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Optimal signal representation in neural spikingpopulation 
odes as a model for the formation ofsimple 
ell re
eptive �eldsLaurent U. PerrinetInstitut de Neuros
ien
es Cognitives de la Méditerranée (INCM)CNRS / University of Proven
e13402 Marseille Cedex 20, Fran
ee-mail: Laurent.Perrinet�in
m.
nrs-mrs.frSeptember 19, 2008Abstra
tThe primary visual 
ortex is the 
entral hub for the transmission ofvisual information to the rest of the 
entral nervous system. We studyhere models explaining how this neural system be
omes e�
ient throughnatural sele
tion and neural development. By de�ning and then optimiz-ing an e�
ien
y 
ost, we may derive an adaptive model of the input tothe primary visual 
ortex as an unsupervised learning algorithm. As analternative to 
lassi
al models, we fo
us here on the fa
t that visual in-formation is 
arried from the sensory organs to the primary visual 
ortexby neuronal events, or spikes, in bundles of parallel �bers. In fa
t, takingadvantage of the 
onstraint that spikes may be 
onsidered as all-or-nonebinary events, we may build a generi
 
ost for the e�
ien
y of the visualrepresentation as a measure of the L0 norm sparseness of the 
ode. How-ever, this is a �hard� NP-
omplete problem and we propose a solution ina population of generi
 Integrate-and-Fire neurons. It relies both on a
orrelation-based inhibition using lateral intera
tions and on an homeo-stati
 
onstraint by a spiking gain 
ontrol me
hanism, two key featuresof 
orti
al pro
essing. For 
omparison purposes, we applied this s
hemeto the learning of small pat
hes taken from natural images and 
omparedthe results and e�
ien
y with state-of-the-art algorithms. Results showthat while the di�erent 
oding algorithms gave similar e�
ien
ies, thehomeostasis provided an optimal balan
e whi
h was 
ru
ial during thelearning. This study provides a simpler yet more e�
ient algorithm forlearning that is parti
ularly well adapted to the ar
hite
ture of neural
omputations. By providing the optimally independent 
omponents ina set of inputs, it suggests that this Sparse Spike Coding strategy mayprovide a generi
 
omputational module.1
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tionThe neural ar
hite
ture on whi
h our 
ognitive abilities are based is a dynami
al,adaptive system whi
h evolves to provide optimal solutions in our intera
tionswith the environment. Vision is a useful illustration of these properties and inparti
ular, models for the formation of orientation sele
tive simple 
ell re
eptive�elds in the primary visual 
ortex (V1) have attra
ted great attention as generi
models of 
oding and learning in neural 
omputations. Viewed from a fun
tionalapproa
h, the system evolved so that relevant sensory information is transformede�
iently so as to allow in the end optimal de
ision making (Ati
k, 1992; Barlow,2001). The most a

epted explanation for the formation of these 
ells in V1 isthat it optimizes the e�
ien
y of the neural representation over images drawnfrom natural s
enes, that is from behaviorally relevant s
enes. This may be for-malized as representing at best visual information while in
reasing the sparse-ness of the representation (Olshausen and Field, 1996). Similar approa
heshave been followed for natural images (Doi et al., 2007; Fyfe and Baddeley,1995; Hamker and Wilts
hut, 2007; Perrinet, 2004a; Rehn and Sommer, 2007;Zibulevsky and Pearlmutter, 2001) and sounds (Lewi
ki and Sejnowski, 2000;Smith and Lewi
ki, 2006) that were based on solving the inverse of a generativemodel of the signal. These 
orrespond more generally to a 
oding part on ashort time s
ale and a learning part on a longer time s
ale whi
h 
orresponds to�nding the independent 
omponents in the natural s
enes (Bell and Sejnowski,1997). However, all of these solutions relied on spe
i�
 parameterizations anddidn't expli
itly demonstrated how their algorithm 
ould be spe
i�
ally adaptedto the nature of neural 
omputations. For instan
e, the 
oding was a
hievedby 
onjugate gradient (Olshausen and Field, 1996) or orthogonal mat
hing pur-suit (Rehn and Sommer, 2007) without expli
itly addressing the problem of theexisting representational 
onstraints in the 
ortex. More spe
i�
ally, they don'tspe
i�
ally take advantage of the parallel, dynami
al and adaptive nature andar
hite
ture of neural 
omputations that make them di�erent from the ones o
-
urring in a traditional sequential 
omputer.In that dire
tion, a key aspe
t of neural 
omputations is that most informationbetween neurons is 
arried by spikes. Spikes (or A
tion Potentials) are simplepulses of the membrane potential whose shape seems to 
arry few informationand whi
h may travel robustly over long distan
es on axons1. In the humanearly visual system for instan
e, after �ashing a visual stimulus, su
h as after1Spikes have a shape of approximately 1ms and are also present on dendrites sin
e theirpresen
e is linked to the dynami
al properties of the a
tive ion 
hannels on the neuron'smembrane (Cessa
 and Samuelides, 2007). They are universally present in the 
entral nervoussystem but also a
ross spe
ies and phylogeny.2



a sa

ade, a 
as
ade of me
hanisms will take pla
e after the a
tivation of thephotore
eptors in the retina. A volley of spikes leaves the retina through thebundle of axons that forms the opti
 nerve to rea
h the lateral geni
ulate nu
lei(after approximately 25ms). There, a new pro
essing takes pla
e generatinga new volley of spikes toward the primary visual 
ortex that is rea
hed afterapproximately 35ms (Bullier, 2001). The visual information that is �de
oded�there is often 
onsidered to be �en
oded� in the spikes' �ring pattern of every�ber. As a 
onsequen
e, neural 
omputations are event-based and dynami
al:information transfer is parallel while in 
lassi
al solutions 
omputations are se-quential and non-interruptible. A goal of this work is to show how we may takeadvantage of spiking me
hanisms to represent visual information in a dynami
,parallel and event-based fashion.To a
hieve that agenda, we will �rst analyti
ally formulate the problem oflearning in the primary visual 
ortex. This mathemati
al part (Se
. 2) maybe skipped at �rst by non-experts until Se
. 2.6 but is essential to understandquantitatively the results1. We will �rst de�ne the fun
tion of the neural 
oding in a statisti
al in-feren
e framework (see Se
. 2.1) and then de�ne a possible spike 
odingalgorithm of a �ashed stati
 image (see Se
. 2.2).2. This will allow to quantify the e�
ien
y of the spike 
oding in the neuralassembly by introdu
ing the L0 norm as a measure of the sparseness ofthe spike 
ode (see Se
. 2.3).3. Based on previous results (Perrinet et al., 2002), we will de�ne an e�-
ient sparse spike 
oding and de
oding s
heme using 
orrelation-basedinhibition 
oupled with the spiking me
hanism. Taking advantage of abiologi
ally-inspired homeostati
 spike gain 
ontrol to ensure an optimalbalan
e within the assembly, we will improve the performan
e of the previ-ously proposed algorithm by optimizing the 
ompetition between neurons(see Se
. 2.4).4. Finally, on
e these me
hanisms are de�ned, we may easily derive an un-supervised learning algorithm (see Se
. 2.5) and �nally derive a simplehebbian-type learning s
heme on the sparse representation (see Se
. 2.6).This means that to de�ne the learning algorithm we will �rst have to de�nethe framework, the 
oding and an e�
ien
y 
ost. Then, we will 
ompare theproposed algorithm with standard methods: SparseNet (Olshausen and Field,1996) and Adaptive Mat
hing Pursuit (Perrinet et al., 2003) and show the rel-ative importan
e of the 
oding s
heme and of the homeostasis on the resultingsystems thanks to the quantitative measures of e�
ien
y (see Se
. 3). We will
on
lude by 
omparing this method with previously proposed s
hemes and howthese may be re
on
iled to improve our understanding of the neural 
ode bydrawing the link between stru
ture (spikes in a distributed network) and fun
-tion (e�
ient 
oding) and explore the signi�
ant parameters at work in theseme
hanisms. 3



2 Method : adaptive Sparse Spike Coding (aSSC)2.1 Generative models and statisti
al inferen
eWe saw that in low-level sensory areas, the goal of neural 
omputations isto build e�
ient intermediate representations to allow e�
ient de
ision mak-ing (Barlow, 2001; Field, 1994). A �good� representation of the world shouldmap at best the information from the physi
al signals whi
h are relevant for thesensory area under study. Furthermore, it will be more e�
ient if it is easilytransformable a

ording to usual transforms. In visual areas for instan
e, anyrepresentation of a s
ene should be easily transformed for any translation orrotation of the s
ene2, sin
e these are 
ommon movements and that higher-levelareas will need to take into a

ount this information. As a 
onsequen
e, it iseasier to de�ne �rst a synthesis model of the world and its transformations andthen to build the representation by inverting this model. This synthesis model(also 
alled the forward model) may be built using statisti
al observations orwith prior assumptions on the physi
s of the generation of the signal. A LinearGenerative Model (LGM) (Olshausen and Field, 1998) is a generi
 
ase wherethe signal may be thought as the linear 
ombination of independent 
auses. In-verting the forward model 
orresponds in the terminology of signal pro
essingto the 
oding pro
ess, sin
e it transforms the signal (for instan
e the observedimage) into a more abstra
t representation as a 
ombination of 
omponentsfrom the forward model (for instan
e the edges the image is formed from). This
oding may then be used to understand the 
ontent of the signal relative tothe (forward) synthesis model but also to validate on a longer term the 
odingalgorithm solving the inverse problem. In fa
t, one strategy is to build learn-ing pro
esses whi
h optimize the overall e�
ien
y of the representations for aknown 
oding algorithm. It is then expe
ted that the 
omparison of di�erentlearning strategies will help us understand the pro
esses underlying re
eptive�eld formation (here in the input layer 4 of V1) as a generi
 neural 
omputation.For instan
e, some 
oding algorithms seem better than others and 
omparingtheir relative e�
ien
y will highlight the reasons why some aspe
ts of the neuralar
hite
ture (parallel event-based 
omputations, lateral intera
tions within the
orti
al area) were sele
ted during evolution.Formally, to de�ne the LGM, we will use a �di
tionary� of N images repre-sented by the matrix A = {Aj}1≤j≤N , ea
h of these being de�ned by Aj =
{Aij}1≤i≤M over the set of sampling positions i (that is the pixels in a simpleimage pro
essing framework). Knowing A and the �sour
es� s = {sj}1≤j≤N ,the signal x = {xi}1≤i≤M is de�ned as

x =
∑

1≤j≤N
sj .Aj + n = A.s + n (1)where n is a de
orrelated gaussian additive noise of varian
e σ2

n. This noisemodel is a
hieved thanks to the prepro
essing (whi
h 
ould be a
hieved in gen-2We will restri
t ourselves to stati
 �ashed images sin
e they are behaviorally importantfor pattern re
ognition and be
ause they will highlight the problem of the parallel spatialpro
essing by populations of neurons. 4



eral by Prin
ipal Component Analysis) without loss of generality sin
e the pro-
essing is invertible (Perrinet, 2004b) (see Fig. 5). The LGM is well adapted tonatural s
enes be
ause transparen
y laws are linear for luminan
e values andthus the LGM des
ribes well the synthesis in a lo
al neighborhood of any naturalimage. The goal of any 
oding algorithm for the inverse problem is to �nd foran observed x the best set s of sour
es that generated the signal. Then, the goalof a learning algorithm is to adapt at best in the long term to the parametersof the LGM, that is to the matrix A and the statisti
s of s. This di
tionary
A is possibly mu
h larger than the dimension of the input spa
e (that is when
N >> M); the di
tionary is then said to be over-
omplete. One advantage ofover-
omplete di
tionaries is that it's representational power is greater and thatfor instan
e if the di
tionary is transform invariant then it is easy to build atransform invariant representation. On the other hand this leads to a 
ombi-natorial explosion for the inversion of the LGM and typi
ally, there exist manysolutions for one input. We will see in Se
. 2.3 how we may quantify the globale�
ien
y of the 
oding and in Se
. 2.4 the solution that we propose, but let's�rst de�ne how one may evaluate the likelihood of any sour
e knowing an input
x.In fa
t, having de�ned the forward model, we may now be interested in 
omput-ing how well a parti
ular instan
e of the signal (here an image) mat
hes withthe model. From (Perrinet, 2004b, 2007), we know that for a given signal x, thelog-probability log P ({sj}|x,A) 
orresponding to a single sour
e sj .Aj for any
j is maximal for the proje
tion 
oe�
ient de�ned by:

s∗j =< x,
Aj

‖Aj‖2
>

def
=

∑

1≤i≤M x(i).Aj(i)
∑

1≤i≤M Aj(i)2
(2)where def

= means �equal by de�nition�. This is based on the hypothesis thatthe signal is a realization of the LGM as it is de�ned in Eq. 1 and for whi
hwe assume no prior knowledge on the 
oe�
ients. The log-probability is thenmaximal globally for the sour
e j∗ with maximal 
orrelation 
oe�
ient j∗ =ArgMaxjρj with
ρj = <

x

‖x‖
,

Aj

‖Aj‖
> (3)

def
=

∑

1≤i≤M x(i).Aj(i)
√

∑

1≤i≤M Aj(i)2.
√

∑

1≤i≤M x(i)2It should be noted that ρj is the M th-dimensional 
osinus and that its absolutevalue is therefore bounded by 1. The value of Ar
Cos(ρj) would therefore givethe angle of x with the pattern A and in parti
ular, the angle would be equal(modulo 2π) to zero if and only if ρj = 1 (full 
orrelation), π if and only if
ρj = −1 (full anti-
orrelation) and ±π/2 if ρj = 0 (both ve
tors are orthogonal,there is no 
orrelation). Also, the 
orrelation 
oe�
ient is independent of thenorm of the �lters and we will assume without loss of generality in the rest that5



these are normalized to unity (that is that ∀j, ‖Aj‖ = 1).In 
anoni
al models of neural modeling this 
orresponds to the linear dendriti
integration over the re
eptive �eld, produ
ing for a positive 
orrelation a driving
urrent leading to the hyper-polarization of the 
ell and possibly to spiking. Thisjusti�es the 
omputation of the 
orrelation in the per
eptron model (Rosenblatt,1960) as it provides a dire
t measure of the log-probability under the assump-tions that we used (the LGM with Gaussian noise and uniform priors). Startingfrom this basi
 me
hanism, one 
ould 
ompute for every signal a ve
tor fromthe set of a
tivities 
orresponding to how well the neurons 
orresponded to pat-terns in the image prede�ned in the weights matri
es. This representation is
ertainly not expli
it and 
ould be implemented in various ways whi
h are outof the s
ope of this paper (Ma et al., 2006). However, we will now explain howthis information may be 
oded and de
oded by a set of spiking neurons with asimple Linear/Non-Linear (L/N-L) ar
hite
ture (Carandini et al., 1997, 2005).2.2 Spike 
oding and de
oding of a transient signal in apopulation of neuronsIn fa
t, before de�ning a possible e�
ien
y 
ost based on the LGM, it is ne
-essary to de�ne how information may be 
oded using the binary event-basedrepresentations underlying neural spiking a
tivity. As a matter of fa
t, neu-rons are intrinsi
ally dynami
al systems and we will take advantage of thisproperty to transform the signal into a volley of spikes. For the large 
lass ofIntegrate-and-Fire neurons whi
h is relevant for neurons in the input layer ofthe primary visual 
ortex, we may use the fa
t that the larger the driving ex-
itation, the larger the �ring frequen
y and dually the shorter the laten
y ofspiking (Perrinet et al., 2004). More pre
isely, let's 
onsider a population of Nneurons as an information 
hannel for whi
h we wish to 
ode and then de
odea ve
tor s = {sj}1≤j≤N only by transmitting spikes. If for instan
e we write
sj = |ρj |, for any j of this ve
tor, higher values will represent more salientfeatures than lower values. Classi
ally, one would map ea
h value to an ex
i-tation value whi
h 
orresponds through a monotonously in
reasing fun
tion toa spiking laten
y or frequen
y, whi
h 
an then be de
oded by the 
orrespond-ing inverse fun
tion. The dynami
 propagation ordered by laten
y propagating�important� information �rst. By using Integrate-and-Fire neurons (Lapi
que,1907), we may asso
iate a single neuron to every value from the ve
tor we wantto transmit. For the linear Leaky-IF, if we asso
iate a driving 
urrent to ea
hvalue sj (with 0 ≤ j ≤ N), it will eli
it spikes with laten
ies (Perrinet et al.,2004) λj(sj) where λj is a monotonously de
reasing fun
tion of sj 
orrespondingto the transformation of the linear value into a laten
y. By this ar
hite
ture,sin
e the laten
y is monotonously de
reasing, one implements a simple ArgMaxoperator in the form of the the ordered list of output spikes.However a �rst problem arises when we 
onsider the set of di�erent ex
itationve
tors globally. In fa
t, if the probability distribution fun
tion (pdf) of theinput a
tivation is not uniform, then the average spiking a
tivity of the neu-rons will be a priori di�erent. In the 
ompetitive network formed with the6



neural 
ells, this is in disagreement with the general fa
t that spikes are similarand should therefore 
arry similar information to the di�erent e�erent neuronstheir axons are 
onne
ted to. While the impa
t of ea
h spike on a re
eivingneuron is variable (this being measured by the synapti
 weight as the for
e ofthe post-synapti
 
urrent) spikes are binary all-or-none events. To maximizethe representational information of possible spike patterns, it is ne
essary thatneurons of the same 
lass in one assembly should build up a distributed repre-sentation where a
tivity is on average uniformly distributed. Equivalently, thedistribution of 
oe�
ients represents exa
tly the a priori knowledge in Bayesianterminology, so that this equalization is justi�ed by the hypothesis underlyingEq. 2. Another dual explanation is that spikes have similar metaboli
 
osts andthat the system should balan
e the use of the di�erent neurons so as to mini-mize the average metaboli
 use by the system3. To optimize the e�
ien
y of theArgMax operator, one has therefore to ensure that one optimizes the entropy ofthe index of output spikes and therefore of the driving 
urrent. This may be en-sured by modifying the di�erent fun
tions λj so that for all j, the distributionsof λj(sj) are similar and that the overall distribution 
orresponding to λ has ashape adapted to the neural dynami
s. The se
ond point ��nding an optimallaten
y envelop� will be out of s
ope of this paper, and we will without loss ofgenerality only try to �nd fun
tions fj (with λj = λ◦fj) su
h that the variables
zj = fj(sj) are uniformly distributed between 0 and 1.A standard method to a
hieve this homeostasis is to map the input ve
tor
{sj} through a point non-linearity4 whi
h equalizes the probability of the out-put (Ati
k, 1992). This method is similar to histogram equalization in im-age pro
essing and provides an output with maximum entropy for a boundedoutput: it therefore optimizes the 
oding e�
ien
y of the representation interms of 
ompression (van Hateren, 1993) or dually the minimization of intrin-si
 noise (Srinivasan et al., 1982). It may be easily derived from the probability
P of variable sj by 
hoosing the non-linearity as the 
umulative fun
tion

fj(s
∗
j ) = P (s∗j )

def
=

∫ s∗j

−∞

dP (sj) (4)where the symbol dP (x) = pX(x)dx will here denote in general the probabilitydistribution fun
tion (pdf) for random variable X . The equalization pro
esshas been observed in a variety of spe
ies and is for instan
e perfe
tly illustratedin salamander's retina (Laughlin, 1981). It may evolve dynami
ally to slowlyadapt to varying 
hanges in luminan
e values, su
h as when the light diminishesat dawn but also to some more elaborated s
heme within a map (Hosoya et al.,2005). As in theoreti
ally �ideal demo
ra
y� all neurons are �equal� and when
hanging the neurons parameters su
h as with a learning, this pro
ess has tobe dynami
ally updated over a time s
ale similar at least larger than the learn-ing time s
ale so as to still a
hieve optimum balan
e. As a 
onsequen
e, sin
e3However, this argument is a 
onsequen
e through evolution from the �rst, sin
e the goalof neural 
omputations is primarily to be an e�
ient pro
essor before being an e
onomi
 one.4That is to a set of s
alar non-linearities applied independently to every single element ofthe ve
tor. 7



for all j, the pdf of zj = fj(sj) is uniform and that sour
es are independent,the ve
tor {zj} may be 
onsidered as a random ve
tor drawn from an uniformdistribution in [0, 1]. Knowing the di�erent spike generation me
hanisms whi
hare similar in that 
lass of neurons, every ve
tor {sj} will thus generate a listof spikes {j(1), j(2), . . .} (with 
orresponding laten
ies) where no information is
arried a priori in the laten
y pattern but all is in the relative timing a
rossneurons. Finally, the signal is transformed in this parti
ular implementation ofa L-NL ar
hite
ture (see Fig. 1). The di�eren
e is �rst that the non-linearityis determined by the statisti
s of the input. Se
ond, the neurons are not gen-erated a

ording to independent Poisson point pro
esses but a

ording to thedeterministi
 (possibly noisy) equations of the generalized Integrate-and-Fireneurons, sin
e there is a priori no reason to lose information.We 
oded the signal in a spike volley, but how 
an this spike list be �de
oded�,espe
ially if it is 
ondu
ted over some distan
e and therefore with an additionallaten
y? In the 
ase of transient signals, sin
e we 
oded the ve
tor s = {sj}using the homeostati
 
onstraint from Eq. 4, we may retrieve the analog valuesfrom the order of �ring neurons in the spike list. In fa
t, knowing the �address�of the �ber j(1) 
orresponding to the �rst spike to arrive at the re
eiver end,we may infer that it has been produ
ed by a value in the highest quantile of
P (sj(1)) on the emitting side. We may therefore de
ode the 
orresponding valuewith the best estimate ŝj(1) = f−1

j(1)(
1
N

) where N is the total number of neurons.This is also true for the following spikes and if we write as rj(k) = 1− zj(k) = k
Nthe relative rank of the spike (that is neuron j(k) �red at rank k), we 
anre
onstru
t the 
orresponding value as

ŝj(k) = f−1
j(k)(1 −

k

N
) (5)This 
orresponds to a generalized rank 
oding s
heme (Perrinet, 1999; Perrinet et al.,2001). First, it loses the information on the absolute laten
y of the spike trainwhi
h is giving the maximal value of the input ve
tor. This has the parti
ularadvantage of making this 
ode invariant to 
ontrast (up to a �xed delay due tothe pre
ision loss indu
ed by noise). Se
ond, when normalized by the maximalvalue, it is a �rst order approximation of the ve
tor whi
h is espe
ially relevantfor over-
omplete representations where the information 
ontained in the rankve
tor is greater than the information 
ontained in the parti
ular quantizationof the image5.This 
ode therefore fo
uses on the parti
ular sequen
e of neurons that were
hosen and loses the parti
ular information that may be 
oded in the patternof individual inter-spike intervals in the assembly. A model a

ounting for theexa
t spiking me
hanism would 
orre
t this information loss, but this would beat the 
ost of introdu
ing new parameters (hen
e new information), while it5To give an order of the upper bound for the information in a ranked spike list is thanksto Stirling's approximation of order log2(N !) = O(N. log(N)), that is more than 2700 bits for

324 neurons. However, we are generally unable to dete
t quantization errors on an image
onsisting of more 256 gray levels, that is for 8 bits per pixel.8
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Figure 1: Spike 
oding 
hannel using homeostati
 gain 
ontrol. We showhere how a bundle of L-NL neurons (Carandini et al., 1997, 2005) tuned by asimple homeostati
 me
hanism allow to transfer a transient information, su
has an image, using spikes. (L) The signal to be 
oded, for instan
e the mat
h
sj of an image pat
h (the tiger on the left bottom) with a set of �lters (edge-likeimages), may be 
onsidered as a sto
hasti
 ve
tor de�ned by the probability dis-tribution fun
tion (pdf) of the values sj to be represented. (NL) By using the
umulative fun
tion as a point non-linearity fj , one ensures that the probabilityof zj = fj(sj) is uniform, that is that the entropy is maximal. This non-linearityin the L-NL neuron implements a homeostasis that is 
ontrolled only by the time
onstant with whi
h the 
umulative probability fun
tion fj is 
omputed (typi-
ally 104 image pat
hes in our 
ase). (S) Any instan
e of the signal may then be
oded by a volley of spikes: a higher value 
orresponds to a shorter laten
y anda higher frequen
y. (D) Inversely, for any spike events ve
tor, one may estimatethe value from the �ring frequen
y, the laten
y. We may simply use the orderingof the spikes sin
e the rank provides an estimate of the quantile in the probabil-ity distribution fun
tion thanks to the equalization. Using the inverse of fj oneretrieves the value in feature spa
e so that this volley of spikes is de
oded (ordire
tly transformed) thanks to the relative timing of the spikes using the modu-lation (see Eq. 5). This builds a robust information 
hannel where information issolely 
arried by spikes as binary events. Given this model, the goal of this workis to �nd the most e�
ient ar
hite
ture to 
ode natural images and in parti
ularto de�ne a 
oding 
ost and to derive a learning algorithm. To draw a quantita-tive 
omparison with state-of-the-art algorithms Lewi
ki and Sejnowski (2000);Rehn and Sommer (2007); Smith and Lewi
ki (2006), we will use the frameforkused in SparseNet (Olshausen and Field, 1998).9



seems that this information would have a low impa
t relative to the total infor-mation (Panzeri et al., 1999). More generally, one 
ould use di�erent mappingsfor the transformation of the z value into the spike volley whi
h 
an be moreadapted to 
ontinuous �ows, but this s
heme 
orresponds to an extreme 
ase (atransient signal) whi
h is useful to stress on the dynami
al part of the 
oding byemphasizing solely on the �rst spike per neuron (van Rullen and Thorpe, 2001)and is mathemati
ally more tra
table. On a pra
ti
al note, we similarly usethe fa
t that the inverse of fj may be 
omputed from the mean over trials ofthe fun
tion of the absolute fun
tions as a fun
tion of the rank. In parti
ular,one may show that the 
oding error is proportional to the variability of thesorted 
oe�
ients (Perrinet et al., 2004), the rest of the information being theinformation 
oded in the time intervals between two su

essive spikes. Thus,the e�
ien
y of information transmission will dire
tly depend on the validityof the hypothesis of independen
e of the 
hoi
e of 
omponents and therefore onthe statisti
al model build by the LGM.It should be also noted that no expli
it re
onstru
tion is ne
essary (in the math-emati
al sense of the term) on the re
eiver side as we do here, sin
e the goalof the re
eiver 
ould only be to manipulate information on for instan
e somesubset of the spike list (that is on some re
eptive �eld 
overing a subpart ofthe population). In parti
ular one may imagine that we may add some arbi-trary global point linearity to the z values in order to threshold low values orto quantize values (for instan
e set all values to 1 only for the �rst 10% of thespikes). However, this full re
onstru
tion s
heme is a general framework forinformation transmission, and we may then imagine that if for instan
e we poolinformation over a limited re
eptive �eld, the information needed (the ranks inthe sub-spikelist) will still be available to the re
eiver dire
tly without havingto 
ompute the full set (in fa
t, sin
e the pdf of z is uniform, the pdf of a subsetof 
omponents of z is also uniform). Finally, we de�ned a simple spike 
odingalgorithm to transmit information robustly with events. However, it is not yet
lear how we may quantitatively estimate its e�
ien
y.2.3 De�nition of the e�
ien
y of Spike 
odingNow that we de�ned the key 
on
epts of the spike 
oding algorithm, we shouldbe able to derive a generi
 
ost fun
tion that will allow us to quantify the ef-�
ien
y of di�erent 
oding algorithms but also to derive a learning algorithmfor the spike 
oding algorithm de�ned above. In fa
t, unless the di
tionary Ais orthogonal, when 
hoosing one 
omponent over an other (for instan
e theone that maximizes Eq. 4), any 
hoi
e may in�uen
e the 
hoi
e of the other
omponents. For instan
e, if we 
hose the su

essive neurons with maximumlinear 
orrelation values, the resulting representation will be proportionally moreredundant when the di
tionary gets more over-
omplete so that the linear 
or-relation values in general do not 
orrespond to the 
oe�
ients of the LGM.For every signal x, one may state as in O

am's razor that given two solutionsof similar quality, the best is the one with lowest representational 
omplexity.Globally, we may introdu
e an �O

am fa
tor� to 
ompare the e�
ien
y of dif-10



ferent representations (Ma
Kay, 2003, Ch. 28.3). This fa
tor may be expressedas the Kolmogorov-Chaitin 
omplexity and 
an be formalized in a probabilis-ti
 framework by using the bound given by Shannon's 
oding theorem as theaverage measure of the information to 
ode the input given the solutions (the
oding sequen
es) and the model's parameters (Lewi
ki and Sejnowski, 2000).A goal is therefore to maximize the eviden
e of the model that is to minimizethis information or similarly minimize the des
ription length (Rissanen, 1978).Furthermore, in the 
ontext of dynami
al 
oding by spikes, this 
oding is pro-gressive and there will be a dynami
al 
ompromise between the pre
ision andthe 
omplexity of the representation.Using the same notation as in Se
. 2.1 and Olshausen and Field (1998), the totalrepresentational 
ost is C def
= E(− log P (s|x,A)), where E(.) denotes averagingover multiple trials (that is di�erent image pat
hes x) and s is the 
oding se-quen
e. For one 
oding sequen
e, this 
ost may thus be written as the sum ofits likelihood probability knowing the set of sour
es added to the 
oding lengthof the set of sour
es:

C(s|x,A) = log Z +
1

2.σ2
n

‖x−
∑

j

ŝj .Aj‖
2 − log P (s|A) (6)where Z is the partition fun
tion (that we will omit in the sequel) and ŝ is thede
oded sequen
e. The e�
ien
y 
ost will be measured in bits if the logarithmis of base 2 (as will be assumed without loss of generality in the following). Forany 
oding s, the �rst term 
orresponds to the information from the image whi
hwas not retrieved by the whole 
oding/de
oding algorithm (re
onstru
tion 
ost)and that 
an be en
oded at best using entropi
 
oding pixel by pixel (it's thelog-likelihood in Bayesian terminology). The se
ond term is the representation
ost: it quanti�es the e�
ien
y of the representation as the des
ription length ofthe 
oe�
ients and is equal to the entropi
 
oding of s knowing its probabilitydistribution fun
tion (it is the log-prior).We will assume independen
e of the 
oe�
ients and therefore log P (s|A) =

∑

j log P (sj |A). Moreover, based on a parameterization of the 
oe�
ients' priorand on the assumption of a perfe
t re
onstru
tion (that is ŝ = s), this yieldsthe sparseness 
ost de�ned in Olshausen and Field (1998):
C1(s|x,A) =

1

2.σ2
n

‖x −
∑

j

sj .Aj‖
2 + β

∑

j

log(1 −
s
2

σ2
) (7)where β is the steepness of the prior and σ is the prior s
aling (see Figure 13.2from (Olshausen, 2002)). This 
ost is related to the 
lassi
al 
ost with the L1norm but represents a more kurtoti
 probability distribution fun
tion for theprior than the Lapla
ian prior 
orresponding to the L1 norm. This 
ost thereforelinks the e�
ien
y to the sparseness of the 
ode by parametrizing a priori thesparseness of the 
oe�
ients, the �o

am fa
tor� measuring the global eviden
eof the model knowing this parametrized prior.This liberty in the de�nition of the sparseness leads to a wide variety of pro-posed solutions to de�ning and optimizing this 
ost or sparse 
oding (for a11



review, see (Pe
e, 2002)) su
h as numeri
al optimization (Lee et al., 2007;Olshausen and Field, 1998), non negative matrix fa
torization (Lee and Seung,1999; Ranzato et al., 2007) or by using Mat
hing Pursuit (Perrinet et al., 2003;Rehn and Sommer, 2007; Smith and Lewi
ki, 2006). Note that this 
ost wille�
iently quantify the representation e�
ien
y if the pdf of the 
oe�
ients isindeed well �tted to the parameterization. Moreover, this variety may existin biologi
al systems by varying the optimal sparseness levels via regulationme
hanisms (Assisi et al., 2007). However, this parameterization is not knowna priori and must be tuned a

ordingly to �t the model to the statisti
s ofnatural images and be further validated. This is the reason why we did builda non-parametri
 measure by taking advantage of the fa
t that thanks to thehomeostasis, the probability of �ring of every �ber is uniform a
ross the popu-lation. In fa
t, spikes are a priori equally likely to be generated on any of the
N neurons (see Se
. 2.2), so that the probability of the origin of any new spikeis simply 1

N
. Therefore, di�erently to the SparseNet algorithm, the modelfor the statisti
s of the LGM assumes that spikes are independent all-or-noneevents and 
arry a binary representation as was presented above for the SpikeCoding algorithm (see Se
. 2.2). This expli
itly de�nes the information 
ontentof a spike volley as an ordered list of spikes where the whole information is
oded in the �addresses� of the di�erent spikes in the list. Using a di
tionary of

N neurons, the 
ost per spike may then be de�ned as log2(N) bits per spike, sothat we propose for the 
oding 
ost of a spike list to be simply:
C0(s|x,A) =

1

2σ2
n

.‖x−
∑

j

ŝj .Aj‖
2 + log2(N).‖s‖0 (8)where ‖s‖0 is the length of the retrieved solution (or also the L0 norm). Again,this 
ost is only valid if the probability of every spike is a priori uniform andtherefore the 
ost used in (Rehn and Sommer, 2007) should in
lude a 
orre
tionterm in the L0 norm to a

ount for this non-unifomity. It also expli
itly ratesthe e
onomy of 
onsumed metaboli
 resour
es as is used in (Rehn and Sommer,2007), but we may again 
onsider this only as a 
onsequen
e of the optimiza-tion. Note �rst that for any spike 
oding solution, this 
ost fun
tion is dynami
sin
e the number of spikes in
reases in time. Note also that it links e�
ien
y tosparseness for a known representation error solely on the basis that the spikingrepresentation is binary and event-based. More generally, su
h a sparse repre-sentation is the best solution to allow a good dis
riminability between di�erentpatterns and is similar with information 
riterions su
h as the AIC (Akaike,1974) or distortion rate (Mallat, 1998, p. 488). For instan
e, as a model ofthe input layer of the primary visual 
ortex, optimizing the 
oding a

ordingto Eq. 8 will provide the best representation to segregate di�erent orientationsfor instan
e by representing the ridge of edges in images instead of representingthe linear 
orrelation as de�ned by Eq. 4. In a nutshell, sparser representationmake �more peaked� 
ross-
orrelograms. This also means that the sele
tivityof neurons is therefore sharper than the response predi
ted by linear �lters,su
h as is observed in orientation tuning (Troyer et al., 1998). Resolving the12




oding problem with the L0 norm is therefore a matter of getting the best sin the sense of Eq. 8 knowing x, that is ArgMins(C0(s|x,A)). However, evenwhen assuming perfe
t quantization, this is a non-
onvex optimization problemwhi
h is NP-
omplete with respe
t to the dimension N of the di
tionary (Mallat,1998, p. 409). Instead of going ba
k to an orthogonal basis to 
ir
umvent thisdi�
ulty, biologi
al neural systems seem to use sparsity as a generi
 tool fore�
ient signal representation (Baudot et al., 2004; Deweese and Zador, 2003;Vinje and Gallant, 2000). We will present here a solution to this problem in-spired by the ar
hite
ture and dynami
s of the primary visual 
ortex.2.4 Sparse Spike CodingWe saw that over
oming the ine�
ien
y of the L-NL ar
hite
ture by optimizingthe 
hoi
e a

ording to Eq. 8 leads then to a 
ombinatorial explosion. To solvethis NP-
omplete problem to model realisti
 representations su
h as when mod-eling the primary visual 
ortex, one may implement a solution designed after theri
hly laterally 
onne
ted ar
hite
ture of 
orti
al layers. In fa
t, an importantpart of 
orti
al areas 
onsists of a lateral network propagating information inparallel between neurons. We will here propose that the NP-problem 
an beapproximately solved by using a 
ross-
orrelation based inhibition between neu-rons. In fa
t, as was �rst proposed in Sparse Spike Coding (SSC) (Perrinet et al.,2002), one 
ould use a greedy algorithm on the L0 norm 
ost de�ned in Eq. 8 tore
ursively 
ompute the sparse 
oe�
ients. The sparse 
oding part is basi
allyequivalent to the Mat
hing Pursuit (MP) algorithm (Mallat and Zhang, 1993)and the sparse 
oe�
ients will be transmitted, quanti�ed and de
oded in thesame way as in the Spike Coding s
heme for the linear 
orrelation 
oe�
ients(see Se
. 2.2).More spe
i�
ally, let's �rst de�ne Competition-Optimized Mat
hing Pursuit(COMP) by introdu
ing non-linearities in the 
hoi
e step of MP 
orrespond-ing to the optimized gain 
ontrol fun
tions de�ned in Eq. 4 (Perrinet, 2008).Like Mat
hing Pursuit, it is based on an initialization and two repetitive steps.At initialization, given the signal x, we set up the input ve
tor as the absolutevalue of the linear 
orrelation 
oe�
ient, that is for all j to s
(0)
j = |ρj | (andwe will write x

(0) = x, ρ
(0)
j = ρj). These values s

(0) are proportional to the aposteriori probability knowing x (see Eq. 4). Then we repeat the two followingsteps that we index by their rank k (initialized at 0). First, we are sear
hingfor the bestsingle sour
e 
orresponding to the maximum a posteriori (MAP)knowing x
(k) whi
h is proportional to s

(k)
j = |ρ

(k)
j | but modulate this 
hoi
e bythe point non-linearity fj . This Mat
hing step is thus de�ned by:

j(k) = ArgMaxj [fj(s
(k)
j )] (9)In a se
ond Pursuit step, the information is fed-ba
k to 
orrelated sour
esthrough:

x
(k+1) = x

(k) − ρ(k).Aj(k) (10)13



where we note ρ(k) = ρ
(k)

j(k) the maximal s
alar proje
tion < x
(k),Aj(k) > (seeEq. 2). Equivalently, from the linearity of the s
alar produ
t (see Eq. 4), wemay instead propagate information laterally:

ρ
(k+1)
j = ρ

(k)
j − ρ(k) < A(k) ,Aj > (11)As des
ribed in (Perrinet, 2004b), while the Mat
hing step is e�
iently per-formed by the LIF neurons driven by the (NL) layer (see Fig. 1), the pursuitstep 
ould be implemented in a 
orti
al area by a 
orrelation-based inhibition.In Fig. 1, it will 
orrespond to a lateral intera
tion within the linear (L) neuronalpopulation. This type of inhibition is typi
al of fast-spiking interneurons thoughthere is no dire
t eviden
e of an a
tivity-based synapti
 topology. COMP sharesmany properties with MP, su
h as the monotonous de
rease of the error or theexponential 
onvergen
e of the 
oding. The algorithm is then iterated withEq. 9 until some stopping 
riteria is rea
hed.Sparse Spike Coding (SSC) is then de�ned as the spike 
oding algorithm thattransforms an image x into a list of spikes {j(k)} de�ned as the ordered listof the addresses of neurons that �red in the Mat
hing step (and to the 
or-responding values {ρ(k)}) as was des
ribed in the Spike Coding s
heme (seeSe
. 2.2). This s
heme thus extends the algorithm based on the Mat
hing Pur-suit (MP) algorithm proposed in (Perrinet et al., 2002) by linking it to a sta-tisti
al model whi
h tunes optimally the mat
hing step. In fa
t, all 
hoi
es arestatisti
ally equally probable thanks to the adaptive point linearity so that onemaximizes the entropy of every mat
h and therefore the 
omputational power ofthe ArgMax operator. Think a 
ontrario to a totally unbalan
ed network wherethe mat
h will be always a given neuron: the spikes are totally predi
table andthe information 
arried by the spike list then drops to zero. In pra
ti
e, the

fj fun
tions are initialized for all neurons to the identity fun
tion (COMP isthen a simple MP algorithm) and then Eq. 4 is evaluated after the end of every
oding sweep using an online sto
hasti
 algorithm with a �learning� parameter
orresponding to a smooth average whi
h e�e
t was 
ontrolled (see Fig. 4 andAnnex. 5.5). As a matter of fa
t, this algorithm is 
ir
ular sin
e the 
hoi
e of sis non-linear and depends on the 
hoi
e of fj . However, thanks to the exponen-tial 
onvergen
e of MP, for any set of 
omponents, the fj will 
onverge to the
orre
t non-linear fun
tions as de�ned by Eq. 4.2.5 Introdu
ing Hebbian Learning in SSCWe may now �nally derive the unsupervised learning model by optimizing thee�
ien
y of SSC with respe
t to the e�
ien
y 
ost de�ned in Eq. 8. In fa
t,on a longer time s
ale, the e�
ien
y of the system may be optimized by slowlyadapting the di
tionary A as in SparseNet thanks to the sparse solution givenby the 
oding algorithm. More generally, knowing the 
oding algorithm, anunsupervised learning solving the e�
ien
y 
ost is related to the goal of Inde-pendent Component Analysis (ICA), sin
e knowing that the signal is 
reated bya mixture of 
omponents as in Eq. 1, it tries to �nd the best set of 
omponents14



so that the representation is well des
ribed by the fewer number of 
omponents.As in SparseNet, this 
an be seen as a joint optimization of the re
onstru
tionand the sparseness. We may implement this for every image at any 
oding step
k after Eq. 9 (that is after a spike of address j(k) is emitted) sin
e we havean evaluation of the log-likelihood by the distan
e of the residual image to thesele
ted �lter, that is to ‖x(k) − ρ(k).Aj(k)‖2, the rest of the signal being re-garded as a perturbation whi
h will 
an
el out on average. Using the gradientdes
ent approa
h used in (Olshausen and Field, 1998), we similarly infer thatwe may slowly modify the winning weight ve
tor 
orresponding to the winning�lter ρ(k).Aj(k) by taking it 
loser to x

(k),
∂C(sj(k) |x(k),A)

∂Aj(k)

= 1
2σ2

n
.
∂‖x(k)−ρ(k).A

j(k)‖
2

∂A
j(k)

= 1
2σ2

n
.ρ(k)(x(k) − ρ(k).Aj(k))that is:

Aj(k) = Aj(k) + ηρ(k)(x(k) − ρ(k).Aj(k)) (12)where η is the learning rate, whi
h is inversely proportional to the time s
aleof the features being learned.A more rigorous mathemati
al approa
h for thelearning is to 
onsider a rotation of Aj(k) toward x
(k) using a Ja
obi Matrixrotation so that all 
omponent ve
tors stay on the unit sphere. In pra
ti
e,Eq. 12 for small learning rates η followed by a normalization is a good approx-imation of this high-dimensional (linear) transform. Basi
ally, it will de
reasethe angle between the �lter and the feature and therefore in
rease the 
orre-lation: sin
e the energy de
reases at every step in COMP by the energy ofthe sele
ted 
oe�
ient (see (Perrinet, 2004b, Se
. 2.1.3)), it will ensure thatthe de
rease is qui
ker and thus that the representation gets sparser. Similarlyto Eq. 17 in (Olshausen and Field, 1998) or to Eq. 2 in (Smith and Lewi
ki,2006), the relation is linear: it is an �Hebbian� rule (Hebb, 1949) in the 
las-si
al sense sin
e it will enhan
e the weight of neurons of 
orrelated pre- andpost-synapti
 neurons. However, the novelty of this formulation is to apply thisformulation to the sparse representation at every single spike. In fa
t, note thatif the 
oding step is not the initialization, x(k) is the residual image (thus a non-linear transform of the initial x 
omputed using Eq. 10) and the ρ

(k)
j are thelinear 
orrelations with x

(k). The biologi
al 
orrelate of this adaptation 
ouldbe a �slow� anterograde signal going ba
kwards this feed-forward pass (Harris,2008). An improvement is to �ba
k-propagate� in early spikes of the follow-ing 
hoi
es to 
orre
t the gradient des
ent instead of regarding the residuals asa perturbation. This 
orresponds to Spike Coding with Orthogonal Mat
hingPursuit as was implemented (without quantization) in the learning algorithmused in (Rehn and Sommer, 2007). However, this would imply a more 
omplexneural ar
hite
ture and it did not drasti
ally 
hange the e�
ien
y of the system.Without homeostasis, this algorithm (as well as SparseNet) is unstable. Infa
t, sin
e we start with random �lters, it is is more likely that any salient fea-ture would be sele
ted at �rst and will modify the �rst winning �lter. There15



is therefore a higher probability that the same neuron will be sele
ted with ahigher probability in subsequent learning steps, 
ausing a diverging non unifor-mity in the balan
e of the learning a
ross neurons. Whereas SparseNet usesthe norm of the �lters to 
ontrol the varian
e of the 
oe�
ients a
ross neu-rons, the SSC mat
hing 
riteria (see Eq. 9) is intrinsi
ally independent to thenorm of the �lters. While we implemented in AMP the homeostasis used by(Olshausen and Field, 1998), if we use the homeostati
 regulation (whi
h has asimilar time-s
ale than the learning), the probability of 
hoosing any neuron inCOMP remains uniform and ensures the 
onvergen
e of the learning algorithm(see Annex. 5.4). The homeostasis will therefore optimize the balan
e betweenthe neurons, assuring that the internal representation driving the spiking neu-rons may always be 
onsidered as a uniformly distributed random ve
tor. Notethen that on a long time s
ale, if two �lters at some point during the learning
orrespond to �lters with di�erent sele
tivity (thus, they have di�erent pdf, themore sele
tive being more kurtoti
), they are still sele
ted with the same prob-ability thanks to the non-linearity. However, sin
e on a bat
h of natural s
enes,the �lters 
orresponding to the less sele
tive neurons are less likely to be presentand from the relative �boost� indu
ed by the non-linearity and whi
h a
ts as a
orti
al gain 
ontrol, these �lters are more likely to 
hange. It is easier to imag-ine this property by drawing the Voronoi diagram on the unit M -dimensionalsphere 
orresponding to the possible positions of the �lters, the di
tionary beingrepresented by N points on this sphere. For the diagram 
orresponding to thedi
tionary ea
h 
entroid will be attra
ted toward the mean ve
tor of inputs 
or-responding to its Voronoi 
ell, as in the K-means algorithm. Sin
e we for
e theprobability of sele
ting 
entroids to be uniform, the equilibrium of the learningis when the population of �lters, that is the di
tionary, forms an uniform tilingof �lter spa
e. As a 
onsequen
e, the fj fun
tions be
ome equal at 
onvergen
eand the mat
hing step be
omes similar to the one in MP and in parti
ular if oneperturbs a �lter (by setting it to a random ve
tor for instan
e, that is a point onthe unit M -dimensional sphere) the algorithm will 
hange the whole di
tionaryso that it settles to a new stable point (see Annex. 5.4). Finally, we �nd the
ounter-intuitive result that in aSSC, the homeostasis is more important duringthe learning period and may be ignored when synapses don't evolve anymore.2.6 Adaptive Sparse Spike Coding (aSSC)In summary, the whole learning algorithm is given by the following nested loops:1. Initialize the 
omponents A to random values on the unit N -dimensionalsphere and set the point non-linear gain fun
tion to unity (fj(s) = s forall j),2. repeat:(a) draw a signal x from the database,(b) 
ompute ρj for all j using Eq. 4, k = 016



(
) while ‖x(k)‖2 is above a 
ertain pre
ision threshold do sparse spike
oding (SSC):i. emit a spike by sele
ting the best mat
h j(k) with Eq. 9,ii. modify information 
orrelated to j(k) by 
omputing ρ
(k+1)
j for all

j using Eq. 11,iii. slowly modify Aj(k) using Eq. 12,iv. slowly update the fj for all j using Eq. 4v. in
rement the rank kWhen 
onvergen
e is a
hieved, one 
ould simply make a 
oding by using step(b) to initialize and then (
) and optionally for the pure spike 
oding evaluatethe 
oe�
ient using Eq. 5 in step 2-(
)-ii. One advantage is that the greedyalgorithm may adapt to quantization errors (Perrinet et al., 2004, Fig.10). Thede
oding of the spike list {j(1), j(2) . . . j(k) . . .} is then simply:1. Initialize x̂ to a zero image and the rank k to zero,2. while we have spikes do :(a) retrieve the address j(k) of the spike and the 
orresponding value ŝ(k)of the 
oe�
ient using Eq. 5,(b) add ŝ(k).Aj(k) to x̂,(
) in
rement the rank k,Note that this pseudo-
ode is given in a traditional sequential way where all stepsare given the one after the other. This 
orresponds to our a
tual simulations (seeAnnex. 5.1) but only 
orresponds to an event based des
ription of the dynami
alpro
esses o

urring in the system. In fa
t, in a dynami
al implementation, allpro
esses are done in parallel and events just 
orrespond to the times where theintegration rea
hed a threshold (Perrinet, 2004b).3 Results on natural images3.1 Re
eptive �eld formation: 
omparison with SparseNetWe �rst 
ompared this novel aSSC algorithmwith the SparseNet algorithm. Infa
t, this algorithm as other similar s
hemes only di�ers by the 
oding methodused to obtain the sparse representation and by the homeostasis s
heme. Inparti
ular, we fo
used herein in the validation and quantitative 
omparisonof both algorithms in terms of e�
ien
y on the task at hand that we de-�ned6. We used a similar 
ontext and ar
hite
ture as the experiments des
ribedin (Olshausen and Field, 1998) and used in parti
ular the same database of in-puts as the SparseNet algorithm and restri
t ourselves to study the sele
tion6See Annex. 5.1 for the table of parameters, details of the experimental setup and to a linkto reprodu
e the results. 17



Figure 2: Results of the proposed aSSC s
heme 
ompared toSparseNet. Starting with random �lters, we 
ompare here the results of thelearning s
heme with 324 �lters at 
onvergen
e (20000 steps) using (Left) the
lassi
al 
onjugate gradient fun
tion method as is used in (Olshausen and Field,1998) with (Right) the Sparse Spike Coding method. Filters of the same size asthe imagelets (16×16) are presented in a matrix (separated with a bla
k border).Note that their position in the matrix is as in ICA arbitrary (invariant up toany permutation). Results repli
ate the original results of (Olshausen and Field,1998) and are similar for both methods: both di
tionary 
onsist of gabor-like�lters whi
h are similar to the re
eptive �elds of simple 
ells in the primaryvisual 
ortex. Edges appear in these 
onditions to be the independent 
ompo-nents of natural images. However, the distribution of the quality of the edges(in parti
ular their mean frequen
y, length, width) appears to be di�erent andthe question remains as how we may 
ompare the e�
ien
y of the di�erentar
hite
tures quantitatively.of optimal �lters on imagelets (that is small pat
hes from natural images)7. Inparti
ular, these images are stati
, grays
ale and �ltered a

ording to the sameparameters to allow a one-to-one 
omparison of the di�erent algorithms.Here, we show the results for 16 × 16 pat
hes (so that M = 256) from thewhitened images and we 
hose to learn N = 324 �lters whi
h are repli
atedas ON and OFF �lters (but see Annex. 5.2). Results show the emergen
e ofedge-like �lters (see Fig. 2) for a wide range of parameters (see Annex. 5.5 foran analysis of the robustness of the methods to variations of the parameters).Studying the evolution of one single �lter during the learning shows that it �rsts7These results should be taken as a lower bound for the e�
ien
y of adaptive Sparse SpikeCoding, sin
e the sparseness in imagelets is only lo
al, but sparseness is also spatial in naturalimages (Perrinet et al., 2004). For instan
e, it is highly probable in natural images that largeparts of the spa
e �su
h as the sky� are �at. See (Perrinet, 2007, Se
. 3.3.4) for an extensionto whole images. 18



represent any salient feature (su
h as a sharp 
orner or edge) and that if it 
on-tains multiple edges only the most salient edge remains later in the learning.This is due to the 
ompetition between �lters, the algorithm ensuring that inde-pendent features should not be mixed sin
e this will result in a larger L0-norm.When looking at very long learning times, the solution is not �xed (for bothalgorithms) and edges may smoothly drift from one orientation to another whilethe 
ost still remains stable. This is due to the fa
t that there are many solutionsto the problem and that there is no 
onstraint su
h as topologi
al links between�lters to de
rease the degree of liberty of solutions. Thus, as in ICA results areto be understood as a whole, and if for instan
e two �lters are swapped in thedi
tionary, the e�
ien
y stays the same.However, it is not 
lear by the sole shape of the �lters alone whi
h solution ismost e�
ient. In fa
t, rather than the shape of the 
omponents individually, it isthe distribution of the assembly of 
omponents in the image spa
e that will yielddi�erent e�
ien
ies. Su
h an analysis was performed with a qualitative analysisof the �lters' shape, by �tting them with Gabor �lters (Lewi
ki and Sejnowski,2000). A re
ent study 
ompares the distribution of the parameters of the Gabor�lters with neurophysiologi
al experiments (Rehn and Sommer, 2007). Theydid indeed show that their learning s
heme, whi
h is also based on a Mat
hingpursuit algorithm, did better mat
h than SparseNet the distribution of someparameters of Gabor �lters over the set of �lter observed in the ma
aque's pri-mary visual 
ortex. However, if this similarity is 
ertainly ne
essary, it is notsu�
ient to understand the e�e
t of ea
h parameter and more generally to theemergen
e of edge-like re
eptive �elds. We will rather try to evaluate quanti-tatively the relative e�
ien
y of the di�erent learning s
hemes to extra
t whataspe
t is the most relevant.3.2 Quantifying e�
ien
y 
ompared to SparseNetTo address this question, we 
ompared the quality of both methods by 
om-puting the mean e�
ien
y of the 
oding as the learning 
onverged. Using 5.104imagelets drawn from the natural image database, we performed the progressive
oding of the images using both methods �rst for random ve
tors and then forthe �lters learned by ea
h method. First, we quanti�ed at the end of the 
odingthe distribution of 
oe�
ients for the di�erent 
ases. To allow a 
omparison ofthe 
oe�
ients, we normalized the 
oe�
ients by the energy of the imagelets(sin
e thanks to Eq. 4 and Eq. 2, we have ρj = sj .
‖Aj‖
‖x‖ ) and by the norm of the�lters to retrieve 
oe�
ients su
h that

x

‖x‖
=

∑

1≤j≤N
ρj.

Aj

‖Aj‖
(13)these 
oe�
ients are similar to the measure of the linear 
orrelation 
oe�
ient(see Eq. 4). These non-linear 
orrelation 
oe�
ients do mat
h the linear 
or-relation 
oe�
ients when the di
tionary whi
h was sele
ted at ea
h 
oding isquasi-in
oherent, that is that every sele
ted �lter is perpendi
ular to the residualof the 
oding (Gribonval and Vandergheynst, 2006). This is not true in general19
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Figure 3: Coding e�
ien
y of adaptive Sparse Spike Coding. Weevaluated the quality of the algorithm with two di�erent 
oding strate-gies by 
omparing the 
oding e�
ien
y of the sparse spike 
oding ('ss
')method with the 
lassi
al 
onjugate gradient fun
tion ('
gf') method as is usedin (Olshausen and Field, 1998). For the 
oding of a set of 5.104 image pat
hesdrawn from a database of natural images, we plot (Left) the distribution of bothmethods before and after the 
onvergen
e of the learning phase. At initializa-tion, the distributions are more gaussian (
urves '
g-init' and 'ss
-init') whilethey get more kurtoti
: both algorithms yield at 
onvergen
e sparse distribu-tions of the 
oe�
ients. We also plot (Right) the mean �nal residual error (L2norm) as a fun
tion of the relative number of a
tive (or non-zero) 
oe�
ients(that is the normalized L0 norm and the 
oding step for SSC) whi
h provides anestimate of the mean 
oding e�
ien
y for the image pat
hes. Best results arethose providing a lower error for a given sparsity or a lower sparseness (better
ompression) for the same error. In fa
t, the e�
ien
y 
ost measures O

am'srazor applied to 
oding: it states that for a given L2 norm, a lower 
omplexity(that is a lower L0 norm) is more e�
ient (graphi
ally, an horizontal line would
ross from left the best solution �rst). It should be noted that it is also simi-lar for the 
ost based on the L1 norm, a result whi
h may re�e
t that the L0norm de�nes a stronger sparseness 
onstraint. Moreover, one should take intoa

ount the fa
t that in the proposed algorithm the 
oding is 
onstrained to bebinary while it is analogous in SparseNet or in Lewi
ki and Sejnowski (2000);Rehn and Sommer (2007); Smith and Lewi
ki (2006) and there is no expli
itlyde�ned quantization. Also, while in these s
hemes this aspe
t of the 
oding isnot studied or is expe
ted to be the �xed point of a re
urrent system, we takehere advantage of the spiking representation to optimize the representation andthe speed of information transmission by a single spike volley.20



and the ρj 
orrespond here rather to a measure of the quality (measured asa log-probability) of the mat
h with the signal of ea
h from the sparse set ofsele
ted sour
es. When plotting the histogram of the non-linear 
orrelation
oe�
ients, one sees that distributions are approximately gaussians with theinitial random �lters �a result that one 
ould have predi
ted from the 
entrallimit theorem� but that these be
ome very kurtoti
 after the 
onvergen
e ofthe learning (see Fig. 3-Left). The measure of the kurtosis of the resulting 
odewords proved to be very sensitive and a poor indi
ator of the global e�
ien
y, inparti
ular for 
ode words at the beginning of the 
oding, when many 
oe�
ientsare still stri
tly zero. In parti
ular, it seemed ina

urate to 
ompare the kurtosisfor systems with di�erent over-
ompleteness fa
tors as in (Rehn and Sommer,2007). Both �nal distributions seemed to �t well the bivariate model introdu
edin (Olshausen and Millman, 2000) where 
oe�
ients are L0 sparse and the non-zero 
oe�
ients follow a lapla
ian pdf. However, the SSC algorithm providedthe most kurtoti
 distribution of the 
oe�
ients (with values around 60 versus20 for SparseNet). Dually, plotting the de
rease of the sorted 
oe�
ients asa fun
tion of their rank again showed that 
oe�
ients for SSC were �rst higherand then de
reased qui
ker (see Fig. 3-Left Inset), following the link betweenboth 
urves in Fig. 3-Left from Eq. 5. In a se
ond analysis, we 
ompared thee�
ien
y of both methods while varying the number of a
tive 
oe�
ients (theL0 norm), that is the number of spikes during the progressive 
oding for SSC(Eq. 8). To 
ompare this method with the 
onjugate gradient, a �rst pass of thelatter method was assigning for a �xed number of a
tive 
oe�
ients the bestneurons while a se
ond pass optimized the 
oe�
ients for this set of �a
tive�ve
tors (see Fig. 3, Right). This method was also used in (Rehn and Sommer,2007) and proved to be a fair method to 
ompare both methods. At the sametime, one 
ould yield di�erent mean residual error with di�erent mean sparse-ness of the 
oe�
ients, as de�ned in Eq. 7 (see Fig. 3, Right Inset).Controlling with a wide range of parameters and a variety of methods yieldedsimilar qualitative results (su
h as 
hanging the learning rate or the parametersof the 
onjugate gradient, see Annex. 5.5) proving that the hebbian learning
onverged robustly as long as the 
oding algorithm provided a good sparse rep-resentation of the input. As a result, it appeared in a robust manner that thegreedy solution to the hard problem (that is SSC) is as e�
ient for the op-timized 
ost but also to the 
ost de�ned in the relaxed problem (see Fig. 3).Moreover, it should be noted that this non-parametri
 method is 
ontrolledby less parameters (whi
h were here optimized to give best operating point, seeAnnex. 5.1) and we should stress again that the SSC method simply uses a feed-forward pass with lateral intera
tions, while the Conjugate Gradient 
ould onlybe implemented as the �xed point of a re
urrent network. Therefore, applying a�higher-level� O

am razor 
on�rms that for a similar overall 
oding e�
ien
y,aSSC is better sin
e it is of lower stru
tural 
omplexity8. Sin
e the 
oding8A

ounting for a quantitative measure of the stru
tural 
omplexity of the di�erent meth-ods is for instan
e measured by the minimal length of a 
ode that would implement them (forinstan
e the number of 
hara
ters of the program in memory). It would therefore depend onthe ma
hine on whi
h it is implemented, and one would of 
ourse see a 
lear advantage of21



used in aSSC is rather sub-optimal (MP) 
ompared to other methods su
h as(Rehn and Sommer, 2007), we 
on
lude that this improvement is mainly dueto how we tuned the algorithm a

ording to the e�
ien
y 
ost de�ned in Eq. 8and in parti
ular to the homeostasis me
hanism ensuring that all neurons �reequally.3.3 E�
ien
y 
ompared to Adaptive Mat
hing PursuitThe 
hoi
e of the homeostati
 regulation was based on the 
ost fun
tion and thehypothesis that led to it. In fa
t, by for
ing that all neurons should be 
hosenwith equal probability, we impose a strong 
onstraint for the neural assembly(all neurons should be �equal�) and this may hinder the global e�
ien
y of thesystem. On the other hand, when 
hoosing a more relaxed system (su
h asnormalizing the �lters or using the homeostati
 rule de�ned in SparseNet) weobtain qualitatively di�erent �lters whose e�
ien
y would depend on a di�er-ent 
ost fun
tion. To resolve this ambiguity, we therefore 
ompared the e�-
ien
y for the aSSC s
heme that we presented above (see Fig. 2, Right) witha system where we just imposed the 
omponents to stay on the unit sphere,that is setting the homeostati
 learning time to in�nity. This last algorithmis exa
tly the Adaptive Mat
hing Pursuit (AMP) algorithm that was studiedpreviously (Perrinet et al., 2003) and whi
h is similar to other strategies su
has (Rehn and Sommer, 2007; Smith and Lewi
ki, 2006).In fa
t, the homeostasis 
onstraint in the AMP algorithm is relaxed and the �l-ters will 
orrespond to features of more various salien
ies. In parti
ular, we ob-serve the emergen
e of both broader Gabor �lters whi
h better mat
h texturesand of 
he
kerboard-like patterns (see the result after 
onvergen
e at Fig. 4,Left). Be
ause of their lower generality, these 'textural' �lters will be more likelyto be sele
ted with lower 
orrelation 
oe�
ients. They 
orrespond more to theFourier �lters that one may obtain by PCA (see for instan
e (Fyfe and Baddeley,1995)) or the simple Hebbian rule on linear 
oe�
ients and that are still optimalto 
ode arbitrary imagelets su
h as noise (Li, 2006). The aSSC algorithm (seeSe
. 2.6) ensures with the homeostasis 
onstraint that all �lters will be sele
tedequally by the de�nition of the homeostasis in Eq. 4. In parti
ular, the pointnon-linearity from Eq. 9 plays the role of a gain 
ontrol. Compared to AMP,textured elements will be relatively �boosted� during the learning 
ompared tothe 
orrelation 
oe�
ient 
omputed on a more generi
 �edge� 
omponent. Thisexplains that they would end up being less probable and why at the 
onvergen
eof the learning there is no textured �lters in Fig. 2, Right. As a 
on
lusion, aswas stated formally in Se
. 2.5, the homeostasis e�
iently 
onstrains the di
tio-nary to better mat
h the a priori pdf of natural s
enes in the M -dimensionalimage spa
e.We may then 
ompare quantitatively the e�
ien
y of these two approa
hes.When not using the quantization step using the inverse fj fun
tion (see Eq. 5),the AMP yields a better �nal result sin
e it represents more e�
iently the noisyaSSC on parallel ma
hines. 22
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Figure 4: Homeostasis implements e�
ient spike quantization duringlearning. (Left) When relaxing the homeostati
 
onstraint in the aSSC (seeSe
. 2.6) larning algorithm to the one implemented in Adaptive Mat
hing Pur-suit (AMP), the algorithm 
onverges to a set of �lters whi
h 
ontains some lesslo
alized �lters and to some high-frequen
y Gabors whi
h 
orrespond to more�textural� features as in (Perrinet et al., 2003). One may wonder if these �ltersare ine�
ient and 
apturing noise or if they rather 
orrespond to inherent fea-tures of natural images in this LGM model (see Fig. 3). (Right) In fa
t, theAMP solution gives a slightly better result than aSSC in terms of residual energyas a fun
tion of pure L0 sparseness (see inset) and is for that purpose of simi-lar e�
ien
y than 
onjugate gradient. However, when de�ning the e�
ien
y interms of the residual energy as a fun
tion of the des
ription length of the spiking
ode word, then the proposed model is more e�
ient than AMP be
ause of thequantization errors inherent to the higher variability of 
oded 
oe�
ients. Thus,in
luding homeostasis improved the e�
ien
y of adaptive Sparse Spike Codingboth for the 
oding and the learning. It should be noted that homeostasis isimportant in aSSC during learning but that from the inherent equalization it isnot useful in 
oding (see Se
. 2.5).
23



aspe
ts of the signal. On average, this strategy provides a slightly better ini-tial de
rease of the residual energy: the 
omponents of the signal are betterrepresented for a similar number of neurons. However, it is weaker when the
L0-sparseness is greater than ∼ 10% of the dimension M , at whi
h point noisedominates the signal (see Fig. 4, Right, inset). On the other hand, when usingthe quantization and therefore when rating the e�
ien
y of the full spike 
od-ing / de
oding system, the AMP approa
h will display a greater variability andthere will be a greater quantization error9. Results show that in average, theloss in information transmission makes the AMP solution obviously less e�
ientthan the aSSC approa
h (see Fig. 4, Right). This is due to the higher variabilityof 
oding 
oe�
ients in AMP and therefore to the greater quantization errorindu
ed from the re
onstru
tion using Eq. 5. As a 
on
lusion, both solutionshave advantages, the e�
ien
y depending on a de�nition of the utility fun
tionand how we assigned the distribution of resour
es to a
hieve this goal. In a nut-shell, for the rapid spike 
oding of a transient signal an homeostati
 approa
has implemented in aSSC is signi�
antly more adequate while on a longer termfor a spike frequen
y representation, the more relaxed system in AMP may besu�
ient.4 Dis
ussionUsing the tools of statisti
al inferen
e and information theory, we derived quan-titative 
osts for the e�
ien
y of di�erent representation models for low-levelsensory areas. We then designed aSSC as a 
oding and learning solution whi
hheavily relied on basi
 aspe
ts of the neural ar
hite
ture, namely the parallelevent-based nature of the 
ode. Applied on pat
hes from natural s
enes, weproved here that aSSC is superior to the SparseNet ar
hite
ture in terms ofthe global e�
ien
y of information transmission. This re�e
ts the fa
t that inthis lo
al re
eptive �elds the LGM des
ribes well the images sin
e they are for in-stan
e no o

lusions. Similar approa
hes have been taken that 
ould be groupedunder the name of Sparse-Hebbian Learning (SHL) (Fyfe and Baddeley, 1995;Lewi
ki and Sejnowski, 2000; Olshausen and Field, 1996; Perrinet, 2004a; Rehn and Sommer,2007; Smith and Lewi
ki, 2006; Zibulevsky and Pearlmutter, 2001). A 
ommonadvantage of these strategies is that Hebbian learning may a

ount for the for-mation of re
eptive �elds if applied on a sparse representation and that the
oding algorithm used to obtain this sparseness was of se
ondary importan
e.These algorithms may be variants of 
onjugate gradient, of Mat
hing Pursuitor more generally based on 
orrelation-based inhibition (for a review, see (Pe
e,2002)). A more radi
al solution based on neurophysiologi
al eviden
e and notbased on a generative model was proposed by (Hamker and Wilts
hut, 2007),but was in the end also interpretable as an optimization s
heme and therefore tothe de�nition of a 
ost through a generative model of the signal to 
ode. Thus,these SHL s
hemes are all similar optimization algorithms, gradually improving9This result did not 
hange qualitatively when using an entropi
 
ost in bits per spike, theAMP requiring ne
essarily less bits per pixel sin
e in aSSC the 
oe�
ients' pdf is uniform.24



the e�
ien
y using a sto
hasti
 algorithm on the database of signals. With a
orre
t tuning of parameters, all of these unsupervised learning algorithms willshow the emergen
e of edge-like �lters thanks to the 
orrelation-based inhibitionsu
h as may be observed to be ne
essary for the formation of elongated re
eptive�elds (Bolz and Gilbert, 1989). However, a major advantage of our formulationis the fa
t that it tightly 
ouples the e�
ien
y measure to the 
oding representa-tion. In fa
t, we expli
itly link here the sparseness 
onstraint with the e�
ien
yof inverting the generative problem. Also, we 
an predi
t that applying thehomeostasis 
onstraint on the other SHL s
hemes will result in s
hemes withmore e�
ient spike 
oding 
apa
ity. In parti
ular, the e�
ien
y is based on thespiking nature of neural information while other algorithms relied on a �ring-frequen
y representations. In these s
hemes based on an analog representation,the problem of 
oding and de
oding of the values was not expli
itly addressedand in most of the 
ases the de
oding solution was a
hieved as the �xed pointsolution of a re
urrent network. This solution therefore requires at ea
h 
odingstep to settle to a �xed point and is therefore in
ompatible with the rapidityof 
orti
al pro
essing (Keysers et al., 2000). Moreover, a 
ru
ial feature of oursolution is that the output of the 
oding algorithm gives non-linear results. Forinstan
e, for a mixture of images, the output to the sum of two images is notne
essarily the sum of both individual output. Note that as in (Troyer et al.,1998), the response sele
tivity to rotated oriented lines will be sharper than thelinear response but also that it will be relatively 
ontrast-invariant (Perrinet,2005). This provides an alternative to the debate between forward and re
ur-rent models for the origin of sele
tivity by o�ering a fun
tional reasoning behindthe emergen
e of orientation sele
tivity. In parti
ular, we predi
t that it willexhibit a similar non-linearity in the spiking response without the need of ex-pli
itly adding after the �rst stage of mat
hing a parametrized non-linear gain
ontrol that mat
hes physiologi
al re
ordings (Carandini et al., 1997, 2005). Asa 
onsequen
e, by taking advantage of the parallel ar
hite
ture of the 
ortex,the aSSC ar
hite
ture provides a new and simple interpretation for the re
ep-tive �elds of neurons whi
h in this view self organize optimally with neighboringneurons and 
an therefore only be understood as a whole in an assembly.The work presented here is part of a larger program aiming at assessing qualita-tively the fun
tional e�
ien
y of di�erent modeling solutions to 
omputationalneuros
ien
e problems and at providing 
omputational appli
ations. Using 
on-straints from neuros
ien
e, we have built a solution to the LGM inverse prob-lem whi
h we proved to be more e�
ient than the Mat
hing Pursuit algorithmby using these quantitative tools. We proved that this aSSC algorithm wasan e�
ient unsupervised algorithm that 
ompetes with standard methods forsear
hing independent 
omponents in signals and that the 
oding was an ef-�
ient 
oder for binary messages with over-
omplete di
tionaries. In fa
t, byin
luding an adaptive homeostasis me
hanism, we optimized the e�
ien
y of therepresentation (the COMP algorithm) and proved that image pat
hes 
ould bee�
iently 
oded by the binary event-based representation. We proved also thatthis homeostasis played a signi�
ant role in these results but also that 
ounter-intuitively that textured �lters 
ould also be good 
andidates for optimal 
oding25



in V1 if the goal was set by a di�erent 
oding 
ost. Its e�
ien
y makes it agood 
andidate for future te
hnologies of information pro
essing. In parti
ular,it 
ompares favorably with 
ompression methods su
h as JPEG (Fis
her et al.,2007). Moreover, a major advantage is that it provides a progressive dynami-
al result while the 
onjugate gradient method had to be re
omputed for anydi�erent number of 
oe�
ients. In fa
t, the most relevant information is prop-agated �rst and the re
onstru
tion may be interrupted at any time. All thesemodels were implemented with the intention of providing reprodu
ible resear
hand are freely available and we en
ourage to modify them (see Annex. 5.1).The main advantage of this type of formulation is that it uses a simple set ofoperations: 
omputing the 
orrelation, applying the point non-linearity from aLook-Up Table, 
hoosing the ArgMax, doing a subtra
tion, retrieving a valuefrom a Look-Up-Table (see Se
. 2.6). In parti
ular in this parallel algorithm,the 
omplexity of the ArgMax operator does not depend on the dimension ofthe ve
tor as in 
lassi
al solutions and the transfer of this te
hnology to parallelar
hite
tures will provide a supra-linear gain of performan
e.To 
on
lude, we proved that using a spiking event-based representation 
ould bean advantage for the modeling of e�
ient neural networks and not only a 
on-straint for biologi
al plausibility. Thus, this may explain on a fun
tional levelwhy spikes have been sele
ted during evolution as an e�
ient signal quanta forlong range, rapid 
ommuni
ation. However, a major limitation of this algorithmis the use of transient signals and of relatively abstra
t neurons. This 
hoi
ewas made on purpose to stress the importan
e of the transient network's dy-nami
s versus traditional strategies using spike frequen
y representations. Itshows that solutions using spike 
oding/de
oding may be built and that theyprove to be of better e�
ien
y than traditional solutions. A solution of SSCfor 
ontinuous �ows was proposed under the term Causal Sparse Spike Codingin (Perrinet, 2007, Se
. 3.4), but some new problems arise (for instan
e the dy-nami
al 
ompromise between speed and pre
ision) that were beyond the s
opeof this paper. Another extension of the algorithm is to not use the impli
itON-OFF symmetry of �lters whi
h introdu
es the 
onstraint that if a �lter ex-ists, then the symmetri
 �lter exists, that is that we rate the e�
ien
y of amat
h by the absolute value of the 
orrelation 
oe�
ient. The relaxed 
ondi-tion proved to be more e�
ient, suggesting that the symmetry that is observedis more a general e�e
t and that sin
e neurons are not linear only integratorswith a re
ti�er, more e�
ient solutions may exist (see Annex. 5.2). This sim-ple ar
hite
ture provided also a ri
h range of other novel experiments, su
h asintrodu
ing topologi
al relations between �lters or by using a representationwith some build-in invarian
es, su
h as translation and s
aling in a gaussianpyramid su
h as in (Bednar et al., 2004; Hyvärinen et al., 2001). This last ex-ample provided a multi-s
ale analysis algorithm where the set of �lters that werelearned were a di
tionary of mother wavelets of the multi-s
ale analysis, hen
ethe name of SparseLet Analysis (Perrinet, 2007, Se
. 3.3.4). Another interestingperspe
tive is to study the evolution of the e�
ien
y of the algorithm with the
omplexity of the representation: when in
reasing the over-
ompleteness, oneobserves the emergen
e of di�erent 
lasses of �lters, su
h as di�erent positions26



and edges at �rst and then a similar edge with di�erent phases. Exploring theresults for di�erent dimensions of the di
tionary may give an evaluation of theoptimal 
omplexity of the LGM to des
ribe images in terms of a trade-o� be-tween a

ura
y and generality (see Annex. 5.3). Pushing this experiment to theextreme (that is when the over-
ompleteness equals the size of the di
tionary ofsignals), one would get a di
tionary where every single signal from the databasewould be represented, the so-
alled grand-mother neurons. More generally, thear
hite
ture of the 
onne
tions between 
orti
al areas highly suggests that neu-ral information is distributed, that this distribution is organized a

ording toa hierar
hi
al but also re
ursive ar
hite
ture. An important feature is the gen-eralization of the representation to 
ommon transformations (for an image atranslation, a di�erent non-uniform lighting, an o

lusion,...) robustly to noiseand interferen
es. This 
alls for the extension of this kind of approa
h to amore integrated multi-s
ale approa
h were events 
ould be a more general bitof information, from a synapti
 quanta, a spike (su
h as studied here), a burstin a 
orti
al 
olumn or a 
oherent a
tivation in a 
orti
al area.A
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ontrolling and 
omparing the 
onvergen
e of the algorithms and the relativee�e
t of the di�erent parameters. All s
ripts to reprodu
e the �gures and sup-plementary material are available upon request on the author's website (seehttp://in
m.
nrs-mrs.fr/LaurentPerrinet/SparseHebbianLearning). Ver-sion 1.5, rev. 666 and experiment 20080502T174325 are used for this paper, andother �gures regarding 
ontrol experiments may be found there. In parti
ular,all �gures ex
ept Fig. 1 were produ
ed dire
tly by the s
ripts without any edit-ing: s
ript experiment_learn.m for Fig. 2, s
ript experiment_nonhomeo.m forFig. 4 and s
ript experiment_
ode_effi
ien
y.m for Fig. 3. The original pa-rameters of SparseNet were used for the CGF algorithm. Supplementary Fig-ures may be 
onsulted on the author's website (see http://in
m.
nrs-mrs.fr/LaurentPerrinet/SparseHebbianLearning/SupplementaryFigures).
27

http://incm.cnrs-mrs.fr/LaurentPerrinet/SparseHebbianLearning
http://incm.cnrs-mrs.fr/LaurentPerrinet/SparseHebbianLearning/SupplementaryFigures


Table 1: Parameters used in the simulations. Note that aSSC uses 4 pa-rameters while CGF uses 9 parameters. Note also that the learning rate dependson the dimension of the di
tionary. In fa
t, in higher dimensions, the non-linear
orrelation 
oe�
ients will be ne
essarily lower and thus the learning slower(see Eq. 12). These parameters were determined from the original parametersfrom (Olshausen and Field, 1998) and then by sequentially optimizing using therobustness analysis (see Annex. 5.5).Des
ription Valueexperiment 20080417T 175704dimension of imagelets (CGF & aSSC) 256dimension of di
tionary (CGF & aSSC) 324number of learning steps (CGF & aSSC) 32001learning rate (CGF) 1learning rate (aSSC) 0.1bat
h size (CGF & aSSC) 100noise varian
e (CGF) 0.017noise varian
e (aSSC) 0.008homeostasis' learning rate (SSC) 0.001homeostasis' learning rate (CGF) 0.0025homeostasis smoothing rate (CGF) α 0.02desired varian
e (CGF) V AR − GOAL 0.1prior steepness (CGF) beta 0.2prior s
aling (CGF) sigma 0.1toleran
e (CGF) tol 0.0031
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Figure 5: Control of the statisti
s of the inputs. (Left) One set of 324
16× 16 imagelets drawn from the database provided with SparseNet. We usethe same presentation as Fig. 2. In order to have 
omparable pat
hes, the imageshad to be fairly homogeneous (and therefore textured) sin
e it is likely in naturalimages to draw a pat
h from a �at area (su
h as the sky) in whi
h 
ase the signalwas poor and the 
onvergen
e of the learning was slower. This was 
ontrolled bylearning using di�erent sets of images (not shown here). (Right) We show herea 16×16 matrix of 16×16 
orrelation values representing the 
ovarian
e matrixfor every pixel depi
ted in every box by showing the point-wise 
ross-
orrelation.This shows in every box the luminan
e's 
ross-
orrelation between 2 points: itis low (gray) 
ompared to auto-
orrelation (white) when in
reasing the distan
ebetween both points to more than one pixel, validating the whitening hypoth-esis for the image's prepro
essing. See s
ript experiment_stats_images.m toreprodu
e the �gure.
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Figure 6: Learning solution with non-negative 
oe�
ients. When re-leasing the symmetry 
onstraint, the learning algorithm 
onverged to a simi-lar set of �lters. However, the 
onvergen
e was qui
ker and proved to be ofhigher e�
ien
y when the information for the polarity (that is, one bit) wasrather used to double the size of the di
tionary (e�
ien
y measure not shownhere). This suggested that the assumption of symmetry of the sign of the 
oef-�
ients is not stri
tly true for the LGM and that a non-negative representationas implemented by (Lee and Seung, 1999) may be more e�
ient. See s
riptexperiment_symmetri
.m to reprodu
e the �gure.5.2 Annex: Releasing the 
onstraint of symmetry of �ltersTo 
ompare our algorithm with SparseNet, we similarly assumed that in thedi
tionary, �lters were symmetri
 (see Se
. 3.1). In fa
t, inspired by biology,re
eptive �elds often 
oexist with opposite polarities (the so-
alled ON/OFFsymmetry). This implied a 
onstraint in the generative model that when lookingfor a mat
h, the 
orrelation 
ould be positive or negative and therefore that thebest mat
h should be 
hosen as the greatest absolute value in Eq. 9. If we rather
hoose a di
tionary of double the size and that we 
hoose only the greatestvalues (that is not applying the absolute operator) we will obtain a system wereea
h spike would have the same informational 
ost (the additional bit repla
ingthe polarity bit from the symmetri
 
ase). We therefore look similarly to thenon-negative representation without any further modi�
ation of the algorithm.The solution to the problem when releasing the symmetry 
onstraint lookedqualitatively similar but proved to be of slightly higher e�
ien
y (see Fig. 6).5.3 Annex: Over-
ompletenessWe analyzed the e�e
t of in
reasing the size of the di
tionary, that is of in
reas-ing the 
omplexity of the representation, on the qualitative re
eptive �elds maps30



Figure 7: Learning solution with an in
reasing over-
ompleteness.When in
reasing the number of 
oe�
ients from 8× 8 (
enter,bottom), 13× 13(left,bottom), 21 × 21 (left, top) to 34 × 34 one sees that the 
omplexity ofthe features represented by the �lters progressively in
reases. However, only byusing the biggest map, 
ould one yield textured �lters and �end-stopping� 
ells.This 
ould be a result of a la
k of 
onvergen
e (we used the same number ofsteps for all experiments), but also the sign to a transition from representingedges and their di�erent transforms (apparently from the lower-dimension mapto the more 
omplex position, s
ale, spatial frequen
y and phase). An interest-ing perspe
tive is to do a 
luster analysis on the distribution of the parametersof the best �t Gabors to observe bifur
ations as a fun
tion of the 
omplexity.See s
ript experiment_stability_o
.m to reprodu
e the �gure.and on the e�
ien
y. When in
reasing the over-
ompleteness, one observes theemergen
e of di�erent 
lasses of �lters, su
h as di�erent positions and edgesat �rst and then a similar edge with di�erent phases (see Fig. 7). Exploringthe results for di�erent dimensions of the di
tionary gave an evaluation of theoptimal 
omplexity of the LGM to des
ribe imagelets in terms of a trade-o�between a

ura
y and generality for the dimension that we use in this study(not shown).5.4 Annex: Robustness to a perturbationAs an adaptive algorithm, we 
he
ked that the system returned to a similarma
ros
opi
 state after a perturbation. To illustrate that, we perturbed one�lter (by re-initializing it to a random �lter) and ran again the algorithm. The31



�rst e�e
t was that the 
orresponding gain fun
tion 
hanged sin
e the 
orrela-tion 
oe�
ients values dropped for that parti
ular neuron. As a 
onsequen
e,the homeostati
 
onstraint relatively �boosted� the 
orrelation values of thisneuron relative to the other neurons so that the 
hoi
e of 
hoosing any neuronwas still uniform. After a few steps, the �lter retrieved and edge-like shapewhi
h was often 
lose to the feature prior to the perturbation, sin
e this fea-ture was momentarily �absent� from the representation di
tionary. See s
riptexperiment_perturb.m to reprodu
e this experiment.5.5 Annex: Robustness of the methodsWe in
luded in our 
omputational framework the ability of exploring the evolu-tion of the e�
ien
y of one model when 
hanging one single parameter aroundthe operating point that was 
hosen over the experien
es (see table in An-nex. 5.1). This �perturbation analysis� allowed to tra
e if the 
hosen param-eters were giving lo
ally the best e�
ien
y so that the 
omparison of two al-gorithms was valid. It also allows to identify the parameters whi
h are themost relevant in the sense that small variations will indu
e bigger 
hangesof e�
ien
y. This was in parti
ular true for the SparseNet algorithm. Itshowed in parti
ular that SparseNet was more sensitive to parameters (in-
luding learning rate, homeostasis parameter) than our solution and that theparameters for tuning the parametri
 model (in parti
ular the parameters β and
σ) were of parti
ular importan
e. See s
ripts experiment_stability_eta.m,experiment_stability_homeo.mand to 
ontrol SparseNet experiment_stability_
gf.mto reprodu
e the experiments.Referen
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