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Abstract

The primary visual cortex is the central hub for the transmission of
visual information to the rest of the central nervous system. We study
here models explaining how this neural system becomes efficient through
natural selection and neural development. By defining and then optimiz-
ing an efficiency cost, we may derive an adaptive model of the input to
the primary visual cortex as an unsupervised learning algorithm. As an
alternative to classical models, we focus here on the fact that visual in-
formation is carried from the sensory organs to the primary visual cortex
by neuronal events, or spikes, in bundles of parallel fibers. In fact, taking
advantage of the constraint that spikes may be considered as all-or-none
binary events, we may build a generic cost for the efficiency of the visual
representation as a measure of the Lo norm sparseness of the code. How-
ever, this is a “hard” NP-complete problem and we propose a solution in
a population of generic Integrate-and-Fire neurons. It relies both on a
correlation-based inhibition using lateral interactions and on an homeo-
static constraint by a spiking gain control mechanism, two key features
of cortical processing. For comparison purposes, we applied this scheme
to the learning of small patches taken from natural images and compared
the results and efficiency with state-of-the-art algorithms. Results show
that while the different coding algorithms gave similar efficiencies, the
homeostasis provided an optimal balance which was crucial during the
learning. This study provides a simpler yet more efficient algorithm for
learning that is particularly well adapted to the architecture of neural
computations. By providing the optimally independent components in
a set of inputs, it suggests that this Sparse Spike Coding strategy may
provide a generic computational module.
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1 Introduction

The neural architecture on which our cognitive abilities are based is a dynamical,
adaptive system which evolves to provide optimal solutions in our interactions
with the environment. Vision is a useful illustration of these properties and in
particular, models for the formation of orientation selective simple cell receptive
fields in the primary visual cortex (V1) have attracted great attention as generic
models of coding and learning in neural computations. Viewed from a functional
approach, the system evolved so that relevant sensory information is transformed
efficiently so as to allow in the end optimal decision making (Atick, 1992; Barlow,
M) The most accepted explanation for the formation of these cells in V1 is
that it optimizes the efficiency of the neural representation over images drawn
from natural scenes, that is from behaviorally relevant scenes. This may be for-
malized as representing at best visual information while increasing the sparse-
ness of the representation (Olshansen and Field, [1996). Similar approaches
have been followed for natural images (Doi et all |20_01| [Fyvfe and Baddeley,
11995; Hamker and Wiltschufl, 2007; Perrinet, 20042; IB.e.h.u_a.n.d_S.omm.e.ﬂ |2.0.01|

IZibulevsky and Pearlmutter, |20_0_]|) and sounds ([L@mckl_a.n_d_s_e;.u_omkj 2000;
Smith_and Lewicki, 2006) that were based on solving the inverse of a generative

model of the signal. These correspond more generally to a coding part on a
short time scale and a learning part on a longer time scale which corresponds to
finding the independent components in the natural scenes (lB_e_LLa.n_(LS_e,].umskj,

). However, all of these solutions relied on specific parameterizations and
didn’t explicitly demonstrated how their algorithm could be specifically adapted
to the nature of neural computations. For instance, the coding was achieved

by conjugate gradient (Olshausen and Field, |1_9_9_d) or orthogonal matching pur-
suit (IB.e_h.u_a.mLS_o_mm_e_ﬂ, |20_D_ﬂ) without explicitly addressing the problem of the
existing representational constraints in the cortex. More specifically, they don’t
specifically take advantage of the parallel, dynamical and adaptive nature and
architecture of neural computations that make them different from the ones oc-
curring in a traditional sequential computer.

In that direction, a key aspect of neural computations is that most information
between neurons is carried by spikes. Spikes (or Action Potentials) are simple
pulses of the membrane potential whose shape seems to carry few information
and which may travel robustly over long distances on axons'. In the human
early visual system for instance, after flashing a visual stimulus, such as after

ISpikes have a shape of approximately 1 ms and are also present on dendrites since their
presence is linked to the dynamical properties of the active ion channels on the neuron’s

membrane (Cessac_and Samuelided, 2007). They are universally present in the central nervous
system but also across species and phylogeny.




a saccade, a cascade of mechanisms will take place after the activation of the
photoreceptors in the retina. A volley of spikes leaves the retina through the
bundle of axons that forms the optic nerve to reach the lateral geniculate nuclei
(after approximately 25ms). There, a new processing takes place generating
a new volley of spikes toward the primary visual cortex that is reached after
approximately 35 ms (m, M) The visual information that is “decoded”
there is often considered to be “encoded” in the spikes’ firing pattern of every
fiber. As a consequence, neural computations are event-based and dynamical:
information transfer is parallel while in classical solutions computations are se-
quential and non-interruptible. A goal of this work is to show how we may take
advantage of spiking mechanisms to represent visual information in a dynamic,
parallel and event-based fashion.

To achieve that agenda, we will first analytically formulate the problem of
learning in the primary visual cortex. This mathematical part (Sec. Bl) may
be skipped at first by non-experts until Sec. 28 but is essential to understand
quantitatively the results

1. We will first define the function of the neural coding in a statistical in-
ference framework (see Sec. EZI) and then define a possible spike coding
algorithm of a flashed static image (see Sec. 2Z2)).

2. This will allow to quantify the efficiency of the spike coding in the neural
assembly by introducing the Ly norm as a measure of the sparseness of
the spike code (see Sec. Z3)).

3. Based on previous results (Perrinet et all, 2002), we will define an effi-
cient sparse spike coding and decoding scheme using correlation-based
inhibition coupled with the spiking mechanism. Taking advantage of a
biologically-inspired homeostatic spike gain control to ensure an optimal
balance within the assembly, we will improve the performance of the previ-
ously proposed algorithm by optimizing the competition between neurons

(see Sec. 2Z4I).

4. Finally, once these mechanisms are defined, we may easily derive an un-
supervised learning algorithm (see Sec. ZH) and finally derive a simple
hebbian-type learning scheme on the sparse representation (see Sec. Ef).

This means that to define the learning algorithm we will first have to define
the framework, the coding and an efficiency cost. Then, we will compare the

osed algorithm with standard methods: SPARSENET (|Q_].s_b.a.u.sen_a.n_d_ELeld
h}%) and Adaptive Matching Pursuit (Perrinet et all, 2003) and show the rel-
ative importance of the coding scheme and of the homeostasis on the resulting
systems thanks to the quantitative measures of efficiency (see Sec. B). We will
conclude by comparing this method with previously proposed schemes and how
these may be reconciled to improve our understanding of the neural code by
drawing the link between structure (spikes in a distributed network) and func-
tion (efficient coding) and explore the significant parameters at work in these
mechanisms.




2 Method : adaptive Sparse Spike Coding (aSSC)

2.1 Generative models and statistical inference

We saw that in low-level sensory areas, the goal of neural computations is
to build efficient intermediate representations to allow efficient decision mak-
ing (Barlow, 2001; [Field, 1994). A “good” representation of the world should
map at best the information from the physical signals which are relevant for the
sensory area under study. Furthermore, it will be more efficient if it is easily
transformable according to usual transforms. In visual areas for instance, any
representation of a scene should be easily transformed for any translation or
rotation of the scene?, since these are common movements and that higher-level
areas will need to take into account this information. As a consequence, it is
easier to define first a synthesis model of the world and its transformations and
then to build the representation by inverting this model. This synthesis model
(also called the forward model) may be built using statistical observations or
with prior assumptions on the physics of the generation of the signal. A Linear
Generative Model (LGM) (Olshausen and Field, [1998) is a generic case where
the signal may be thought as the linear combination of independent causes. In-
verting the forward model corresponds in the terminology of signal processing
to the coding process, since it transforms the signal (for instance the observed
image) into a more abstract representation as a combination of components
from the forward model (for instance the edges the image is formed from). This
coding may then be used to understand the content of the signal relative to
the (forward) synthesis model but also to validate on a longer term the coding
algorithm solving the inverse problem. In fact, one strategy is to build learn-
ing processes which optimize the overall efficiency of the representations for a
known coding algorithm. It is then expected that the comparison of different
learning strategies will help us understand the processes underlying receptive
field formation (here in the input layer 4 of V1) as a generic neural computation.
For instance, some coding algorithms seem better than others and comparing
their relative efficiency will highlight the reasons why some aspects of the neural
architecture (parallel event-based computations, lateral interactions within the
cortical area) were selected during evolution.

Formally, to define the LGM, we will use a “dictionary” of N images repre-
sented by the matrix A = {A,}1<;<n, each of these being defined by A; =
{A;j}1<i<m over the set of sampling positions ¢ (that is the pixels in a simple
image processing framework). Knowing A and the “sources” s = {s;}1<j<n,
the signal x = {x;}1<i<a is defined as

X = ZlgjgN sj.Aj+n=As+n (1)

M

where n is a decorrelated gaussian additive noise of variance o2. This noise

model is achieved thanks to the preprocessing (which could be achieved in gen-

2We will restrict ourselves to static flashed images since they are behaviorally important
for pattern recognition and because they will highlight the problem of the parallel spatial
processing by populations of neurons.



eral by Principal Component Analysis) without loss of generality since the pro-
cessing is invertible m, M) (see Fig. H). The LGM is well adapted to

natural scenes because transparency laws are linear for luminance values and
thus the LGM describes well the synthesis in a local neighborhood of any natural
image. The goal of any coding algorithm for the inverse problem is to find for
an observed x the best set s of sources that generated the signal. Then, the goal
of a learning algorithm is to adapt at best in the long term to the parameters
of the LGM, that is to the matrix A and the statistics of s. This dictionary
A is possibly much larger than the dimension of the input space (that is when
N >> M); the dictionary is then said to be over-complete. One advantage of
over-complete dictionaries is that it’s representational power is greater and that
for instance if the dictionary is transform invariant then it is easy to build a
transform invariant representation. On the other hand this leads to a combi-
natorial explosion for the inversion of the LGM and typically, there exist many
solutions for one input. We will see in Sec. how we may quantify the global
efficiency of the coding and in Sec. 24 the solution that we propose, but let’s
first define how one may evaluate the likelihood of any source knowing an input
X.
In fact, having defined the forward model, we may now be interested in comput-
ing how well a particular instance of the signal (here an image) matches with
the model. From (Perrinet,, 2004H, 2007), we know that for a given signal x, the
log-probability log P({s;}|x, A) corresponding to a single source s;.A; for any
j is maximal for the projection coefficient defined by:

. A def Do1<icn X(0)-A;(4)

S, =

—<x >% :
! 1A Dcicn A (0)?

(2)

where % means “equal by definition”. This is based on the hypothesis that
the signal is a realization of the LGM as it is defined in Eq. [Ml and for which
we assume no prior knowledge on the coeflicients. The log-probability is then
maximal globally for the source j* with maximal correlation coefficient j* =
ArgMax;p; with

X Aj
pi = <—, =T 3
) = T4, ®)
def Zlging(i)'Aj(i)

- \/ZlgigM Aj(i)2~\/21§z‘§M x(i)?

It should be noted that p; is the M*"-dimensional cosinus and that its absolute
value is therefore bounded by 1. The value of ArcCos(p;) would therefore give
the angle of x with the pattern A and in particular, the angle would be equal
(modulo 27) to zero if and only if p; = 1 (full correlation), = if and only if
p; = —1 (full anti-correlation) and +7/2 if p; = 0 (both vectors are orthogonal,
there is no correlation). Also, the correlation coefficient is independent of the
norm of the filters and we will assume without loss of generality in the rest that



these are normalized to unity (that is that V7, ||A;|| = 1).

In canonical models of neural modeling this corresponds to the linear dendritic
integration over the receptive field, producing for a positive correlation a driving
current leading to the hyper-polarization of the cell and possibly to spiking. This
justifies the computation of the correlation in the perceptron model m
M) as it provides a direct measure of the log-probability under the assump-
tions that we used (the LGM with Gaussian noise and uniform priors). Starting
from this basic mechanism, one could compute for every signal a vector from
the set of activities corresponding to how well the neurons corresponded to pat-
terns in the image predefined in the weights matrices. This representation is
certainly not explicit and could be implemented in various ways which are out
of the scope of this paper (Im, ). However, we will now explain how
this information may be coded and decoded by a set of spiking neurons with a

simple Linear/Non-Linear (L/N-L) architecture (Carandini et all, 1997, 2005).

)

2.2 Spike coding and decoding of a transient signal in a
population of neurons

In fact, before defining a possible efficiency cost based on the LGM, it is nec-
essary to define how information may be coded using the binary event-based
representations underlying neural spiking activity. As a matter of fact, neu-
rons are intrinsically dynamical systems and we will take advantage of this
property to transform the signal into a volley of spikes. For the large class of
Integrate-and-Fire neurons which is relevant for neurons in the input layer of
the primary visual cortex, we may use the fact that the larger the driving ex-
citation, the larger the firing frequency and dually the shorter the latency of
spiking (Perrinet et all, 2004). More precisely, let’s consider a population of N
neurons as an information channel for which we wish to code and then decode
a vector s = {s;}1<j<n only by transmitting spikes. If for instance we write
sj = |pj|, for any j of this vector, higher values will represent more salient
features than lower values. Classically, one would map each value to an exci-
tation value which corresponds through a monotonously increasing function to
a spiking latency or frequency, which can then be decoded by the correspond-
ing inverse function. The dynamic propagation ordered by latency propagatin
“important” information first. By using Integrate-and-Fire neurons (Em%
), we may associate a single neuron to every value from the vector we want
to transmit. For the linear Leaky-IF, if we associate a driving current to each
value s; (with 0 < j < N), it will elicit spikes with latencies ,
m) Aj(s;) where A; is a monotonously decreasing function of s; corresponding
to the transformation of the linear value into a latency. By this architecture,
since the latency is monotonously decreasing, one implements a simple ArgMax
operator in the form of the the ordered list of output spikes.
However a first problem arises when we consider the set of different excitation
vectors globally. In fact, if the probability distribution function (pdf) of the
input activation is not uniform, then the average spiking activity of the neu-
rons will be a priori different. In the competitive network formed with the




neural cells, this is in disagreement with the general fact that spikes are similar
and should therefore carry similar information to the different efferent neurons
their axons are connected to. While the impact of each spike on a receiving
neuron is variable (this being measured by the synaptic weight as the force of
the post-synaptic current) spikes are binary all-or-none events. To maximize
the representational information of possible spike patterns, it is necessary that
neurons of the same class in one assembly should build up a distributed repre-
sentation where activity is on average uniformly distributed. Equivalently, the
distribution of coefficients represents exactly the a priori knowledge in Bayesian
terminology, so that this equalization is justified by the hypothesis underlying
Eq.Bl Another dual explanation is that spikes have similar metabolic costs and
that the system should balance the use of the different neurons so as to mini-
mize the average metabolic use by the system®. To optimize the efficiency of the
ArgMax operator, one has therefore to ensure that one optimizes the entropy of
the index of output spikes and therefore of the driving current. This may be en-
sured by modifying the different functions A; so that for all j, the distributions
of A\;(s;) are similar and that the overall distribution corresponding to A has a
shape adapted to the neural dynamics. The second point —finding an optimal
latency envelop— will be out of scope of this paper, and we will without loss of
generality only try to find functions f; (with A; = Ao f;) such that the variables
z; = fj(s;) are uniformly distributed between 0 and 1.

A standard method to achieve this homeostasis is to map the input vector
{s;} through a point non-linearity* which equalizes the probability of the out-
put (Im, @) This method is similar to histogram equalization in im-
age processing and provides an output with maximum entropy for a bounded
output: it therefore optimizes the coding efficiency of the representation in
terms of compression (van Hateren, |]_9_9_3) or dually the minimization of intrin-
sic noise dSJjnjxa.sa.n_et_a.]J, |_L()_82) It may be easily derived from the probability

P of variable s; by choosing the non-linearity as the cumulative function

S
B =P [ apGs) (@
— 00
where the symbol dP(x) = px(x)dz will here denote in general the probability
distribution function (pdf) for random variable X. The equalization process
has been observed in a variety of s me s and is for instance perfectly illustrated
in salamander’s retina m It may evolve dynamically to slowly
adapt to varying changes in luminance values, such as when the light diminishes
at dawn but also to some more elaborated scheme within a map m
M) As in theoretically “ideal democracy” all neurons are “equal” and when
changing the neurons parameters such as with a learning, this process has to
be dynamically updated over a time scale similar at least larger than the learn-
ing time scale so as to still achieve optimum balance. As a consequence, since

)

3However, this argument is a consequence through evolution from the first, since the goal
of neural computations is primarily to be an efficient processor before being an economic one.

4That is to a set of scalar non-linearities applied independently to every single element of
the vector.



for all j, the pdf of z; = f;(s;) is uniform and that sources are independent,
the vector {z;} may be considered as a random vector drawn from an uniform
distribution in [0, 1]. Knowing the different spike generation mechanisms which
are similar in that class of neurons, every vector {s;} will thus generate a list
of spikes {j(1),5(2),...} (with corresponding latencies) where no information is
carried a prior: in the latency pattern but all is in the relative timing across
neurons. Finally, the signal is transformed in this particular implementation of
a L-NL architecture (see Fig.[Ml). The difference is first that the non-linearity
is determined by the statistics of the input. Second, the neurons are not gen-
erated according to independent Poisson point processes but according to the
deterministic (possibly noisy) equations of the generalized Integrate-and-Fire
neurons, since there is a priori no reason to lose information.

We coded the signal in a spike volley, but how can this spike list be “decoded”,
especially if it is conducted over some distance and therefore with an additional
latency? In the case of transient signals, since we coded the vector s = {s;}
using the homeostatic constraint from Eq. Bl we may retrieve the analog values
from the order of firing neurons in the spike list. In fact, knowing the “address”
of the fiber j(1) corresponding to the first spike to arrive at the receiver end,
we may infer that it has been produced by a value in the highest quantile of
P(s;(1)) on the emitting side. We may therefore decode the corresponding value
with the best estimate 8;1) = f]?
This is also true for the following spikes and if we write as r;) = 1 —2;) = %
the relative rank of the spike (that is neuron j(k) fired at rank k), we can
reconstruct the corresponding value as

i) (%) where N is the total number of neurons.

k
Site) = F09 (1= 5) (5)

This corresponds to a generalized rank coding scheme (Perrinetl, 1999; [Perrinet. et all,
M) First, it loses the information on the absolute latency of the spike train
which is giving the maximal value of the input vector. This has the particular
advantage of making this code invariant to contrast (up to a fixed delay due to
the precision loss induced by noise). Second, when normalized by the maximal
value, it is a first order approximation of the vector which is especially relevant
for over-complete representations where the information contained in the rank
vector is greater than the information contained in the particular quantization
of the image®.

This code therefore focuses on the particular sequence of neurons that were
chosen and loses the particular information that may be coded in the pattern
of individual inter-spike intervals in the assembly. A model accounting for the
exact spiking mechanism would correct this information loss, but this would be
at the cost of introducing new parameters (hence new information), while it

5To give an order of the upper bound for the information in a ranked spike list is thanks
to Stirling’s approximation of order log, (N!) = O(N.log(N)), that is more than 2700 bits for
324 neurons. However, we are generally unable to detect quantization errors on an image
consisting of more 256 gray levels, that is for 8 bits per pixel.



Figure 1: Spike coding channel using homeostatic gain control. We show
here how a bundle of L-NL neurons (Carandini et all, , 2005) tuned by a
simple homeostatic mechanism allow to transfer a transwnt information, such
as an image, using spikes. (L) The signal to be coded, for instance the match
s; of an image patch (the tiger on the left bottom) with a set of filters (edge-like
images), may be considered as a stochastic vector defined by the probability dis-
tribution function (pdf) of the values s; to be represented. (INL) By using the
cumulative function as a point non-linearity f;, one ensures that the probability
of z; = f;(s;) is uniform, that is that the entropy is maximal. This non-linearity
in the L-NL neuron implements a homeostasis that is controlled only by the time
constant with which the cumulative probability function f; is computed (typi-
cally 10* image patches in our case). (S) Any instance of the signal may then be
coded by a volley of spikes: a higher value corresponds to a shorter latency and
a higher frequency. (D) Inversely, for any spike events vector, one may estimate
the value from the firing frequency, the latency. We may simply use the ordering
of the spikes since the rank provides an estimate of the quantile in the probabil-
ity distribution function thanks to the equalization. Using the inverse of f; one
retrieves the value in feature space so that this volley of spikes is decoded (or
directly transformed) thanks to the relative timing of the spikes using the modu-
lation (see Eq.H). This builds a robust information channel where information is
solely carried by spikes as binary events. Given this model, the goal of this work
is to find the most efficient architecture to code natural images and in particular
to define a coding cost and to derive a learning algorithm. To draw a quantita-

tive comparison with state-of-the-art algorithms[[md_ckj_a.n_d_s_ejnmskj (IZD_D_d),
Rehn and Sommer (2007); Smith and Lewicki (2006), we will use the framefork

used in SPARSENET (Qlshausen and Field, [1998).
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seems that this information would have a low impact relative to the total infor-
mation (I]Za.nzeﬂ_e];_a.]_], |_L(L(Lq) More generally, one could use different mappings
for the transformation of the z value into the spike volley which can be more
adapted to continuous flows, but this scheme corresponds to an extreme case (a
transient signal) which is useful to stress on the dynamical part of the coding b,
emphasizing solely on the first spike per neuron (Iya.n_B.u.llen_a.n_d_’llh_QLp_d, ﬁmf),
and is mathematically more tractable. On a practical note, we similarly use
the fact that the inverse of f; may be computed from the mean over trials of
the function of the absolute functions as a function of the rank. In particular,
one may show that the coding error is proportional to the variability of the
sorted coefficients (Perrinet. et all, 2004), the rest of the information being the
information coded in the time intervals between two successive spikes. Thus,
the efficiency of information transmission will directly depend on the validity
of the hypothesis of independence of the choice of components and therefore on
the statistical model build by the LGM.

It should be also noted that no explicit reconstruction is necessary (in the math-
ematical sense of the term) on the receiver side as we do here, since the goal
of the receiver could only be to manipulate information on for instance some
subset of the spike list (that is on some receptive field covering a subpart of
the population). In particular one may imagine that we may add some arbi-
trary global point linearity to the z values in order to threshold low values or
to quantize values (for instance set all values to 1 only for the first 10% of the
spikes). However, this full reconstruction scheme is a general framework for
information transmission, and we may then imagine that if for instance we pool
information over a limited receptive field, the information needed (the ranks in
the sub-spikelist) will still be available to the receiver directly without having
to compute the full set (in fact, since the pdf of z is uniform, the pdf of a subset
of components of z is also uniform). Finally, we defined a simple spike coding
algorithm to transmit information robustly with events. However, it is not yet
clear how we may quantitatively estimate its efficiency.

2.3 Definition of the efficiency of Spike coding

Now that we defined the key concepts of the spike coding algorithm, we should
be able to derive a generic cost function that will allow us to quantify the ef-
ficiency of different coding algorithms but also to derive a learning algorithm
for the spike coding algorithm defined above. In fact, unless the dictionary A
is orthogonal, when choosing one component over an other (for instance the
one that maximizes Eq. Hl), any choice may influence the choice of the other
components. For instance, if we chose the successive neurons with maximum
linear correlation values, the resulting representation will be proportionally more
redundant when the dictionary gets more over-complete so that the linear cor-
relation values in general do not correspond to the coefficients of the LGM.
For every signal x, one may state as in Occam’s razor that given two solutions
of similar quality, the best is the one with lowest representational complexity.
Globally, we may introduce an “Occam factor” to compare the efficiency of dif-

10



ferent representations (m, m, Ch. 28.3). This factor may be expressed
as the Kolmogorov-Chaitin complexity and can be formalized in a probabilis-
tic framework by using the bound given by Shannon’s coding theorem as the
average measure of the information to code the input given the solutions (the
coding sequences) and the model’s parameters (Lewicki and Sejnowski, 2000).

A goal is therefore to maximize the evidence of the model that is to minimize
this information or similarly minimize the description length (m m

Furthermore, in the context of dynamical coding by spikes, this coding is pro-
gressive and there will be a dynamical compromise between the precision and
the complexity of the representation.

Using the same notation as in Sec. ZJland IOlshausen_and Field (1998), the total

representational cost is C def E(—log P(s|x,A)), where E(.) denotes averaging
over multiple trials (that is different image patches x) and s is the coding se-
quence. For one coding sequence, this cost may thus be written as the sum of
its likelihood probability knowing the set of sources added to the coding length
of the set of sources:

1 .

where Z is the partition function (that we will omit in the sequel) and § is the
decoded sequence. The efficiency cost will be measured in bits if the logarithm
is of base 2 (as will be assumed without loss of generality in the following). For
any coding s, the first term corresponds to the information from the image which
was not retrieved by the whole coding/decoding algorithm (reconstruction cost)
and that can be encoded at best using entropic coding pixel by pixel (it’s the
log-likelihood in Bayesian terminology). The second term is the representation
cost: it quantifies the efficiency of the representation as the description length of
the coefficients and is equal to the entropic coding of s knowing its probability
distribution function (it is the log-prior).

We will assume independence of the coefficients and therefore log P(s|A) =
> log P(s;|A). Moreover, based on a parameterization of the coefficients’ prior
and on the assumption of a perfect reconstruction (that is § = s), this yields

the sparseness cost defined in [Olshansen and Field (1998):
1 s?
Ci(s[x,A) = ﬁ”x—zsg‘-AJ‘HZ‘i‘ﬁZbg(l - ;) (7)
" J J

where [ is the steepness of the prior and o is the prior scaling (see Figure 13.2
from (m, m)) This cost is related to the classical cost with the L,
norm but represents a more kurtotic probability distribution function for the
prior than the Laplacian prior corresponding to the L norm. This cost therefore
links the efficiency to the sparseness of the code by parametrizing a priori the
sparseness of the coefficients, the “occam factor” measuring the global evidence
of the model knowing this parametrized prior.

This liberty in the definition of the sparseness leads to a wide variety of pro-
posed solutions to defining and optimizing this cost or sparse coding (for a

11



review, see (Pecd M)) such as numerical optimization (m m;
\Olshausen_and_Field, 1998), non negative matrix factoriza(%,
11999; Ranzato et all, 2007) or by using Matching Pursuit ;
Rehn_and Sommer, 200%; Smith and Lewicki, 2006). Note that this cost will

efficiently quantify the representation efficiency if the pdf of the coefficients is
indeed well fitted to the parameterization. Moreover, this variety may exist
in biological systems by varying the optimal sparseness levels via regulation
mechanisms (Assisi et all, 2007). However, this parameterization is not known
a priori and must be tuned accordingly to fit the model to the statistics of
natural images and be further validated. This is the reason why we did build
a non-parametric measure by taking advantage of the fact that thanks to the
homeostasis, the probability of firing of every fiber is uniform across the popu-
lation. In fact, spikes are a priori equally likely to be generated on any of the
N neurons (see Sec. Z2), so that the probability of the origin of any new spike
is simply % Therefore, differently to the SPARSENET algorithm, the model
for the statistics of the LGM assumes that spikes are independent all-or-none
events and carry a binary representation as was presented above for the Spike
Coding algorithm (see Sec. Z2). This explicitly defines the information content
of a spike volley as an ordered list of spikes where the whole information is
coded in the “addresses” of the different spikes in the list. Using a dictionary of
N neurons, the cost per spike may then be defined as log,(N) bits per spike, so
that we propose for the coding cost of a spike list to be simply:

1 R
Colslx, A) = o—.[lx = > 3;.A;1* +1og,(N).[Islo (8)
20
n J

where |[|s||o is the length of the retrieved solution (or also the Ly norm). Again,
this cost is only valid if the probability of every spike is a priori uniform and
therefore the cost used in (Rehn_and Somme, 2007) should include a correction
term in the Ly norm to account for this non-unifomity. It also explicitly rates
the economy of consumed metabolic resources as is used in (Rehn_and Sommer,
), but we may again consider this only as a consequence of the optimiza-
tion. Note first that for any spike coding solution, this cost function is dynamic
since the number of spikes increases in time. Note also that it links efficiency to
sparseness for a known representation error solely on the basis that the spiking
representation is binary and event-based. More generally, such a sparse repre-
sentation is the best solution to allow a good discriminability between different
atterns and is similar with information criterions such as the AIC (Im,
@) or distortion rate (Im, m, p. 488). For instance, as a model of
the input layer of the primary visual cortex, optimizing the coding according
to Eq. B will provide the best representation to segregate different orientations
for instance by representing the ridge of edges in images instead of representing
the linear correlation as defined by Eq. Bl In a nutshell, sparser representation
make “more peaked” cross-correlograms. This also means that the selectivity
of neurons is therefore sharper than the response predicted by linear filters,

such as is observed in orientation tuning (Troyer et all, [1998). Resolving the
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coding problem with the Ly norm is therefore a matter of getting the best s
in the sense of Eq. B knowing x, that is ArgMin,(Co(s|x,A)). However, even
when assuming perfect quantization, this is a non-convex optimization problem
which is NP-complete with respect to the dimension N of the dictionary (Im,
m p. 409). Instead of going back to an orthogonal basis to circumvent this
difficulty, blologlcal neural systems seem to use sparsity as a generic tool for

efficient signal representation (Baudot. et all, 2004; Deweese and Zador, 2003;
Vinje and Gallant, 200(). We will present here a solution to this problem in-

spired by the architecture and dynamics of the primary visual cortex.

2.4 Sparse Spike Coding

We saw that overcoming the inefficiency of the L-INL architecture by optimizing
the choice according to Eq. Bl leads then to a combinatorial explosion. To solve
this NP-complete problem to model realistic representations such as when mod-
eling the primary visual cortex, one may implement a solution designed after the
richly laterally connected architecture of cortical layers. In fact, an important
part of cortical areas consists of a lateral network propagating information in
parallel between neurons. We will here propose that the NP-problem can be
approximately solved by using a cross-correlation based inhibition between neu-
rons. In fact, as was first proposed in Sparse Spike Coding (SSC) m,
M), one could use a greedy algorithm on the Ly norm cost defined in Eq. B to
recursively compute the sparse coefficients. The sparse coding part is basically
equivalent to the Matching Pursuit (MP) algorithm (Mallat and Zhang, [1993)
and the sparse coefficients will be transmitted, quantified and decoded in the
same way as in the Spike Coding scheme for the linear correlation coefficients
(see Sec. Z2).

More specifically, let’s first define Competition-Optimized Matching Pursuit
(COMP) by introducing non-linearities in the choice step of MP correspond-
ing to the optimized gain control functions defined in Eq. H (w, m)
Like Matching Pursuit, it is based on an initialization and two repetitive steps.
At initialization, given the signal x, we set up the input vector as the absolute

value of the linear correlation coefficient, that is for all j to s = |p;| (and

we will write x(©) = x, p(o) = p;). These values s(© are proportional to the a
posteriori probability knowmg x (see Eq. H)). Then we repeat the two following
steps that we index by their rank k (initialized at 0). First, we are searching
for the bestsingle source corresponding to the maximum a posteriori (MAP)
knowing x(*) which is proportional to s(k) | p] | but modulate this choice by
the point non-linearity f;. This Matchmg step is thus defined by:

k
= ArgMax; [f; (7)) (9)
In a second Pursuit step, the information is fed-back to correlated sources

through:
x(E+D) — (k) _ p(k).Ajm (10)
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where we note p(*) = pg,]f,z) the maximal scalar projection < X(k),Aj(k) > (see
Eq. B). Equivalently, from the linearity of the scalar product (see Eq. H), we
may instead propagate information laterally:

p§_k+1) = pg.k) — p(k) < A(k),Aj > (11)

As described in (w, M), while the Matching step is efficiently per-
formed by the LIF neurons driven by the (NL) layer (see Fig. [), the pursuit
step could be implemented in a cortical area by a correlation-based inhibition.
In Fig.[ it will correspond to a lateral interaction within the linear (L) neuronal
population. This type of inhibition is typical of fast-spiking interneurons though
there is no direct evidence of an activity-based synaptic topology. COMP shares
many properties with MP, such as the monotonous decrease of the error or the
exponential convergence of the coding. The algorithm is then iterated with
Eq. @ until some stopping criteria is reached.

Sparse Spike Coding (SSC) is then defined as the spike coding algorithm that
transforms an image x into a list of spikes {j(*)} defined as the ordered list
of the addresses of neurons that fired in the Matching step (and to the cor-
responding values {p(*)}) as was described in the Spike Coding scheme (see
Sec. Z2). This scheme thus extends the algorithm based on the Matching Pur-
suit (MP) algorithm proposed in (Perrinet. et all, 2002) by linking it to a sta-
tistical model which tunes optimally the matching step. In fact, all choices are
statistically equally probable thanks to the adaptive point linearity so that one
maximizes the entropy of every match and therefore the computational power of
the ArgMax operator. Think a contrario to a totally unbalanced network where
the match will be always a given neuron: the spikes are totally predictable and
the information carried by the spike list then drops to zero. In practice, the
f; functions are initialized for all neurons to the identity function (COMP is
then a simple MP algorithm) and then Eq. Bl is evaluated after the end of every
coding sweep using an online stochastic algorithm with a “learning” parameter
corresponding to a smooth average which effect was controlled (see Fig. Hl and
Annex. B3). As a matter of fact, this algorithm is circular since the choice of s
is non-linear and depends on the choice of f;. However, thanks to the exponen-
tial convergence of MP, for any set of components, the f; will converge to the
correct non-linear functions as defined by Eq. H

2.5 Introducing Hebbian Learning in SSC

We may now finally derive the unsupervised learning model by optimizing the
efficiency of SSC with respect to the efficiency cost defined in Eq. In fact,
on a longer time scale, the efficiency of the system may be optimized by slowly
adapting the dictionary A as in SPARSENET thanks to the sparse solution given
by the coding algorithm. More generally, knowing the coding algorithm, an
unsupervised learning solving the efficiency cost is related to the goal of Inde-
pendent Component Analysis (ICA), since knowing that the signal is created by
a mixture of components as in Eq. [, it tries to find the best set of components
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so that the representation is well described by the fewer number of components.
As in SPARSENET, this can be seen as a joint optimization of the reconstruction
and the sparseness. We may implement this for every image at any coding step
k after Eq. @ (that is after a spike of address j*) is emitted) since we have
an evaluation of the log-likelihood by the distance of the residual image to the
selected filter, that is to [[x¥) — p*) A [|2, the rest of the signal being re-
garded as a perturbation which will cancel out on average. Using the gradient
descent approach used in (Olshausen and Field, 1998), we similarly infer that
we may slowly modify the winning weight vector corresponding to the winning
filter p®). A ;) by taking it closer to x*,

k
8C(Sj(k)|x( )’A) o BHX(M*P(MvAj(k)HQ
8A.j(k) 20% : 8A](k)

= o) (x®) — ) A )

that is:
Aj(k) = A.j(k) + np(k) (X(k) - p(k).Aj(k)) (12)

where 7 is the learning rate, which is inversely proportional to the time scale
of the features being learned.A more rigorous mathematical approach for the
learning is to consider a rotation of A k) toward x(®) using a Jacobi Matrix
rotation so that all component vectors stay on the unit sphere. In practice,
Eq. [ for small learning rates n followed by a normalization is a good approx-
imation of this high-dimensional (linear) transform. Basically, it will decrease
the angle between the filter and the feature and therefore increase the corre-
lation: since the energy decreases at every step in COMP by the energy of
the selected coefficient (see (Perrined, , Sec. 2.1.3)), it will ensure that
the decrease is quicker and thus that the representatlon gets sparser. Slrmlarly
to Eq. 17 in (Olshausen and Field, 1998) or to Eq. 2 in

), the relation is linear: it is an “Hebbian” rule (Im, M) in the clas—
sical sense since it will enhance the weight of neurons of correlated pre- and
post-synaptic neurons. However, the novelty of this formulation is to apply this
formulation to the sparse representation at every single spike. In fact, note that
if the coding step is not the initialization, x(*) is the residual image (thus a non-
(k)

linear transform of the initial x computed using Eq. [) and the p;

linear correlations with x(*). The biological correlate of this adaptation could
be a “slow” anterograde signal going backwards this feed-forward pass (m,

). An improvement is to “back-propagate” in early spikes of the follow-
ing choices to correct the gradient descent instead of regarding the residuals as
a perturbation. This corresponds to Spike Coding with Orthogonal Matching
Pursuit as was implemented (without quantization) in the learning algorithm
used in (Rehn_and Sommer, 2007). However, this would imply a more complex
neural architecture and it did not drastically change the efficiency of the system.
Without homeostasis, this algorithm (as well as SPARSENET) is unstable. In
fact, since we start with random filters, it is is more likely that any salient fea-
ture would be selected at first and will modify the first winning filter. There

are the
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is therefore a higher probability that the same neuron will be selected with a
higher probability in subsequent learning steps, causing a diverging non unifor-
mity in the balance of the learning across neurons. Whereas SPARSENET uses
the norm of the filters to control the variance of the coefficients across neu-
rons, the SSC matching criteria (see Eq. ) is intrinsically independent to the
norm of the filters. While we implemented in AMP the homeostasis used by
(Olshausen and Field, [1998), if we use the homeostatic regulation (which has a
similar time-scale than the learning), the probability of choosing any neuron in
COMP remains uniform and ensures the convergence of the learning algorithm
(see Annex. B4). The homeostasis will therefore optimize the balance between
the neurons, assuring that the internal representation driving the spiking neu-
rons may always be considered as a uniformly distributed random vector. Note
then that on a long time scale, if two filters at some point during the learning
correspond to filters with different selectivity (thus, they have different pdf, the
more selective being more kurtotic), they are still selected with the same prob-
ability thanks to the non-linearity. However, since on a batch of natural scenes,
the filters corresponding to the less selective neurons are less likely to be present
and from the relative “boost” induced by the non-linearity and which acts as a
cortical gain control, these filters are more likely to change. It is easier to imag-
ine this property by drawing the Voronoi diagram on the unit M-dimensional
sphere corresponding to the possible positions of the filters, the dictionary being
represented by N points on this sphere. For the diagram corresponding to the
dictionary each centroid will be attracted toward the mean vector of inputs cor-
responding to its Voronoi cell, as in the K-means algorithm. Since we force the
probability of selecting centroids to be uniform, the equilibrium of the learning
is when the population of filters, that is the dictionary, forms an uniform tiling
of filter space. As a consequence, the f; functions become equal at convergence
and the matching step becomes similar to the one in MP and in particular if one
perturbs a filter (by setting it to a random vector for instance, that is a point on
the unit M-dimensional sphere) the algorithm will change the whole dictionary
so that it settles to a new stable point (see Annex. Bd)). Finally, we find the
counter-intuitive result that in aSSC, the homeostasis is more important during
the learning period and may be ignored when synapses don’t evolve anymore.

2.6 Adaptive Sparse Spike Coding (aSSC)

In summary, the whole learning algorithm is given by the following nested loops:

1. Initialize the components A to random values on the unit N-dimensional
sphere and set the point non-linear gain function to unity (f;(s) = s for
all j),

2. repeat:

(a) draw a signal x from the database,

(b) compute p; for all j using Eq.H k =0
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(¢) while [|x*®)||? is above a certain precision threshold do sparse spike
coding (SSC):
i. emit a spike by selecting the best match j*) with Eq. @
ii. modify information correlated to j*) by computing p§-k+1) for all
j using Eq. [T,
iii. slowly modify A ;) using Eq. 2
iv. slowly update the f; for all j using Eq. Hl
v. increment the rank &

When convergence is achieved, one could simply make a coding by using step
(b) to initialize and then (c) and optionally for the pure spike coding evaluate
the coefficient using Eq. Bl in step 2-(c)-ii. One advantage is that the greedy
algorithm may adapt to quantization errors (I]Zennin_et_et_a.]_], 2004, Fig.10). The
decoding of the spike list {j(1), 7 ... j®) 1 is then simply:

1. Initialize X to a zero image and the rank & to zero,
2. while we have spikes do :

(a) retrieve the address j(*) of the spike and the corresponding value §(*)
of the coefficient using Eq. B

(b) add $%) A u to %,

(c) increment the rank k,

Note that this pseudo-code is given in a traditional sequential way where all steps
are given the one after the other. This corresponds to our actual simulations (see
Annex. BT but only corresponds to an event based description of the dynamical
processes occurring in the system. In fact, in a dynamical implementation, all
processes are done in parallel and events just correspond to the times where the
integration reached a threshold m, 20041).

3 Results on natural images

3.1 Receptive field formation: comparison with SPARSENET

We first compared this novel aSSC algorithm with the SPARSENET algorithm. In
fact, this algorithm as other similar schemes only differs by the coding method
used to obtain the sparse representation and by the homeostasis scheme. In
particular, we focused herein in the validation and quantitative comparison
of both algorithms in terms of efficiency on the task at hand that we de-
fined®. We used a similar context and architecture as the experiments described

in (Olshansen and Field, [1998) and used in particular the same database of in-

puts as the SPARSENET algorithm and restrict ourselves to study the selection

6See Annex. Elfor the table of parameters, details of the experimental setup and to a link
to reproduce the results.
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Figure 2: Results of the proposed aSSC scheme compared to
SPARSENET. Starting with random filters, we compare here the results of the
learning scheme with 324 filters at convergence (20000 steps) using (Left) the

classical conjugate gradient function method as is used in (Olshansen and Field,
M) with (Right) the Sparse Spike Coding method. Filters of the same size as
the imagelets (16 x 16) are presented in a matrix (separated with a black border).
Note that their position in the matrix is as in ICA arbitrary (invariant up to
any permutation). Results replicate the original results of (Olshausen and Field,
E%; and are similar for both methods: both dictionary consist of gabor-like
filters which are similar to the receptive fields of simple cells in the primary
visual cortex. Edges appear in these conditions to be the independent compo-
nents of natural images. However, the distribution of the quality of the edges
(in particular their mean frequency, length, width) appears to be different and
the question remains as how we may compare the efficiency of the different
architectures quantitatively.

of optimal filters on imagelets (that is small patches from natural images)”. In
particular, these images are static, grayscale and filtered according to the same
parameters to allow a one-to-one comparison of the different algorithms.

Here, we show the results for 16 x 16 patches (so that M = 256) from the
whitened images and we chose to learn N = 324 filters which are replicated
as ON and OFF filters (but see Annex. B.2). Results show the emergence of
edge-like filters (see Fig. B) for a wide range of parameters (see Annex. B3 for
an analysis of the robustness of the methods to variations of the parameters).
Studying the evolution of one single filter during the learning shows that it firsts

"These results should be taken as a lower bound for the efficiency of adaptive Sparse Spike
Coding, since the sparseness in imagelets is only local, but sparseness is also spatial in natural
images (m,m) For instance, it is highly probable in natural images that large
parts of the space —such as the sky— are flat. See w,m, Sec. 3.3.4) for an extension
to whole images.
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represent any salient feature (such as a sharp corner or edge) and that if it con-
tains multiple edges only the most salient edge remains later in the learning.
This is due to the competition between filters, the algorithm ensuring that inde-
pendent features should not be mixed since this will result in a larger Lg-norm.
When looking at very long learning times, the solution is not fixed (for both
algorithms) and edges may smoothly drift from one orientation to another while
the cost still remains stable. This is due to the fact that there are many solutions
to the problem and that there is no constraint such as topological links between
filters to decrease the degree of liberty of solutions. Thus, as in ICA results are
to be understood as a whole, and if for instance two filters are swapped in the
dictionary, the efficiency stays the same.

However, it is not clear by the sole shape of the filters alone which solution is
most efficient. In fact, rather than the shape of the components individually, it is
the distribution of the assembly of components in the image space that will yield
different efficiencies. Such an analysis was performed with a qualitative analysis

of the filters’ shape, by fitting them with Gabor filters (Lewicki and Sejnowski,

M) A recent study compares the distribution of the parameters of the Gabor
filters with neurophysiological experiments dB.ebn_and_S;lm_m_eﬂ, |20_01|) They
did indeed show that their learning scheme, which is also based on a Matching
pursuit algorithm, did better match than SPARSENET the distribution of some
parameters of Gabor filters over the set of filter observed in the macaque’s pri-
mary visual cortex. However, if this similarity is certainly necessary, it is not
sufficient to understand the effect of each parameter and more generally to the
emergence of edge-like receptive fields. We will rather try to evaluate quanti-
tatively the relative efficiency of the different learning schemes to extract what
aspect is the most relevant.

3.2 Quantifying efficiency compared to SPARSENET

To address this question, we compared the quality of both methods by com-
puting the mean efficiency of the coding as the learning converged. Using 5.10%
imagelets drawn from the natural image database, we performed the progressive
coding of the images using both methods first for random vectors and then for
the filters learned by each method. First, we quantified at the end of the coding
the distribution of coefficients for the different cases. To allow a comparison of
the coefficients, we normalized the coefficients by the energy of the imagelets
(since thanks to Eq. Bland Eq. Bl we have p; = s; HHXJHH) and by the norm of the
filters to retrieve coefficients such that

X Aj
X L 13
el = 2o1ssen P TA] (13)

these coeflicients are similar to the measure of the linear correlation coefficient
(see Eq. Hl). These non-linear correlation coefficients do match the linear cor-
relation coefficients when the dictionary which was selected at each coding is
quasi-incoherent, that is that every selected filter is perpendicular to the residual

of the coding (Gribonval and Vandergheynst, 2006). This is not true in general
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Figure 3: Coding efficiency of adaptive Sparse Spike Coding. We
evaluated the quality of the algorithm with two different coding strate-
gies by comparing the coding efficiency of the sparse spike coding (’ssc’)
method with the classical conjugate gradient function (’cgf’) method as is used
in (Olshansen and Field, [1998). For the coding of a set of 5.10* image patches
drawn from a database of natural images, we plot (Left) the distribution of both
methods before and after the convergence of the learning phase. At initializa-
tion, the distributions are more gaussian (curves ’cg-init’ and ’ssc-init’) while
they get more kurtotic: both algorithms yield at convergence sparse distribu-
tions of the coefficients. We also plot (Right) the mean final residual error (Lg
norm) as a function of the relative number of active (or non-zero) coefficients
(that is the normalized Lo norm and the coding step for SSC) which provides an
estimate of the mean coding efficiency for the image patches. Best results are
those providing a lower error for a given sparsity or a lower sparseness (better
compression) for the same error. In fact, the efficiency cost measures Occam’s
razor applied to coding: it states that for a given Lo norm, a lower complexity
(that is a lower Lo norm) is more efficient (graphically, an horizontal line would
cross from left the best solution first). It should be noted that it is also simi-
lar for the cost based on the L; norm, a result which may reflect that the Lg
norm defines a stronger sparseness constraint. Moreover, one should take into
account the fact that in the proposed algorithm the coding is constrained to be

binary while it is analogous in SPARSENET or in [Lewicki and Sejnowski (2000);
Rehn_and Sommer (2007); Smith and Lewicki (2006) and there is no explicitly
defined quantization. Also, while in these schemes this aspect of the coding is
not studied or is expected to be the fixed point of a recurrent system, we take
here advantage of the spiking representation to optimize the representation and
the speed of information transmission by a single spike volley.
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and the p; correspond here rather to a measure of the quality (measured as
a log-probability) of the match with the signal of each from the sparse set of
selected sources. When plotting the histogram of the non-linear correlation
coefficients, one sees that distributions are approximately gaussians with the
initial random filters —a result that one could have predicted from the central
limit theorem— but that these become very kurtotic after the convergence of
the learning (see Fig. BlLeft). The measure of the kurtosis of the resulting code
words proved to be very sensitive and a poor indicator of the global efficiency, in
particular for code words at the beginning of the coding, when many coefficients
are still strictly zero. In particular, it seemed inaccurate to compare the kurtosis

for systems with different over-completeness factors as in (Rehn_and Sommer,
M) Both final distributions seemed to fit well the bivariate model introduced

in (Olshansen and Millmarl, 2000) where coefficients are Ly sparse and the non-
zero coefficients follow a laplacian pdf. However, the SSC algorithm provided
the most kurtotic distribution of the coefficients (with values around 60 versus
20 for SPARSENET). Dually, plotting the decrease of the sorted coeflicients as
a function of their rank again showed that coefficients for SSC were first higher
and then decreased quicker (see Fig. BlLeft Inset), following the link between
both curves in Fig. BlLeft from Eq. Bl In a second analysis, we compared the
efficiency of both methods while varying the number of active coefficients (the
Ly norm), that is the number of spikes during the progressive coding for SSC
(Eq.B). To compare this method with the conjugate gradient, a first pass of the
latter method was assigning for a fixed number of active coefficients the best
neurons while a second pass optimized the coefficients for this set of “active”
vectors (see Fig. Bl Right). This method was also used in (Rehn and Sommei,
) and proved to be a fair method to compare both methods. At the same
time, one could yield different mean residual error with different mean sparse-
ness of the coefficients, as defined in Eq. [ (see Fig. Bl Right Inset).
Controlling with a wide range of parameters and a variety of methods yielded
similar qualitative results (such as changing the learning rate or the parameters
of the conjugate gradient, see Annex. B3) proving that the hebbian learning
converged robustly as long as the coding algorithm provided a good sparse rep-
resentation of the input. As a result, it appeared in a robust manner that the
greedy solution to the hard problem (that is SSC) is as efficient for the op-
timized cost but also to the cost defined in the relaxed problem (see Fig. B).
Moreover, it should be noted that this non-parametric method is controlled
by less parameters (which were here optimized to give best operating point, see
Annex. BJl) and we should stress again that the SSC method simply uses a feed-
forward pass with lateral interactions, while the Conjugate Gradient could only
be implemented as the fixed point of a recurrent network. Therefore, applying a
“higher-level” Occam razor confirms that for a similar overall coding efficiency,
aSSC is better since it is of lower structural complexity®. Since the coding

8 Accounting for a quantitative measure of the structural complexity of the different meth-
ods is for instance measured by the minimal length of a code that would implement them (for
instance the number of characters of the program in memory). It would therefore depend on
the machine on which it is implemented, and one would of course see a clear advantage of
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used in aSSC is rather sub-optimal (MP) compared to other methods such as
(Rehn_and Sommet, 2007), we conclude that this improvement is mainly due
to how we tuned the algorithm according to the efficiency cost defined in Eq.
and in particular to the homeostasis mechanism ensuring that all neurons fire
equally.

3.3 Efficiency compared to Adaptive Matching Pursuit

The choice of the homeostatic regulation was based on the cost function and the
hypothesis that led to it. In fact, by forcing that all neurons should be chosen
with equal probability, we impose a strong constraint for the neural assembly
(all neurons should be “equal”) and this may hinder the global efficiency of the
system. On the other hand, when choosing a more relaxed system (such as
normalizing the filters or using the homeostatic rule defined in SPARSENET) we
obtain qualitatively different filters whose efficiency would depend on a differ-
ent cost function. To resolve this ambiguity, we therefore compared the effi-
ciency for the aSSC scheme that we presented above (see Fig. Bl Right) with
a system where we just imposed the components to stay on the unit sphere,
that is setting the homeostatic learning time to infinity. This last algorithm
is exactly the Adaptive Matching Pursuit (AMP) algorithm that was studied
previously (Perrinet. et all, 2003) and which is similar to other strategies such
as (Rehn_and Sommer, 2007; Smith and Lewicki, 2006).
In fact, the homeostasis constraint in the AMP algorithm is relaxed and the fil-
ters will correspond to features of more various saliencies. In particular, we ob-
serve the emergence of both broader Gabor filters which better match textures
and of checkerboard-like patterns (see the result after convergence at Fig. H
Left). Because of their lower generality, these 'textural’ filters will be more likely
to be selected with lower correlation coefficients. They correspond more to the
Fourier filters that one may obtain by PCA (see for instance (Fyfe_and Baddeleg,
)) or the simple Hebbian rule on linear coefficients and that are still optimal
to code arbitrary imagelets such as noise (Iﬂ, M) The aSSC algorithm (see
Sec. Z0) ensures with the homeostasis constraint that all filters will be selected
equally by the definition of the homeostasis in Eq. Bl In particular, the point
non-linearity from Eq. @ plays the role of a gain control. Compared to AMP,
textured elements will be relatively “boosted” during the learning compared to
the correlation coefficient computed on a more generic “edge” component. This
explains that they would end up being less probable and why at the convergence
of the learning there is no textured filters in Fig. B, Right. As a conclusion, as
was stated formally in Sec. 23 the homeostasis efficiently constrains the dictio-
nary to better match the a priori pdf of natural scenes in the M-dimensional
image space.
We may then compare quantitatively the efficiency of these two approaches.
When not using the quantization step using the inverse f; function (see Eq. [,
the AMP yields a better final result since it represents more efficiently the noisy

aSSC on parallel machines.
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Figure 4: Homeostasis implements efficient spike quantization during
learning. (Left) When relaxing the homeostatic constraint in the aSSC (see
Sec. ) larning algorithm to the one implemented in Adaptive Matching Pur-
suit (AMP), the algorithm converges to a set of filters which contains some less
localized filters and to some high-frequency Gabors which correspond to more
“textural” features as in (Perrinet et all, 2003). One may wonder if these filters
are inefficient and capturing noise or if they rather correspond to inherent fea-
tures of natural images in this LGM model (see Fig. Bl). (Right) In fact, the
AMP solution gives a slightly better result than aSSC in terms of residual energy
as a function of pure Lo sparseness (see inset) and is for that purpose of simi-
lar efficiency than conjugate gradient. However, when defining the efficiency in
terms of the residual energy as a function of the description length of the spiking
code word, then the proposed model is more efficient than AMP because of the
quantization errors inherent to the higher variability of coded coefficients. Thus,
including homeostasis improved the efficiency of adaptive Sparse Spike Coding
both for the coding and the learning. It should be noted that homeostasis is
important in aSSC during learning but that from the inherent equalization it is
not useful in coding (see Sec. E3).
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aspects of the signal. On average, this strategy provides a slightly better ini-
tial decrease of the residual energy: the components of the signal are better
represented for a similar number of neurons. However, it is weaker when the
Lo-sparseness is greater than ~ 10% of the dimension M, at which point noise
dominates the signal (see Fig. B Right, inset). On the other hand, when using
the quantization and therefore when rating the efficiency of the full spike cod-
ing / decoding system, the AMP approach will display a greater variability and
there will be a greater quantization error’. Results show that in average, the
loss in information transmission makes the AMP solution obviously less efficient
than the aSSC approach (see Fig.Hl Right). This is due to the higher variability
of coding coefficients in AMP and therefore to the greater quantization error
induced from the reconstruction using Eq. Bl As a conclusion, both solutions
have advantages, the efficiency depending on a definition of the utility function
and how we assigned the distribution of resources to achieve this goal. In a nut-
shell, for the rapid spike coding of a transient signal an homeostatic approach
as implemented in aSSC is significantly more adequate while on a longer term
for a spike frequency representation, the more relaxed system in AMP may be
sufficient.

4 Discussion

Using the tools of statistical inference and information theory, we derived quan-
titative costs for the efficiency of different representation models for low-level
sensory areas. We then designed aSSC as a coding and learning solution which
heavily relied on basic aspects of the neural architecture, namely the parallel
event-based nature of the code. Applied on patches from natural scenes, we
proved here that aSSC is superior to the SPARSENET architecture in terms of
the global efficiency of information transmission. This reflects the fact that in
this local receptive fields the LGM describes well the images since they are for in-
stance no occlusions. Similar approaches have been taken that could be grouped
under the name of Sparse-Hebbian Learning (SH M
ILewicki and Sejnowski, 2000; Olshansen_and Field M
2007; |Sm.|.th_a.n.d_[£xu.dd, |20.D.d, IZibulevsky and Pearlmutter, 2001). A common
advantage of these strategies is that Hebbian learning may account for the for-
mation of receptive fields if applied on a sparse representation and that the
coding algorithm used to obtain this sparseness was of secondary importance.
These algorithms may be variants of conjugate gradient, of Matching Pursuit
or more generally based on correlation-based inhibition (for a review, see (@,
M)) A more radical solution based on neurophysiological evidence and not
based on a generative model was proposed by (Hamker and Wiltschutl, 2007),
but was in the end also interpretable as an optimization scheme and therefore to
the definition of a cost through a generative model of the signal to code. Thus,
these SHL schemes are all similar optimization algorithms, gradually improving

9This result did not change qualitatively when using an entropic cost in bits per spike, the
AMP requiring necessarily less bits per pixel since in aSSC the coefficients’ pdf is uniform.
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the efficiency using a stochastic algorithm on the database of signals. With a
correct tuning of parameters, all of these unsupervised learning algorithms will
show the emergence of edge-like filters thanks to the correlation-based inhibition
such as may be observed to be necessary for the formation of elongated receptive
fields (Bolz_and Gilbert,, 1989). However, a major advantage of our formulation
is the fact that it tightly couples the efficiency measure to the coding representa-
tion. In fact, we explicitly link here the sparseness constraint with the efficiency
of inverting the generative problem. Also, we can predict that applying the
homeostasis constraint on the other SHL schemes will result in schemes with
more efficient spike coding capacity. In particular, the efficiency is based on the
spiking nature of neural information while other algorithms relied on a firing-
frequency representations. In these schemes based on an analog representation,
the problem of coding and decoding of the values was not explicitly addressed
and in most of the cases the decoding solution was achieved as the fixed point
solution of a recurrent network. This solution therefore requires at each coding
step to settle to a fixed point and is therefore incompatible with the rapidity
of cortical processing (Keysers et all, 2000). Moreover, a crucial feature of our
solution is that the output of the coding algorithm gives non-linear results. For
instance, for a mixture of images, the output to the sum of two images is not
necessarily the sum of both individual output. Note that as in m
), the response selectivity to rotated oriented lines will be sharper than the
linear response but also that it will be relatively contrast-invariant (m,
). This provides an alternative to the debate between forward and recur-
rent models for the origin of selectivity by offering a functional reasoning behind
the emergence of orientation selectivity. In particular, we predict that it will
exhibit a similar non-linearity in the spiking response without the need of ex-
plicitly adding after the first stage of matching a parametrized non-linear gain
control that matches physiological recordings (ICa.La.n_dj_u_i_eL_a.]J, {1997, |2_0_0_5) As
a consequence, by taking advantage of the parallel architecture of the cortex,
the aSSC architecture provides a new and simple interpretation for the recep-
tive fields of neurons which in this view self organize optimally with neighboring
neurons and can therefore only be understood as a whole in an assembly.
The work presented here is part of a larger program aiming at assessing qualita-
tively the functional efficiency of different modeling solutions to computational
neuroscience problems and at providing computational applications. Using con-
straints from neuroscience, we have built a solution to the LGM inverse prob-
lem which we proved to be more efficient than the Matching Pursuit algorithm
by using these quantitative tools. We proved that this aSSC algorithm was
an efficient unsupervised algorithm that competes with standard methods for
searching independent components in signals and that the coding was an ef-
ficient coder for binary messages with over-complete dictionaries. In fact, by
including an adaptive homeostasis mechanism, we optimized the efficiency of the
representation (the COMP algorithm) and proved that image patches could be
efficiently coded by the binary event-based representation. We proved also that
this homeostasis played a significant role in these results but also that counter-
intuitively that textured filters could also be good candidates for optimal coding
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in V1 if the goal was set by a different coding cost. Its efficiency makes it a
good candidate for future technologies of information processing. In particular,
it compares favorably with compression methods such as JPEG (ﬁm
M) Moreover, a major advantage is that it provides a progressive dynami-
cal result while the conjugate gradient method had to be recomputed for any
different number of coefficients. In fact, the most relevant information is prop-
agated first and the reconstruction may be interrupted at any time. All these
models were implemented with the intention of providing reproducible research
and are freely available and we encourage to modify them (see Annex. BJ).
The main advantage of this type of formulation is that it uses a simple set of
operations: computing the correlation, applying the point non-linearity from a
Look-Up Table, choosing the ArgMax, doing a subtraction, retrieving a value
from a Look-Up-Table (see Sec. LHl). In particular in this parallel algorithm,
the complexity of the ArgMax operator does not depend on the dimension of
the vector as in classical solutions and the transfer of this technology to parallel
architectures will provide a supra-linear gain of performance.

To conclude, we proved that using a spiking event-based representation could be
an advantage for the modeling of efficient neural networks and not only a con-
straint for biological plausibility. Thus, this may explain on a functional level
why spikes have been selected during evolution as an efficient signal quanta for
long range, rapid communication. However, a major limitation of this algorithm
is the use of transient signals and of relatively abstract neurons. This choice
was made on purpose to stress the importance of the transient network’s dy-
namics versus traditional strategies using spike frequency representations. It
shows that solutions using spike coding/decoding may be built and that they
prove to be of better efficiency than traditional solutions. A solution of SSC
for continuous flows was proposed under the term Causal Sparse Spike Coding
in ,m, Sec. 3.4), but some new problems arise (for instance the dy-
namical compromise between speed and precision) that were beyond the scope
of this paper. Another extension of the algorithm is to not use the implicit
ON-OFF symmetry of filters which introduces the constraint that if a filter ex-
ists, then the symmetric filter exists, that is that we rate the efficiency of a
match by the absolute value of the correlation coefficient. The relaxed condi-
tion proved to be more efficient, suggesting that the symmetry that is observed
is more a general effect and that since neurons are not linear only integrators
with a rectifier, more efficient solutions may exist (see Annex. EZ). This sim-
ple architecture provided also a rich range of other novel experiments, such as
introducing topological relations between filters or by using a representation
with some build-in invariances, such as translation and scaling in a gaussian
pyramid such as in (Bednar et all, 2004; Hyviirinen et all, 2001). This last ex-
ample provided a multi-scale analysis algorithm where the set of filters that were
learned were a dictionary of mother wavelets of the multi-scale analysis, hence
the name of SparseLet Analysis (w, m, Sec. 3.3.4). Another interesting
perspective is to study the evolution of the efficiency of the algorithm with the
complexity of the representation: when increasing the over-completeness, one
observes the emergence of different classes of filters, such as different positions

)
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and edges at first and then a similar edge with different phases. Exploring the
results for different dimensions of the dictionary may give an evaluation of the
optimal complexity of the LGM to describe images in terms of a trade-off be-
tween accuracy and generality (see Annex. B3)). Pushing this experiment to the
extreme (that is when the over-completeness equals the size of the dictionary of
signals), one would get a dictionary where every single signal from the database
would be represented, the so-called grand-mother neurons. More generally, the
architecture of the connections between cortical areas highly suggests that neu-
ral information is distributed, that this distribution is organized according to
a hierarchical but also recursive architecture. An important feature is the gen-
eralization of the representation to common transformations (for an image a
translation, a different non-uniform lighting, an occlusion,...) robustly to noise
and interferences. This calls for the extension of this kind of approach to a
more integrated multi-scale approach were events could be a more general bit
of information, from a synaptic quanta, a spike (such as studied here), a burst
in a cortical column or a coherent activation in a cortical area.
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5 Supporting information

5.1 Annex: Computational implementation

The whole collection of simulation scripts were written with the intention of
controlling and comparing the convergence of the algorithms and the relative
effect of the different parameters. All scripts to reproduce the figures and sup-
plementary material are available upon request on the author’s website (see
http://incm.cnrs-mrs.fr/LaurentPerrinet/SparseHebbianLearning). Ver-
sion 1.5, rev. 666 and experiment 20080502T174325 are used for this paper, and
other figures regarding control experiments may be found there. In particular,
all figures except Fig. [ll were produced directly by the scripts without any edit-
ing: script experiment_learn.mfor Fig. B script experiment_nonhomeo.m for
Fig. @l and script experiment_code_efficiency.m for Fig. Bl The original pa-
rameters of SPARSENET were used for the CGF algorithm. Supplementary Fig-
ures may be consulted on the author’s website (see http://incm.cnrs-mrs.fr/LaurentPerrinet/SparseHebb
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Table 1: Parameters used in the simulations. Note that aSSC uses 4 pa-
rameters while CGF uses 9 parameters. Note also that the learning rate depends
on the dimension of the dictionary. In fact, in higher dimensions, the non-linear
correlation coefficients will be necessarily lower and thus the learning slower
(see Eq. [A). These parameters were determined from the original parameters
from (Olshansen and Field, [1998) and then by sequentially optimizing using the
robustness analysis (see Annex. BH).

Description | Value
experiment 20080417T'175704
dimension of imagelets (CGF & aSSC) 256
dimension of dictionary (CGF & aSSC) 324
number of learning steps (CGF & aSSC) 32001
learning rate (CGF) 1
learning rate (aSSC) 0.1
batch size (CGF & aSSC) 100
noise variance (CGF) 0.017
noise variance (aSSC) 0.008
homeostasis’ learning rate (SSC) 0.001
homeostasis’ learning rate (CGF) 0.0025
homeostasis smoothing rate (CGF) « 0.02
desired variance (CGF) VAR — GOAL 0.1
prior steepness (CGF) beta 0.2
prior scaling (CGF) sigma 0.1
tolerance (CGF) tol 0.0031
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Figure 5: Control of the statistics of the inputs. (Left) One set of 324
16 x 16 imagelets drawn from the database provided with SPARSENET. We use
the same presentation as Fig.Bl In order to have comparable patches, the images
had to be fairly homogeneous (and therefore textured) since it is likely in natural
images to draw a patch from a flat area (such as the sky) in which case the signal
was poor and the convergence of the learning was slower. This was controlled by
learning using different sets of images (not shown here). (Right) We show here
a 16 x 16 matrix of 16 x 16 correlation values representing the covariance matrix
for every pixel depicted in every box by showing the point-wise cross-correlation.
This shows in every box the luminance’s cross-correlation between 2 points: it
is low (gray) compared to auto-correlation (white) when increasing the distance
between both points to more than one pixel, validating the whitening hypoth-
esis for the image’s preprocessing. See script experiment_stats_images.m to
reproduce the figure.

29



Figure 6: Learning solution with non-negative coefficients. When re-
leasing the symmetry constraint, the learning algorithm converged to a simi-
lar set of filters. However, the convergence was quicker and proved to be of
higher efficiency when the information for the polarity (that is, one bit) was
rather used to double the size of the dictionary (efficiency measure not shown
here). This suggested that the assumption of symmetry of the sign of the coef-
ficients is not strictly true for the LGM and that a non-negative representation

as implemented by (Lee and Senng, 1999) may be more efficient. See script

experiment_symmetric.m to reproduce the figure.

5.2 Annex: Releasing the constraint of symmetry of filters

To compare our algorithm with SPARSENET, we similarly assumed that in the
dictionary, filters were symmetric (see Sec. Bl). In fact, inspired by biology,
receptive fields often coexist with opposite polarities (the so-called ON/OFF
symmetry). This implied a constraint in the generative model that when looking
for a match, the correlation could be positive or negative and therefore that the
best match should be chosen as the greatest absolute value in Eq.[@ If we rather
choose a dictionary of double the size and that we choose only the greatest
values (that is not applying the absolute operator) we will obtain a system were
each spike would have the same informational cost (the additional bit replacing
the polarity bit from the symmetric case). We therefore look similarly to the
non-negative representation without any further modification of the algorithm.
The solution to the problem when releasing the symmetry constraint looked
qualitatively similar but proved to be of slightly higher efficiency (see Fig. ).

5.3 Annex: Over-completeness

We analyzed the effect of increasing the size of the dictionary, that is of increas-
ing the complexity of the representation, on the qualitative receptive fields maps
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Figure 7: Learning solution with an increasing over-completeness.
When increasing the number of coefficients from 8 x 8 (center,bottom), 13 x 13
(left,bottom), 21 x 21 (left, top) to 34 x 34 one sees that the complexity of
the features represented by the filters progressively increases. However, only by
using the biggest map, could one yield textured filters and “end-stopping” cells.
This could be a result of a lack of convergence (we used the same number of
steps for all experiments), but also the sign to a transition from representing
edges and their different transforms (apparently from the lower-dimension map
to the more complex position, scale, spatial frequency and phase). An interest-
ing perspective is to do a cluster analysis on the distribution of the parameters
of the best fit Gabors to observe bifurcations as a function of the complexity.
See script experiment_stability_oc.m to reproduce the figure.

and on the efficiency. When increasing the over-completeness, one observes the
emergence of different classes of filters, such as different positions and edges
at first and then a similar edge with different phases (see Fig. [). Exploring
the results for different dimensions of the dictionary gave an evaluation of the
optimal complexity of the LGM to describe imagelets in terms of a trade-off
between accuracy and generality for the dimension that we use in this study
(not shown).

5.4 Annex: Robustness to a perturbation

As an adaptive algorithm, we checked that the system returned to a similar
macroscopic state after a perturbation. To illustrate that, we perturbed one
filter (by re-initializing it to a random filter) and ran again the algorithm. The
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first effect was that the corresponding gain function changed since the correla-
tion coefficients values dropped for that particular neuron. As a consequence,
the homeostatic constraint relatively “boosted” the correlation values of this
neuron relative to the other neurons so that the choice of choosing any neuron
was still uniform. After a few steps, the filter retrieved and edge-like shape
which was often close to the feature prior to the perturbation, since this fea-
ture was momentarily “absent” from the representation dictionary. See script
experiment_perturb.m to reproduce this experiment.

5.5 Annex: Robustness of the methods

We included in our computational framework the ability of exploring the evolu-
tion of the efficiency of one model when changing one single parameter around
the operating point that was chosen over the experiences (see table in An-
nex. il). This “perturbation analysis” allowed to trace if the chosen param-
eters were giving locally the best efficiency so that the comparison of two al-
gorithms was valid. It also allows to identify the parameters which are the
most relevant in the sense that small variations will induce bigger changes
of efficiency. This was in particular true for the SPARSENET algorithm. It
showed in particular that SPARSENET was more sensitive to parameters (in-
cluding learning rate, homeostasis parameter) than our solution and that the
parameters for tuning the parametric model (in particular the parameters 5 and
o) were of particular importance. See scripts experiment_stability_eta.m,
experiment_stability_homeo.mand to control SPARSENET experiment_stability_cgf.m
to reproduce the experiments.
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