checking is a method for verifying infinite-state systems based on coding
their configurations as words over a finite alphabet, sets of configurations as finite automata,
and transitions as finite transducers. We introduce a new general approach to regular model
checking based on inference of regular languages. The method builds upon the observation
that for infinite-state systems whose behaviour can be modelled using length-preserving
transducers, there is a finite computation for obtaining all reachable configurations up to
a certain length n. These configurations are a (positive) sample of the reachable configu-
rations of the given system, whereas all other words up to length n are a negative sample.
Then, methods of inference of regular languages can be used to generalize the sample to
the full reachability set (or an overapproximation of it). We have implemented our method
in a prototype tool which shows that our approach is competitive on a number of concrete
examples. Furthermore, in contrast to all other existing regular model checking methods,
termination is guaranteed in general for all systems with regular sets of reachable config-
urations. The method can be applied in a similar way to dealing with reachability relations
instead of reachability sets too.

Key words: regular model checking, inference of regular languages

1 Introduction

Regular model checking [13,6] is a promising approach for automatic verification
of infinite-state systems. The key advantages of regular model checking are its
high degree of automation and the fact that many different kinds of systems—such
as pushdown systems, (lossy) FIFO-channel systems, systems with counters, or pa-
rameterised and dynamic networks of processes—can be modelled and verified in

1 Supported by the French ministry of research (ACI project Securité Informatique).
2 Email: Pet er. Haber mehl @i af a. j ussi eu. fr
8 Supported by the Czech Grant Agency (projects GA CR 102/04/0780 and GA CR 102/03/D211).
4 Email: voj nar @i t. vutbr.cz
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

a uniform way. Regular model checking is based on the idea of encoding config-
urations of systems as words over a finite alphabet and transitions as finite-state
transducers mapping configurations to configurations. Finite automata can then be
naturally used to represent and manipulate (potentially infinite) sets of configura-
tions, and reachability analysis can be performed by computing transitive closures

of transducers [12,8,3,4] or images of automata by iteration of transducers [6,18]—

depending on whether dealing with reachability relations or reachability sets is

preferred. Correctness of the system being verified may then be checked by com-
paring the computed reachability set or reachability relation with a set or relation

describing the undesirable states or changes of states of the system (encoded again

by a finite automaton or transducer).

To facilitate termination of regular model checking, which is in general not
guaranteed as the problem being solved is undecidable, various acceleration meth-
ods have been proposed. They include, e.g., widening [6,18], collapsing of au-
tomata states based on the history of their creation by composing transducers [12,3],
or abstraction of automata [5]. These methods allow regular model checking to
terminate on many practical examples and sometimes ensure completeness for sub-
classes of the systems that may be modelled in the given framework (as, e.g., sys-
tems with the so-called bounded local depth or simple transition relations [12]).

In this paper, we introduce a new general method of regular model checking
based on using inference of regular languages extending the work of [11] (see re-
lated work below). The approach is motivated by the observation that for infinite-
state systems whose behaviour can be modelled using length-preserving transduc-
ers, there is a finite computation for obtaining all reachable configurations up to a
certain length. These configurations may be considered as a sample of the reach-
able configurations of the given system. Then, methods that have been developed
for inference of regular languages (we, in particular, build upon the Trakhtenbrot-
Barzdin algorithm [19]) may be used to generalize the sample with the aim of ob-
taining the full reachability set or an overapproximation of it that is precise enough
to prove the property of interest (if it holds). As shown by our experiments, the
method provides us with good performance results. At the same time, in contrast
to all other existing regular model checking methods, termination is guaranteed
for all the systems whose set of reachable configurations is regular (including, e.g.,
lossy channel systems and push-down systems). Similar results can then be ob-
tained for dealing with reachability relations instead of reachability sets too.

From the above, it is clear that we primarily concentrate on systems that may
be encoded using length-preserving transducers. Dealing with length-preserving
transducers is, however, sufficient even for verification of safety properties of non-
length preserving systems. In such a case, words encoding configurations may be in
advance extended with special blank symbols to be consumed whenever new useful
symbols are to be inserted. Moreover, as we show, our method can be extended to
deal with non-length-preserving transducers too. Then, however, our completeness
results do not hold (though in practice, the method still behaves well).

We have implemented the method and tested it on a number of examples of
different systems including parametric networks of processes, a pushdown system,
systems with counters, a system with lossy queues, and a system with a linked
list as a representative of systems with recursive data structures. The experiments
show that our method is very efficient with the results being mostly comparable
with those of [5], which is among the fastest methods known in the field but for
which (unlike for our method) no completeness results are known as yet.

Related work. The idea of using inference of regular languages for regular
model checking has already been used in [11], which, however, primarily targeted
parameterized rings only, and the computation loop was different and required a
certain manual classification of the transitions of the systems used. Furthermore,
the authors of [11] have not implemented their method. Very recently there ap-
peared [21] another work on verification based on inference of regular languages
that is specialised to verification of safety of systems with FIFO channels.

Plan of the paper. We first introduce basic concepts from the area of automata
theory and regular model checking. Then, we describe the Trakhtenbrot-Barzdin
algorithm for inference of regular languages and propose a way to use it for regular
model checking. Finally, we discuss the experiments we have done and conclude.

2 Automata, Transducersand Regular Model Checking Basics

A finite automaton is a 5-tuple M = (Q, Z, 3, o, F) where Q is a finite set of states, >
a finite alphabet, & C Q x < x Q a set of transitions, ¢ € Q an initial stateand F C Q
a set of final states. M is deterministic if Vq € Q,a € X there exists at most one d
with (g,a,q’) € &. The transition relation —C Q x Z* x Q of M is defined as the
smallest relation satisfying: (1) Vg€ Q:q < q, (2) if (q,a,q') € 5, then g = ¢/,
and 3) if g % g’ and g’ 2 g”, then q = g”. The language recognized by M from
astate g € Q isdefined by L(M,q) ={w|3d € F: q AN q’'}. The language L(M)
is equal to L(M,qgo). A set L C >* is regular iff there exists a finite automaton
M such that L = L(M). We also define the languages of words up to a certain
length: Ls"={weL||w| <n},LS"(M,q) ={weL(M,q)||w| <n},and Z=" =
{w e Z* | |w| <n}. We define the depth of an automaton M = (Q,Z,d,¢,F)
denoted dy as the maximum length of the shortest paths leading to the particular
states of M from the initial state, i.e. dy = maxqeq minWGZ*A w_|w|. We say that
Go—4q

two states q,q" € Q of M are k-indistinguishable, which we denote by q =¢ ¢/, if
L=K(M, q) = L=K(M, q’). We then define the degree of distinguishability gy of M as
the minimal k such that any two states q,q’ of M are k-distinguishable, i.e. q #x '
Let X be a finite alphabet and 2 = XU {€}. A finite transducer over X is a 5-
tuple T = (Q, Z¢ X Z¢,0,qo, F) where Q is a finite set of states, d C Q x 3 x Zg x Q
a set of transitions, go € Q an initial state, and F C Q a set of final states. We call
a finite transducer length-preserving if 8 C Q x X x Z x Q. The transition relation

—C Q x Z* x Z* x Q is defined as the smallest relation satisfying: (1) qi q for

every g € Q, (2) if (g,a,b,q’) € &, then q ab, q, and (3) if g —% ¢’ and ¢ ab,

q”, then ¢ A, q”. Then, by abuse of notation, we identify a transducer T with
3

the relation {(w,u) | 39" € F : qo 2 q’'}. We call a relation regular if it can be
identified with some transducer. For a set L C & and a relation R C Z* x 2*,
we denote R(L) the set {w € Z* | 3w’ e L : (W,w) € R}. Letid C * x * be
the identity relation and o the composition of relations. We define recursively the
relations 1° = id, T+ = 1o 7', and T* = U 4T'. Below, we suppose id C T. This
implies t' C t'*1 forall i > 0.

Regular model checking may be used for dealing with complex safety as well
as liveness properties. In this paper, however, we concentrate on verifying reach-
ability properties. After all, more complex verification tasks are often reduced to
reachability verification (as we later illustrate on some of our experiments too).

To verify reachability properties within the regular model checking framework,
there are two basic approaches. Firstly, given a system with a transition relation
modelled as a transducer T, a regular set of initial configurations Init described by
a finite automaton, and a set of “bad” configurations Bad given by another finite
automaton, we may try to compute the set of reachable configurations t(Init) (or
an overapproximation of it) and then check whether T*(Init) NBad = 0.

Problem 2.1 Given regular sets Init and Bad and a finite transducer T, does
T*(Init) N Bad = 0 hold ?

Secondly, we can try to compute the reflexive and transitive closure t* of the
transition relation T. Then, we may use T* to solve Problem 2.1. Alternatively, we
may also describe the bad property using a transducer Tggg—expressing the fact
that it is undesirable to be able to get from a certain configuration to another—and
check whether T N1gag = 0 (provided transducers are length-preserving).

Problem 2.2 Given length-preserving finite transducers T and Tgag, d0esS T* NTgag =
0 hold ?

Both of the above approaches have their advantages and disadvantages. Com-
puting T* is often more difficult than computing just t(Init). Indeed, there are
cases where T*(Init) is regular and T not. On the other hand, using T* may al-
low one to check properties that would otherwise be more difficult or impossible to
check (as, e.g., checking input-output correspondence between particular elements
of various unbounded structures like linked lists, queues, etc.).

To illustrate the described notions and later our method, we give in Fig. 1 the
basic automata and transducers that appear in regular model checking of a simple
token passing protocol. The protocol is supposed to pass a single token from the
left to the right along a sequence of a parametric number of nodes—the transition
relation is shown in Fig. 1(c) including the identity relation. Initially, the token is
in the left-most node: Fig. 1(a). The Bad automaton in Fig. 1(b) says that there
should never be less than or more than one token. The transducer Tgag in Fig. 1(d)
states that the token should never be passed to the left. The reachability relation
and the reachability set are then shown in Fig. 1(e) and 1(f).

Before proposing our new regular model checking method based on inference
of regular languages that is primarily targeted at dealing with length-preserving

4

(@) Init (b) Bad ©t
N,N %% N,N
1,_1,11' _@ TN O N, T 5
NN NN B .
NGEEING O NG
(d) TBad (e) T () T (Init)

Fig. 1. Automata and transducers for regular model checking of a simple token passing

transducers, we remark that dealing with such transducers is not restrictive for ver-
ification of safety of non-length-preserving systems (see also [L2]). This is because
for finite runs, we can always replace adding and removing of symbols by rewrit-
ing special blank symbols | added in advance into the initial configurations. More
precisely, we can add self-loops labelled with L, | to every state of T (and Tgyq if
used), replace every €,a by a L, a transition, every a, € transition by an a, L one,
and add _L-labelled self-loops at every state of the automata of Init and Bad.

3 Inferenceof Regular Languagesfrom Complete Training Sets

Inference of regular languages is a very active research area (see, e.g., [19,16,14,9]).
Basically, the problem is to infer a language from some of its words (or words
known not to belong to the language). An important notion used in the proposed
algorithms is that of a training set (or sample). A trainingset T = (T*,T)isa
pair of two disjoint sets T+, T~ C =*, where T contains positive examples (words
in the language to be inferred) and T — contains negative ones. A training set T =
(T+,T7) is called n-complete if T* UT~ = ==". For the inference of regular
languages from training sets, several different algorithms have been studied. Out of
them, in this work, we propose using the so-called Trakhtenbrot-Barzdin algorithm
(TB algorithm for short) [19] that works on n-complete training sets, which—as we
show below—may be obtained in the case of regular model checking.

For length-preserving transducers, the model checking Problem 2.1 can be seen
as a language inference problem in the following way: We want to compute (or at
least approximate) the set t*(Init) for some given length-preserving transducer t
and a regular set Init. Since T is length-preserving, the set T*(Init=") is finite for
each nand can be calculated by finitely iterating t (recall that id C 1). Furthermore,
each word of length smaller or equal to n which is not in T*(Init=") cannot be in
T*(Init) either. Therefore, the sets T*(Init=") and ="\ t*(Init=") can be seen

5

as sets of positive and negative examples of the language t*(Init) that we want
to infer. precise, words of the given language up to some length and thus form
an n-complete training set. For increasing n, we get more and more positive and
negative examples of the language t*(Init)—the training set is growing. Therefore,
if T*(Init) is regular, we will eventually (we do not know when of course) obtain a
training set T big enough in terms of [19], and the TB algorithm will allow us to
infer T*(Init) from T. If T*(Init) is not regular, it is still possible to perhaps get an
overapproximation sufficient to prove the property of interest. The same approach
can also be used to try to infer the relation T* for length-preserving transducers by
considering as the alphabet pairs of letters and calculating T* restricted to words of
length smaller or equal to n.

3.1 The Trakhtenbrot-Barzdin Algorithm

To describe the TB algorithm and its use in regular model checking in detail, we
need some more definitions. A DFA A is called consistent with a training set T =
(TH,T7)if TT CL(A) and L(A)NT~ = 0. A trainingset T = (T, T7) is n-
complete wrt. a DFA A if T™ = L="(A). Given an n-complete training set T =
(T*,T7), we call a deterministic finite automaton Ar = (Q,Z, 8,qo, F) the prefix-
tree automaton of T if L(A) = T, At has the form of a tree and does not contain
any nodes with the empty language (provided T+ # 0).

We now describe a slightly modified version of the Trakhtenbrot-Barzdin algo-
rithm which computes an inferred DFA (also called target automaton) with the
minimal number of states consistent with a given n-complete training set. Let
T = (T, T7) be an n-complete training set and At the deterministic prefix-tree
automaton of T. Obviously, states of AT must correspond to states of the target au-
tomaton At since it must accept all words accepted by At. Several different states
of At can, however, correspond to the same state of Ar. Hence, the basic idea
of the algorithm is to collapse two states of At if this does not lead to a word of
length shorter or equal to n being accepted though it is not accepted by At. Two
states g and g in At can be safely collapsed if they are compatible, i.e. if they are
k-indistinguishable (q =k q’) where k is the minimum of the lengths of the subtrees
starting at g and q’. Let succ be the function which associates to each state in At
the successor in a breadth-first ordering. The algorithm modifies A by identifying
compatible states.

Algorithm 1

i nput : At with initial state qo
ql :=qo;
whi | e there is a successor of g1 in At do
g1 := succ(d1); gz := do;
whi | e q1 # g2 and not compatible(qs,g2) do gz := succ(qz); od
i f g1 # g2 and compatible(qs,g2) t hen let the transition from father(qs) to q;
point to g2 and erase g1 and all its children from Ar;
od
out put : the modified automaton At

T

N,N%\LT N,N/ IT
.

Fig. 3. A 3-complete training set and the different stages of the TB algorithm

Notice that the original algorithm [19] uses as input trees which are complete
(each internal node has a son for each letter). In our setting, this is not necessary
since we only consider languages and not output behaviour of automata. The al-
gorithm has a complexity of O(mn?), where m is the size of At and n the size of
the target automaton. In Figures 2 and 3, we give the different stages of the TB
algorithm run on a 2-complete training set for T*(Init) and a 3-complete set for T*
of our running example. Two collapsed compatible states at each stage are marked
with «. Notice that in the first case, T (Init) is obtained exactly as the result of the
algorithm, whereas in the other case, the result is an overapproximation of t*.

We have the following theorem [19].

Theorem 3.1 Let T be an n-complete training set. Algorithm 1 computes a DFA
At with a minimal number of states consistent with T.

7

Notice that there could be several different DFAs with a minimal number of
states consistent with T—the output of the TB algorithm is just one of them. If all
the words of the training set come from some minimal deterministic automaton A,
then the TB algorithm is guaranteed to infer it from an n-complete training set if n
is sufficiently big with respect to the structure of the automaton. The degree of re-
constructibility r of an automaton A is defined as r = d + p+ 1 where d is the depth
and p the degree of distinguishability. Then we have the following theorem [19].

Theorem 3.2 Given a minimal DFA A with degree of reconstructibility r and a
training set T r-complete wrt. A, Algorithm 1 computes A (up to isomorphism).

If A has n states, then in the worst case, d =p=n—21and r =2n— 1. There-
fore, the complete training set must contain exponentially (in n) many words.
Fortunately, on average [19,14], r is much smaller because it can be shown that
the average value of d is Clogs|(n) where C is a constant depending on X and
p = log|slogz2(n). This means that on average, the degree of reconstructibility r is
small compared to the size of the automaton and only small complete training sets
(polynomial in n) are needed to reconstruct it.

4 TheModel Checking Algorithm

In this section, we describe our model checking algorithm based on inference of
regular languages. The idea of our algorithm is to compute bigger and bigger com-
plete training sets coming from the language t*(Init), infer an automaton from
them, and test whether this inferred automaton is an invariant sufficient to prove
the property. As the inference algorithm, one can—in principle—use any infer-
ence algorithm based on positive and negative examples proposed in the literature
(as, e.g., RPNI [16,14]). In this paper, we use the Trakhtenbrot-Barzdin algorithm
discussed above because it works with a complete training set and is guaranteed
to output the original automaton if given sufficiently big training sets. Below, we,
however, describe our model checking algorithm in a general way.

Algorithm 2

I nput : a length-preserving transducer t, a regular set of initial configurations Init
and a regular set of bad configurations Bad

i:=1; /* ican be initialized differently too. */

r epeat
C:=1*(Inits); C:= 25\ C;
if BadNC #0then out put: property violated;
A:=inference(C,C);i:=i+1;

until t(L(A)) CL(A)and Init C L(A) and L(A)NBad = 0;

out put : property satisfied

When we use the version of the TB algorithm described as Algorithm 1 for
inference in Algorithm 2, the call of inference(C,C) invokes Algorithm 1 with the
prefix-tree automaton of C as input. Then, the computation of C is not necessary.

8

In our running example, to verify the property t*(Init) NBad = 0, the algorithm
stops for i = 2 (the inferred invariant is exactly t*(Init)), and for the property "N
Thad = O, the algorithm stops for i = 3 with an overapproximation of T* (see Fig. 3).

Notice that to calculate T (Init='), one can reuse T*(Init='~1) and only calculate
the reachable configurations of size i. The algorithm tries bigger and bigger training
sets until it terminates because it either finds a counterexample to the property of
interest, or an invariant including the initial states and not intersecting the Bad set.
The test Init C L(A) is necessary because for small i, the examples generated may
not suffice to reconstruct Init. An alternative way would be to set the initial value
of i wrt. Init, but according to our experience, this is not always the best choice.

If T*(Init) is regular, the algorithm always terminates.

Theorem 4.1 Let 1 be a length-preserving transducer and Init and Bad two reg-
ular sets. If T*(Init) is regular, then Algorithm 2 with Algorithm 1 used as the
inference algorithm always terminates.

Proof. If t*(Init) NBad # 0, then there exists a word w € T*(Init) N Bad of some
size n. Since T is length-preserving, w € T*(Init=") and the algorithm terminates
after at most n iterations. If T*(Init) "Bad = 0, then because of Theorem 3.2, the
algorithm stops after at most r (the degree of reconstructibility of T*(Init)) steps.O

Notice that termination of the algorithm with the property verified means that an
invariant precise enough to prove the property was inferred. In general, we cannot
check whether we have inferred the exact reachability set t*(Init). This is clear,
e.g., from the fact that for lossy channel systems, T*(Init) is known to be regular
[7,2] but not computable [1,15]. From Theorem 4.1, we get easily the following.

Corollary 4.2 The model checking Problem 2.1 is decidable if T*(Init) is regular.

The above is not very surprising as we can give two semi-decision procedures
for the problem: one looking for bigger and bigger counterexamples, the other one
enumerating all regular languages and checking for invariants (as explained in [17]
for FIFO-channel systems). Our algorithm provides a clever way to enumerate
regular languages being candidates for an invariant.

Finally, without going into detail, it is clear that in a very similar way as above,
we can deal with transition relations too.

Corollary 4.3 The model checking Problem 2.2 is decidable if T* is regular.

Remark: Algorithm 2 can easily be modified to handle non-length-preserving
transducers T too: When we calculate the fixpoint t(Init), we always after each
step intersect the reachable configurations with ==". In this way, the fixpoint com-
putation will always terminate. However, the training set is not guaranteed to be
complete anymore. Therefore, termination of the model-checking algorithm is not
in general insured even for regular T (Init). However, according to our practical
experience, the method still behaves well for various concrete examples.

9

5 Experiments

We have implemented the ideas proposed in the paper in a prototype tool written
in YAP Prolog using the FSA library [20]. As regular model checking is broadly
applicable, we applied the tool to a variety of different verification tasks.

The experiments were similar to those presented in more detail in [5]. They
included verification of parametric systems (in the form of a bit idealized para-
metric Bakery, Burns, Dijkstra, and Szymanski algorithms of mutual exclusion),
a simple push-down system modelling a program with several mutually recursive
procedures (the plotter control example from [10]), the alternating bit protocol as
a representative of systems with (lossy) queues, a Petri net modelling the readers-
writers problem with dynamically arising and disappearing processes that can be
considered an example of a system with unbounded counters (whose values were
encoded in unary), and a procedure for reversing linear lists as a representative of
systems with unbounded recursive data structures. The simplified Bakery mutual
exclusion algorithm was modelled in several ways: with a parametric number of
processes and the values of tickets encoded by the positions of the appropriate pro-
cesses in the word representing a configuration, and with a bounded number of
processes (three to five) with the tickets modelled by explicit counters with values
encoded either in binary (as in NDDSs) or in unary.

We have mostly considered verification of invariance properties that can be di-
rectly handled using reachability verification. We have, however, tried dealing with
some more complex properties too. The push-down example where we checked
some constraint on the calling order of the procedures is an example of dealing
with a bit more complex safety properties—to transform it to a reachability prob-
lem, we manually composed the appropriate safety automaton with the model of
the system. We have also verified communal liveness in the Bakery example. In
this case, we have manually composed the appropriate Biichi automaton with the
system being verified. We have mostly considered correct systems, but we have as
well run the tool over a faulty version of one of the considered systems—namely
the Readers/Writers example where we omitted one of the Petri net arcs. We have
mostly worked on the level of dealing with reachability sets, but in the example of
reversing lists, we have also worked with a reachability relation represented by a
transducer. (Using the reachability set computation, we checked that the procedure
outputs a list, but using the reachability relation—restricted to reachability from
initial states, i.e. to idnit o T, we checked that the output list is a reversion of the
input one.) Finally, in the experiments, we were trying both forward and backward
verification—i.e. starting from the initial states or the “bad” states.

The results of the experiments are summarized in Table 1. For each experiment,
we give the best result obtained. We say whether it was within forward or backward
verification and what the initial length of the words in the sample was (the con-
sidered values were: 1, |Qgad|, 2|Qgad|: |QBad|/2, |Qinit|, 2|Qinit|, and |Qinit|/2).
When we compare these results with those of [5] (which belong among the best
in the field), we see that they are usually a bit slower but comparable. In one case

10

A4 HIVVAEE ¥V LIS

Table 1
Some results of experimenting with verification based on inference of regular languages

Experiment Best setting | T [sec] | rq [%] Experiment Best setting | T [sec] | rq[%]

Bakery BW, |Qgad| 0.03 50 Dijkstra Fw, [Qgad|/2 | 1.16 92
Bakery comm. liv. Fw, 2|Qjnit| 0.36 0 PDS Bw, |Qgad| 0.04 63
Bakery counters 3P | Bw, 2|Qpad| 8.69 70 Petri net/Read. Wr. | Fw, |Qgad|/2 323 0
Bakery counters 4P | Fw, |Qpad| 143 92 Faulty PN/Rd. Wr. Fw, 2|Qinit| 1.48 54
Bakery 5P unary Fw, 2|Qinit | 229 45 Szymanski Fw, |Qgad| 0.76 94
ABP BW, 2|Qgaq| | 0.03 50 Rev. Lists FW, |Qinit 1.64 90

Burns Fw, 2|Qinit| 0.77 98 Rev. Lists/Transd. Fw, |Qinit|/2 40.5 69

(the ABP example), the inference method was even faster than the one of [5]. Such
results are very positive taking into account that no guarantees of termination are
known for the methods of [5].

Finally, in the rg columns of Table 1, we give the percentage of time spent in
generating the finite sample, which indicates that the treatment of this part of our
method deserves a special attention in the future optimisations.

6 Conclusion

We introduce in this paper a new method for regular model checking based on

inference of regular languages. The method iteratively computes more and more

precise approximations of t*(Init) or T* that are inferred from larger and larger

samples representing all reachable configurations (transductions of configurations)
with length up to a certain bound that is being incrementally increased. The com-

putation stops when the bad configurations are reached or when a safe overapprox-
imation of T*(Init) or T* is inferred. For length-preserving transducers, the method

is complete for all systems with regular T*(Init) or T*. This is a major advantage

compared to other methods. At the same time, experimental results show that the

method is efficient too. Our model-checking algorithm is general as every inference
algorithm working with positive and negative examples can be used. In the future,

we plan to try other inference algorithms [16,14] and compare their performances

in our framework. An investigation of incremental inference algorithms like RPNI2

[9] could especially be interesting. They are based on refining an inference hypoth-
esis when new positive and negative examples are provided. They could be easily

used in our framework since we compute longer and longer configurations. A fur-
ther optimisation could be a use of dedicated finite-state model checkers to compute
the set of reachable configurations of bounded length efficiently.

References

[1] Abdulla, P., L. Boasson and A. Bouajjani, Effective Lossy Queue Languages, in: Proc.
of ICALP’01, LNCS 2076 (2001).

[2] Abdulla, P., A. Bouajjani and B. Jonsson, On-the-fly Analysis of Systems with
Unbounded, Lossy Fifo Channels, in: Proc. of CAV’98, LNCS 1427 (1998).

11

A4 HIVVAEE ¥V LIS

[3] Abdulla, P., J. d’Orso, B. Jonsson and M. Nilsson, Algorithmic Improvements in
Regular Model Checking, in: Proc. of CAV’03, LNCS 2725 (2003).

[4] Boigelot, B., A. Legay and P. Wolper, Iterating transducers in the Large, in: Proc.
CAV’03, LNCS 2725 (2003).

[5] Bouajjani, A., P. Habermehl and T. Vojnar, Abstract Regular Model Checking, in: Proc.
of CAV’04, LNCS (2004).

[6] Bouajjani, A., B. Jonsson, M. Nilsson and T. Touili, Regular Model Checking, in: Proc.
of CAV’00, LNCS 1855 (2000).

[7] Cécé, G., A. Finkel and S. P. lyer, Unreliable Channels are Easier to Verify than
Perfect Channels, Information and Computation 124 (1996), pp. 20-31.

[8] Dams, D., Y. Lakhnech and M. Steffen, Iterating transducers, in: Proc. CAV’01, LNCS
2102 (2001).

[9] Dupont, P., Incremental Regular Inference, in: Grammatical Inference: Learning
Syntax from Sentences, LNAI 1147, 1996, pp. 222-237.

[10] Esparza, J., D. Hansel, P. Rossmanith and S. Schwoon, Efficient algorithms for model
checking pushdown systems, in: Proc. of CAV’00, LNCS 1855 (2000).

[11] Fribourg, L. and H. Olsen, Reachability Sets of Parametrized Rings as Regular
Languages, in: INFINITY workshop, Electronic Notes in Theoretical Computer
Science 9 (1997).

[12] Jonsson, B. and M. Nilsson, Transitive Closures of Regular Relations for Verifying
Infinite-State Systems, in: Proc. of TACAS’00, LNCS 1785 (2000).

[13] Kesten, Y., O. Maler, M. Marcus, A. Pnueli and E. Shahar, Symbolic Model Checking
with Rich Assertional Languages, Theoretical Computer Science 256 (2001).

[14] Lang, K. J., Random DFA’s can be Approximately Learned from Sparse Uniform
Examples, in: Proc. of the 5th ACM Workshop on Computational Learning Theory
(1992), pp. 45-52.

[15] Mayr, R., Undecidable Problems in Unreliable Computations, in: Latin American
Theoretical Informatics, 2000, pp. 377-386.

[16] Oncina, J. and P. Garcia, Inferring Regular Languages in Polynomial Update Time, in:
Pattern Recognition and Image Analysis, 1992, pp. 49-61.

[17] Pachl, J., Protocol Description and Analysis based on a State Transition Model with
Channel Expressions, in: Protocol Verification, Specification, and Testing VII, 1987.

[18] Touili, T., Widening Techniques for Regular Model Checking, ENTCS 50 (2001).

[19] Trakhtenbrot, B. A. and Y. A. Barzdin, “Finite Automata: Behavior and Synthesis,”
North-Holland, 1973.

[20] van Noord, G., FSA6.2 (2004), URL: http://odur.let.rug.nl/"vannoord/Fsa/.

[21] Vardhan, A., K. Sen, M. Viswanathan and G. Agha, Learning to Verify Safety
Properties, in: Proc. of ICFEM’04, 2004, accepted for publication.

12

http://odur.let.rug.nl/~vannoord/Fsa/

	Introduction
	Automata, Transducers and Regular Model Checking Basics
	Inference of Regular Languages from Complete Training Sets
	The Trakhtenbrot-Barzdin Algorithm

	The Model Checking Algorithm
	Experiments
	Conclusion
	References

