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Optimal signal representation in neural spikingpopulation odes as a model for the formation ofsimple ell reeptive �eldsLaurent U. PerrinetInstitut de Neurosienes Cognitives de la Méditerranée (INCM)CNRS / University of Provene13402 Marseille Cedex 20, Franee-mail: Laurent.Perrinet�inm.nrs-mrs.frSeptember 19, 2008AbstratThe primary visual ortex is the entral hub for the transmission ofvisual information to the rest of the entral nervous system. We studyhere models explaining how this neural system beomes e�ient throughnatural seletion and neural development. By de�ning and then optimiz-ing an e�ieny ost, we may derive an adaptive model of the input tothe primary visual ortex as an unsupervised learning algorithm. As analternative to lassial models, we fous here on the fat that visual in-formation is arried from the sensory organs to the primary visual ortexby neuronal events, or spikes, in bundles of parallel �bers. In fat, takingadvantage of the onstraint that spikes may be onsidered as all-or-nonebinary events, we may build a generi ost for the e�ieny of the visualrepresentation as a measure of the L0 norm sparseness of the ode. How-ever, this is a �hard� NP-omplete problem and we propose a solution ina population of generi Integrate-and-Fire neurons. It relies both on aorrelation-based inhibition using lateral interations and on an homeo-stati onstraint by a spiking gain ontrol mehanism, two key featuresof ortial proessing. For omparison purposes, we applied this shemeto the learning of small pathes taken from natural images and omparedthe results and e�ieny with state-of-the-art algorithms. Results showthat while the di�erent oding algorithms gave similar e�ienies, thehomeostasis provided an optimal balane whih was ruial during thelearning. This study provides a simpler yet more e�ient algorithm forlearning that is partiularly well adapted to the arhiteture of neuralomputations. By providing the optimally independent omponents ina set of inputs, it suggests that this Sparse Spike Coding strategy mayprovide a generi omputational module.1
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KeywordsNeural population oding, Spike-event omputation, Statistis of natural im-ages, Independent Component Analysis, Sparse Spike Coding, Unsupervisedlearning, Sparse-Hebbian Learning1 IntrodutionThe neural arhiteture on whih our ognitive abilities are based is a dynamial,adaptive system whih evolves to provide optimal solutions in our interationswith the environment. Vision is a useful illustration of these properties and inpartiular, models for the formation of orientation seletive simple ell reeptive�elds in the primary visual ortex (V1) have attrated great attention as generimodels of oding and learning in neural omputations. Viewed from a funtionalapproah, the system evolved so that relevant sensory information is transformede�iently so as to allow in the end optimal deision making (Atik, 1992; Barlow,2001). The most aepted explanation for the formation of these ells in V1 isthat it optimizes the e�ieny of the neural representation over images drawnfrom natural senes, that is from behaviorally relevant senes. This may be for-malized as representing at best visual information while inreasing the sparse-ness of the representation (Olshausen and Field, 1996). Similar approaheshave been followed for natural images (Doi et al., 2007; Fyfe and Baddeley,1995; Hamker and Wiltshut, 2007; Perrinet, 2004a; Rehn and Sommer, 2007;Zibulevsky and Pearlmutter, 2001) and sounds (Lewiki and Sejnowski, 2000;Smith and Lewiki, 2006) that were based on solving the inverse of a generativemodel of the signal. These orrespond more generally to a oding part on ashort time sale and a learning part on a longer time sale whih orresponds to�nding the independent omponents in the natural senes (Bell and Sejnowski,1997). However, all of these solutions relied on spei� parameterizations anddidn't expliitly demonstrated how their algorithm ould be spei�ally adaptedto the nature of neural omputations. For instane, the oding was ahievedby onjugate gradient (Olshausen and Field, 1996) or orthogonal mathing pur-suit (Rehn and Sommer, 2007) without expliitly addressing the problem of theexisting representational onstraints in the ortex. More spei�ally, they don'tspei�ally take advantage of the parallel, dynamial and adaptive nature andarhiteture of neural omputations that make them di�erent from the ones o-urring in a traditional sequential omputer.In that diretion, a key aspet of neural omputations is that most informationbetween neurons is arried by spikes. Spikes (or Ation Potentials) are simplepulses of the membrane potential whose shape seems to arry few informationand whih may travel robustly over long distanes on axons1. In the humanearly visual system for instane, after �ashing a visual stimulus, suh as after1Spikes have a shape of approximately 1ms and are also present on dendrites sine theirpresene is linked to the dynamial properties of the ative ion hannels on the neuron'smembrane (Cessa and Samuelides, 2007). They are universally present in the entral nervoussystem but also aross speies and phylogeny.2



a saade, a asade of mehanisms will take plae after the ativation of thephotoreeptors in the retina. A volley of spikes leaves the retina through thebundle of axons that forms the opti nerve to reah the lateral geniulate nulei(after approximately 25ms). There, a new proessing takes plae generatinga new volley of spikes toward the primary visual ortex that is reahed afterapproximately 35ms (Bullier, 2001). The visual information that is �deoded�there is often onsidered to be �enoded� in the spikes' �ring pattern of every�ber. As a onsequene, neural omputations are event-based and dynamial:information transfer is parallel while in lassial solutions omputations are se-quential and non-interruptible. A goal of this work is to show how we may takeadvantage of spiking mehanisms to represent visual information in a dynami,parallel and event-based fashion.To ahieve that agenda, we will �rst analytially formulate the problem oflearning in the primary visual ortex. This mathematial part (Se. 2) maybe skipped at �rst by non-experts until Se. 2.6 but is essential to understandquantitatively the results1. We will �rst de�ne the funtion of the neural oding in a statistial in-ferene framework (see Se. 2.1) and then de�ne a possible spike odingalgorithm of a �ashed stati image (see Se. 2.2).2. This will allow to quantify the e�ieny of the spike oding in the neuralassembly by introduing the L0 norm as a measure of the sparseness ofthe spike ode (see Se. 2.3).3. Based on previous results (Perrinet et al., 2002), we will de�ne an e�-ient sparse spike oding and deoding sheme using orrelation-basedinhibition oupled with the spiking mehanism. Taking advantage of abiologially-inspired homeostati spike gain ontrol to ensure an optimalbalane within the assembly, we will improve the performane of the previ-ously proposed algorithm by optimizing the ompetition between neurons(see Se. 2.4).4. Finally, one these mehanisms are de�ned, we may easily derive an un-supervised learning algorithm (see Se. 2.5) and �nally derive a simplehebbian-type learning sheme on the sparse representation (see Se. 2.6).This means that to de�ne the learning algorithm we will �rst have to de�nethe framework, the oding and an e�ieny ost. Then, we will ompare theproposed algorithm with standard methods: SparseNet (Olshausen and Field,1996) and Adaptive Mathing Pursuit (Perrinet et al., 2003) and show the rel-ative importane of the oding sheme and of the homeostasis on the resultingsystems thanks to the quantitative measures of e�ieny (see Se. 3). We willonlude by omparing this method with previously proposed shemes and howthese may be reoniled to improve our understanding of the neural ode bydrawing the link between struture (spikes in a distributed network) and fun-tion (e�ient oding) and explore the signi�ant parameters at work in thesemehanisms. 3



2 Method : adaptive Sparse Spike Coding (aSSC)2.1 Generative models and statistial infereneWe saw that in low-level sensory areas, the goal of neural omputations isto build e�ient intermediate representations to allow e�ient deision mak-ing (Barlow, 2001; Field, 1994). A �good� representation of the world shouldmap at best the information from the physial signals whih are relevant for thesensory area under study. Furthermore, it will be more e�ient if it is easilytransformable aording to usual transforms. In visual areas for instane, anyrepresentation of a sene should be easily transformed for any translation orrotation of the sene2, sine these are ommon movements and that higher-levelareas will need to take into aount this information. As a onsequene, it iseasier to de�ne �rst a synthesis model of the world and its transformations andthen to build the representation by inverting this model. This synthesis model(also alled the forward model) may be built using statistial observations orwith prior assumptions on the physis of the generation of the signal. A LinearGenerative Model (LGM) (Olshausen and Field, 1998) is a generi ase wherethe signal may be thought as the linear ombination of independent auses. In-verting the forward model orresponds in the terminology of signal proessingto the oding proess, sine it transforms the signal (for instane the observedimage) into a more abstrat representation as a ombination of omponentsfrom the forward model (for instane the edges the image is formed from). Thisoding may then be used to understand the ontent of the signal relative tothe (forward) synthesis model but also to validate on a longer term the odingalgorithm solving the inverse problem. In fat, one strategy is to build learn-ing proesses whih optimize the overall e�ieny of the representations for aknown oding algorithm. It is then expeted that the omparison of di�erentlearning strategies will help us understand the proesses underlying reeptive�eld formation (here in the input layer 4 of V1) as a generi neural omputation.For instane, some oding algorithms seem better than others and omparingtheir relative e�ieny will highlight the reasons why some aspets of the neuralarhiteture (parallel event-based omputations, lateral interations within theortial area) were seleted during evolution.Formally, to de�ne the LGM, we will use a �ditionary� of N images repre-sented by the matrix A = {Aj}1≤j≤N , eah of these being de�ned by Aj =
{Aij}1≤i≤M over the set of sampling positions i (that is the pixels in a simpleimage proessing framework). Knowing A and the �soures� s = {sj}1≤j≤N ,the signal x = {xi}1≤i≤M is de�ned as

x =
∑

1≤j≤N
sj .Aj + n = A.s + n (1)where n is a deorrelated gaussian additive noise of variane σ2

n. This noisemodel is ahieved thanks to the preproessing (whih ould be ahieved in gen-2We will restrit ourselves to stati �ashed images sine they are behaviorally importantfor pattern reognition and beause they will highlight the problem of the parallel spatialproessing by populations of neurons. 4



eral by Prinipal Component Analysis) without loss of generality sine the pro-essing is invertible (Perrinet, 2004b) (see Fig. 5). The LGM is well adapted tonatural senes beause transpareny laws are linear for luminane values andthus the LGM desribes well the synthesis in a loal neighborhood of any naturalimage. The goal of any oding algorithm for the inverse problem is to �nd foran observed x the best set s of soures that generated the signal. Then, the goalof a learning algorithm is to adapt at best in the long term to the parametersof the LGM, that is to the matrix A and the statistis of s. This ditionary
A is possibly muh larger than the dimension of the input spae (that is when
N >> M); the ditionary is then said to be over-omplete. One advantage ofover-omplete ditionaries is that it's representational power is greater and thatfor instane if the ditionary is transform invariant then it is easy to build atransform invariant representation. On the other hand this leads to a ombi-natorial explosion for the inversion of the LGM and typially, there exist manysolutions for one input. We will see in Se. 2.3 how we may quantify the globale�ieny of the oding and in Se. 2.4 the solution that we propose, but let's�rst de�ne how one may evaluate the likelihood of any soure knowing an input
x.In fat, having de�ned the forward model, we may now be interested in omput-ing how well a partiular instane of the signal (here an image) mathes withthe model. From (Perrinet, 2004b, 2007), we know that for a given signal x, thelog-probability log P ({sj}|x,A) orresponding to a single soure sj .Aj for any
j is maximal for the projetion oe�ient de�ned by:

s∗j =< x,
Aj

‖Aj‖2
>

def
=

∑

1≤i≤M x(i).Aj(i)
∑

1≤i≤M Aj(i)2
(2)where def

= means �equal by de�nition�. This is based on the hypothesis thatthe signal is a realization of the LGM as it is de�ned in Eq. 1 and for whihwe assume no prior knowledge on the oe�ients. The log-probability is thenmaximal globally for the soure j∗ with maximal orrelation oe�ient j∗ =ArgMaxjρj with
ρj = <

x

‖x‖
,

Aj

‖Aj‖
> (3)

def
=

∑

1≤i≤M x(i).Aj(i)
√

∑

1≤i≤M Aj(i)2.
√

∑

1≤i≤M x(i)2It should be noted that ρj is the M th-dimensional osinus and that its absolutevalue is therefore bounded by 1. The value of ArCos(ρj) would therefore givethe angle of x with the pattern A and in partiular, the angle would be equal(modulo 2π) to zero if and only if ρj = 1 (full orrelation), π if and only if
ρj = −1 (full anti-orrelation) and ±π/2 if ρj = 0 (both vetors are orthogonal,there is no orrelation). Also, the orrelation oe�ient is independent of thenorm of the �lters and we will assume without loss of generality in the rest that5



these are normalized to unity (that is that ∀j, ‖Aj‖ = 1).In anonial models of neural modeling this orresponds to the linear dendritiintegration over the reeptive �eld, produing for a positive orrelation a drivingurrent leading to the hyper-polarization of the ell and possibly to spiking. Thisjusti�es the omputation of the orrelation in the pereptron model (Rosenblatt,1960) as it provides a diret measure of the log-probability under the assump-tions that we used (the LGM with Gaussian noise and uniform priors). Startingfrom this basi mehanism, one ould ompute for every signal a vetor fromthe set of ativities orresponding to how well the neurons orresponded to pat-terns in the image prede�ned in the weights matries. This representation isertainly not expliit and ould be implemented in various ways whih are outof the sope of this paper (Ma et al., 2006). However, we will now explain howthis information may be oded and deoded by a set of spiking neurons with asimple Linear/Non-Linear (L/N-L) arhiteture (Carandini et al., 1997, 2005).2.2 Spike oding and deoding of a transient signal in apopulation of neuronsIn fat, before de�ning a possible e�ieny ost based on the LGM, it is ne-essary to de�ne how information may be oded using the binary event-basedrepresentations underlying neural spiking ativity. As a matter of fat, neu-rons are intrinsially dynamial systems and we will take advantage of thisproperty to transform the signal into a volley of spikes. For the large lass ofIntegrate-and-Fire neurons whih is relevant for neurons in the input layer ofthe primary visual ortex, we may use the fat that the larger the driving ex-itation, the larger the �ring frequeny and dually the shorter the lateny ofspiking (Perrinet et al., 2004). More preisely, let's onsider a population of Nneurons as an information hannel for whih we wish to ode and then deodea vetor s = {sj}1≤j≤N only by transmitting spikes. If for instane we write
sj = |ρj |, for any j of this vetor, higher values will represent more salientfeatures than lower values. Classially, one would map eah value to an exi-tation value whih orresponds through a monotonously inreasing funtion toa spiking lateny or frequeny, whih an then be deoded by the orrespond-ing inverse funtion. The dynami propagation ordered by lateny propagating�important� information �rst. By using Integrate-and-Fire neurons (Lapique,1907), we may assoiate a single neuron to every value from the vetor we wantto transmit. For the linear Leaky-IF, if we assoiate a driving urrent to eahvalue sj (with 0 ≤ j ≤ N), it will eliit spikes with latenies (Perrinet et al.,2004) λj(sj) where λj is a monotonously dereasing funtion of sj orrespondingto the transformation of the linear value into a lateny. By this arhiteture,sine the lateny is monotonously dereasing, one implements a simple ArgMaxoperator in the form of the the ordered list of output spikes.However a �rst problem arises when we onsider the set of di�erent exitationvetors globally. In fat, if the probability distribution funtion (pdf) of theinput ativation is not uniform, then the average spiking ativity of the neu-rons will be a priori di�erent. In the ompetitive network formed with the6



neural ells, this is in disagreement with the general fat that spikes are similarand should therefore arry similar information to the di�erent e�erent neuronstheir axons are onneted to. While the impat of eah spike on a reeivingneuron is variable (this being measured by the synapti weight as the fore ofthe post-synapti urrent) spikes are binary all-or-none events. To maximizethe representational information of possible spike patterns, it is neessary thatneurons of the same lass in one assembly should build up a distributed repre-sentation where ativity is on average uniformly distributed. Equivalently, thedistribution of oe�ients represents exatly the a priori knowledge in Bayesianterminology, so that this equalization is justi�ed by the hypothesis underlyingEq. 2. Another dual explanation is that spikes have similar metaboli osts andthat the system should balane the use of the di�erent neurons so as to mini-mize the average metaboli use by the system3. To optimize the e�ieny of theArgMax operator, one has therefore to ensure that one optimizes the entropy ofthe index of output spikes and therefore of the driving urrent. This may be en-sured by modifying the di�erent funtions λj so that for all j, the distributionsof λj(sj) are similar and that the overall distribution orresponding to λ has ashape adapted to the neural dynamis. The seond point ��nding an optimallateny envelop� will be out of sope of this paper, and we will without loss ofgenerality only try to �nd funtions fj (with λj = λ◦fj) suh that the variables
zj = fj(sj) are uniformly distributed between 0 and 1.A standard method to ahieve this homeostasis is to map the input vetor
{sj} through a point non-linearity4 whih equalizes the probability of the out-put (Atik, 1992). This method is similar to histogram equalization in im-age proessing and provides an output with maximum entropy for a boundedoutput: it therefore optimizes the oding e�ieny of the representation interms of ompression (van Hateren, 1993) or dually the minimization of intrin-si noise (Srinivasan et al., 1982). It may be easily derived from the probability
P of variable sj by hoosing the non-linearity as the umulative funtion

fj(s
∗
j ) = P (s∗j )

def
=

∫ s∗j

−∞

dP (sj) (4)where the symbol dP (x) = pX(x)dx will here denote in general the probabilitydistribution funtion (pdf) for random variable X . The equalization proesshas been observed in a variety of speies and is for instane perfetly illustratedin salamander's retina (Laughlin, 1981). It may evolve dynamially to slowlyadapt to varying hanges in luminane values, suh as when the light diminishesat dawn but also to some more elaborated sheme within a map (Hosoya et al.,2005). As in theoretially �ideal demoray� all neurons are �equal� and whenhanging the neurons parameters suh as with a learning, this proess has tobe dynamially updated over a time sale similar at least larger than the learn-ing time sale so as to still ahieve optimum balane. As a onsequene, sine3However, this argument is a onsequene through evolution from the �rst, sine the goalof neural omputations is primarily to be an e�ient proessor before being an eonomi one.4That is to a set of salar non-linearities applied independently to every single element ofthe vetor. 7



for all j, the pdf of zj = fj(sj) is uniform and that soures are independent,the vetor {zj} may be onsidered as a random vetor drawn from an uniformdistribution in [0, 1]. Knowing the di�erent spike generation mehanisms whihare similar in that lass of neurons, every vetor {sj} will thus generate a listof spikes {j(1), j(2), . . .} (with orresponding latenies) where no information isarried a priori in the lateny pattern but all is in the relative timing arossneurons. Finally, the signal is transformed in this partiular implementation ofa L-NL arhiteture (see Fig. 1). The di�erene is �rst that the non-linearityis determined by the statistis of the input. Seond, the neurons are not gen-erated aording to independent Poisson point proesses but aording to thedeterministi (possibly noisy) equations of the generalized Integrate-and-Fireneurons, sine there is a priori no reason to lose information.We oded the signal in a spike volley, but how an this spike list be �deoded�,espeially if it is onduted over some distane and therefore with an additionallateny? In the ase of transient signals, sine we oded the vetor s = {sj}using the homeostati onstraint from Eq. 4, we may retrieve the analog valuesfrom the order of �ring neurons in the spike list. In fat, knowing the �address�of the �ber j(1) orresponding to the �rst spike to arrive at the reeiver end,we may infer that it has been produed by a value in the highest quantile of
P (sj(1)) on the emitting side. We may therefore deode the orresponding valuewith the best estimate ŝj(1) = f−1

j(1)(
1
N

) where N is the total number of neurons.This is also true for the following spikes and if we write as rj(k) = 1− zj(k) = k
Nthe relative rank of the spike (that is neuron j(k) �red at rank k), we anreonstrut the orresponding value as

ŝj(k) = f−1
j(k)(1 −

k

N
) (5)This orresponds to a generalized rank oding sheme (Perrinet, 1999; Perrinet et al.,2001). First, it loses the information on the absolute lateny of the spike trainwhih is giving the maximal value of the input vetor. This has the partiularadvantage of making this ode invariant to ontrast (up to a �xed delay due tothe preision loss indued by noise). Seond, when normalized by the maximalvalue, it is a �rst order approximation of the vetor whih is espeially relevantfor over-omplete representations where the information ontained in the rankvetor is greater than the information ontained in the partiular quantizationof the image5.This ode therefore fouses on the partiular sequene of neurons that werehosen and loses the partiular information that may be oded in the patternof individual inter-spike intervals in the assembly. A model aounting for theexat spiking mehanism would orret this information loss, but this would beat the ost of introduing new parameters (hene new information), while it5To give an order of the upper bound for the information in a ranked spike list is thanksto Stirling's approximation of order log2(N !) = O(N. log(N)), that is more than 2700 bits for

324 neurons. However, we are generally unable to detet quantization errors on an imageonsisting of more 256 gray levels, that is for 8 bits per pixel.8
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Figure 1: Spike oding hannel using homeostati gain ontrol. We showhere how a bundle of L-NL neurons (Carandini et al., 1997, 2005) tuned by asimple homeostati mehanism allow to transfer a transient information, suhas an image, using spikes. (L) The signal to be oded, for instane the math
sj of an image path (the tiger on the left bottom) with a set of �lters (edge-likeimages), may be onsidered as a stohasti vetor de�ned by the probability dis-tribution funtion (pdf) of the values sj to be represented. (NL) By using theumulative funtion as a point non-linearity fj , one ensures that the probabilityof zj = fj(sj) is uniform, that is that the entropy is maximal. This non-linearityin the L-NL neuron implements a homeostasis that is ontrolled only by the timeonstant with whih the umulative probability funtion fj is omputed (typi-ally 104 image pathes in our ase). (S) Any instane of the signal may then beoded by a volley of spikes: a higher value orresponds to a shorter lateny anda higher frequeny. (D) Inversely, for any spike events vetor, one may estimatethe value from the �ring frequeny, the lateny. We may simply use the orderingof the spikes sine the rank provides an estimate of the quantile in the probabil-ity distribution funtion thanks to the equalization. Using the inverse of fj oneretrieves the value in feature spae so that this volley of spikes is deoded (ordiretly transformed) thanks to the relative timing of the spikes using the modu-lation (see Eq. 5). This builds a robust information hannel where information issolely arried by spikes as binary events. Given this model, the goal of this workis to �nd the most e�ient arhiteture to ode natural images and in partiularto de�ne a oding ost and to derive a learning algorithm. To draw a quantita-tive omparison with state-of-the-art algorithms Lewiki and Sejnowski (2000);Rehn and Sommer (2007); Smith and Lewiki (2006), we will use the frameforkused in SparseNet (Olshausen and Field, 1998).9



seems that this information would have a low impat relative to the total infor-mation (Panzeri et al., 1999). More generally, one ould use di�erent mappingsfor the transformation of the z value into the spike volley whih an be moreadapted to ontinuous �ows, but this sheme orresponds to an extreme ase (atransient signal) whih is useful to stress on the dynamial part of the oding byemphasizing solely on the �rst spike per neuron (van Rullen and Thorpe, 2001)and is mathematially more tratable. On a pratial note, we similarly usethe fat that the inverse of fj may be omputed from the mean over trials ofthe funtion of the absolute funtions as a funtion of the rank. In partiular,one may show that the oding error is proportional to the variability of thesorted oe�ients (Perrinet et al., 2004), the rest of the information being theinformation oded in the time intervals between two suessive spikes. Thus,the e�ieny of information transmission will diretly depend on the validityof the hypothesis of independene of the hoie of omponents and therefore onthe statistial model build by the LGM.It should be also noted that no expliit reonstrution is neessary (in the math-ematial sense of the term) on the reeiver side as we do here, sine the goalof the reeiver ould only be to manipulate information on for instane somesubset of the spike list (that is on some reeptive �eld overing a subpart ofthe population). In partiular one may imagine that we may add some arbi-trary global point linearity to the z values in order to threshold low values orto quantize values (for instane set all values to 1 only for the �rst 10% of thespikes). However, this full reonstrution sheme is a general framework forinformation transmission, and we may then imagine that if for instane we poolinformation over a limited reeptive �eld, the information needed (the ranks inthe sub-spikelist) will still be available to the reeiver diretly without havingto ompute the full set (in fat, sine the pdf of z is uniform, the pdf of a subsetof omponents of z is also uniform). Finally, we de�ned a simple spike odingalgorithm to transmit information robustly with events. However, it is not yetlear how we may quantitatively estimate its e�ieny.2.3 De�nition of the e�ieny of Spike odingNow that we de�ned the key onepts of the spike oding algorithm, we shouldbe able to derive a generi ost funtion that will allow us to quantify the ef-�ieny of di�erent oding algorithms but also to derive a learning algorithmfor the spike oding algorithm de�ned above. In fat, unless the ditionary Ais orthogonal, when hoosing one omponent over an other (for instane theone that maximizes Eq. 4), any hoie may in�uene the hoie of the otheromponents. For instane, if we hose the suessive neurons with maximumlinear orrelation values, the resulting representation will be proportionally moreredundant when the ditionary gets more over-omplete so that the linear or-relation values in general do not orrespond to the oe�ients of the LGM.For every signal x, one may state as in Oam's razor that given two solutionsof similar quality, the best is the one with lowest representational omplexity.Globally, we may introdue an �Oam fator� to ompare the e�ieny of dif-10



ferent representations (MaKay, 2003, Ch. 28.3). This fator may be expressedas the Kolmogorov-Chaitin omplexity and an be formalized in a probabilis-ti framework by using the bound given by Shannon's oding theorem as theaverage measure of the information to ode the input given the solutions (theoding sequenes) and the model's parameters (Lewiki and Sejnowski, 2000).A goal is therefore to maximize the evidene of the model that is to minimizethis information or similarly minimize the desription length (Rissanen, 1978).Furthermore, in the ontext of dynamial oding by spikes, this oding is pro-gressive and there will be a dynamial ompromise between the preision andthe omplexity of the representation.Using the same notation as in Se. 2.1 and Olshausen and Field (1998), the totalrepresentational ost is C def
= E(− log P (s|x,A)), where E(.) denotes averagingover multiple trials (that is di�erent image pathes x) and s is the oding se-quene. For one oding sequene, this ost may thus be written as the sum ofits likelihood probability knowing the set of soures added to the oding lengthof the set of soures:

C(s|x,A) = log Z +
1

2.σ2
n

‖x−
∑

j

ŝj .Aj‖
2 − log P (s|A) (6)where Z is the partition funtion (that we will omit in the sequel) and ŝ is thedeoded sequene. The e�ieny ost will be measured in bits if the logarithmis of base 2 (as will be assumed without loss of generality in the following). Forany oding s, the �rst term orresponds to the information from the image whihwas not retrieved by the whole oding/deoding algorithm (reonstrution ost)and that an be enoded at best using entropi oding pixel by pixel (it's thelog-likelihood in Bayesian terminology). The seond term is the representationost: it quanti�es the e�ieny of the representation as the desription length ofthe oe�ients and is equal to the entropi oding of s knowing its probabilitydistribution funtion (it is the log-prior).We will assume independene of the oe�ients and therefore log P (s|A) =

∑

j log P (sj |A). Moreover, based on a parameterization of the oe�ients' priorand on the assumption of a perfet reonstrution (that is ŝ = s), this yieldsthe sparseness ost de�ned in Olshausen and Field (1998):
C1(s|x,A) =

1

2.σ2
n

‖x −
∑

j

sj .Aj‖
2 + β

∑

j

log(1 −
s
2

σ2
) (7)where β is the steepness of the prior and σ is the prior saling (see Figure 13.2from (Olshausen, 2002)). This ost is related to the lassial ost with the L1norm but represents a more kurtoti probability distribution funtion for theprior than the Laplaian prior orresponding to the L1 norm. This ost thereforelinks the e�ieny to the sparseness of the ode by parametrizing a priori thesparseness of the oe�ients, the �oam fator� measuring the global evideneof the model knowing this parametrized prior.This liberty in the de�nition of the sparseness leads to a wide variety of pro-posed solutions to de�ning and optimizing this ost or sparse oding (for a11



review, see (Pee, 2002)) suh as numerial optimization (Lee et al., 2007;Olshausen and Field, 1998), non negative matrix fatorization (Lee and Seung,1999; Ranzato et al., 2007) or by using Mathing Pursuit (Perrinet et al., 2003;Rehn and Sommer, 2007; Smith and Lewiki, 2006). Note that this ost wille�iently quantify the representation e�ieny if the pdf of the oe�ients isindeed well �tted to the parameterization. Moreover, this variety may existin biologial systems by varying the optimal sparseness levels via regulationmehanisms (Assisi et al., 2007). However, this parameterization is not knowna priori and must be tuned aordingly to �t the model to the statistis ofnatural images and be further validated. This is the reason why we did builda non-parametri measure by taking advantage of the fat that thanks to thehomeostasis, the probability of �ring of every �ber is uniform aross the popu-lation. In fat, spikes are a priori equally likely to be generated on any of the
N neurons (see Se. 2.2), so that the probability of the origin of any new spikeis simply 1

N
. Therefore, di�erently to the SparseNet algorithm, the modelfor the statistis of the LGM assumes that spikes are independent all-or-noneevents and arry a binary representation as was presented above for the SpikeCoding algorithm (see Se. 2.2). This expliitly de�nes the information ontentof a spike volley as an ordered list of spikes where the whole information isoded in the �addresses� of the di�erent spikes in the list. Using a ditionary of

N neurons, the ost per spike may then be de�ned as log2(N) bits per spike, sothat we propose for the oding ost of a spike list to be simply:
C0(s|x,A) =

1

2σ2
n

.‖x−
∑

j

ŝj .Aj‖
2 + log2(N).‖s‖0 (8)where ‖s‖0 is the length of the retrieved solution (or also the L0 norm). Again,this ost is only valid if the probability of every spike is a priori uniform andtherefore the ost used in (Rehn and Sommer, 2007) should inlude a orretionterm in the L0 norm to aount for this non-unifomity. It also expliitly ratesthe eonomy of onsumed metaboli resoures as is used in (Rehn and Sommer,2007), but we may again onsider this only as a onsequene of the optimiza-tion. Note �rst that for any spike oding solution, this ost funtion is dynamisine the number of spikes inreases in time. Note also that it links e�ieny tosparseness for a known representation error solely on the basis that the spikingrepresentation is binary and event-based. More generally, suh a sparse repre-sentation is the best solution to allow a good disriminability between di�erentpatterns and is similar with information riterions suh as the AIC (Akaike,1974) or distortion rate (Mallat, 1998, p. 488). For instane, as a model ofthe input layer of the primary visual ortex, optimizing the oding aordingto Eq. 8 will provide the best representation to segregate di�erent orientationsfor instane by representing the ridge of edges in images instead of representingthe linear orrelation as de�ned by Eq. 4. In a nutshell, sparser representationmake �more peaked� ross-orrelograms. This also means that the seletivityof neurons is therefore sharper than the response predited by linear �lters,suh as is observed in orientation tuning (Troyer et al., 1998). Resolving the12



oding problem with the L0 norm is therefore a matter of getting the best sin the sense of Eq. 8 knowing x, that is ArgMins(C0(s|x,A)). However, evenwhen assuming perfet quantization, this is a non-onvex optimization problemwhih is NP-omplete with respet to the dimension N of the ditionary (Mallat,1998, p. 409). Instead of going bak to an orthogonal basis to irumvent thisdi�ulty, biologial neural systems seem to use sparsity as a generi tool fore�ient signal representation (Baudot et al., 2004; Deweese and Zador, 2003;Vinje and Gallant, 2000). We will present here a solution to this problem in-spired by the arhiteture and dynamis of the primary visual ortex.2.4 Sparse Spike CodingWe saw that overoming the ine�ieny of the L-NL arhiteture by optimizingthe hoie aording to Eq. 8 leads then to a ombinatorial explosion. To solvethis NP-omplete problem to model realisti representations suh as when mod-eling the primary visual ortex, one may implement a solution designed after therihly laterally onneted arhiteture of ortial layers. In fat, an importantpart of ortial areas onsists of a lateral network propagating information inparallel between neurons. We will here propose that the NP-problem an beapproximately solved by using a ross-orrelation based inhibition between neu-rons. In fat, as was �rst proposed in Sparse Spike Coding (SSC) (Perrinet et al.,2002), one ould use a greedy algorithm on the L0 norm ost de�ned in Eq. 8 toreursively ompute the sparse oe�ients. The sparse oding part is basiallyequivalent to the Mathing Pursuit (MP) algorithm (Mallat and Zhang, 1993)and the sparse oe�ients will be transmitted, quanti�ed and deoded in thesame way as in the Spike Coding sheme for the linear orrelation oe�ients(see Se. 2.2).More spei�ally, let's �rst de�ne Competition-Optimized Mathing Pursuit(COMP) by introduing non-linearities in the hoie step of MP orrespond-ing to the optimized gain ontrol funtions de�ned in Eq. 4 (Perrinet, 2008).Like Mathing Pursuit, it is based on an initialization and two repetitive steps.At initialization, given the signal x, we set up the input vetor as the absolutevalue of the linear orrelation oe�ient, that is for all j to s
(0)
j = |ρj | (andwe will write x

(0) = x, ρ
(0)
j = ρj). These values s

(0) are proportional to the aposteriori probability knowing x (see Eq. 4). Then we repeat the two followingsteps that we index by their rank k (initialized at 0). First, we are searhingfor the bestsingle soure orresponding to the maximum a posteriori (MAP)knowing x
(k) whih is proportional to s

(k)
j = |ρ

(k)
j | but modulate this hoie bythe point non-linearity fj . This Mathing step is thus de�ned by:

j(k) = ArgMaxj [fj(s
(k)
j )] (9)In a seond Pursuit step, the information is fed-bak to orrelated souresthrough:

x
(k+1) = x

(k) − ρ(k).Aj(k) (10)13



where we note ρ(k) = ρ
(k)

j(k) the maximal salar projetion < x
(k),Aj(k) > (seeEq. 2). Equivalently, from the linearity of the salar produt (see Eq. 4), wemay instead propagate information laterally:

ρ
(k+1)
j = ρ

(k)
j − ρ(k) < A(k) ,Aj > (11)As desribed in (Perrinet, 2004b), while the Mathing step is e�iently per-formed by the LIF neurons driven by the (NL) layer (see Fig. 1), the pursuitstep ould be implemented in a ortial area by a orrelation-based inhibition.In Fig. 1, it will orrespond to a lateral interation within the linear (L) neuronalpopulation. This type of inhibition is typial of fast-spiking interneurons thoughthere is no diret evidene of an ativity-based synapti topology. COMP sharesmany properties with MP, suh as the monotonous derease of the error or theexponential onvergene of the oding. The algorithm is then iterated withEq. 9 until some stopping riteria is reahed.Sparse Spike Coding (SSC) is then de�ned as the spike oding algorithm thattransforms an image x into a list of spikes {j(k)} de�ned as the ordered listof the addresses of neurons that �red in the Mathing step (and to the or-responding values {ρ(k)}) as was desribed in the Spike Coding sheme (seeSe. 2.2). This sheme thus extends the algorithm based on the Mathing Pur-suit (MP) algorithm proposed in (Perrinet et al., 2002) by linking it to a sta-tistial model whih tunes optimally the mathing step. In fat, all hoies arestatistially equally probable thanks to the adaptive point linearity so that onemaximizes the entropy of every math and therefore the omputational power ofthe ArgMax operator. Think a ontrario to a totally unbalaned network wherethe math will be always a given neuron: the spikes are totally preditable andthe information arried by the spike list then drops to zero. In pratie, the

fj funtions are initialized for all neurons to the identity funtion (COMP isthen a simple MP algorithm) and then Eq. 4 is evaluated after the end of everyoding sweep using an online stohasti algorithm with a �learning� parameterorresponding to a smooth average whih e�et was ontrolled (see Fig. 4 andAnnex. 5.5). As a matter of fat, this algorithm is irular sine the hoie of sis non-linear and depends on the hoie of fj . However, thanks to the exponen-tial onvergene of MP, for any set of omponents, the fj will onverge to theorret non-linear funtions as de�ned by Eq. 4.2.5 Introduing Hebbian Learning in SSCWe may now �nally derive the unsupervised learning model by optimizing thee�ieny of SSC with respet to the e�ieny ost de�ned in Eq. 8. In fat,on a longer time sale, the e�ieny of the system may be optimized by slowlyadapting the ditionary A as in SparseNet thanks to the sparse solution givenby the oding algorithm. More generally, knowing the oding algorithm, anunsupervised learning solving the e�ieny ost is related to the goal of Inde-pendent Component Analysis (ICA), sine knowing that the signal is reated bya mixture of omponents as in Eq. 1, it tries to �nd the best set of omponents14



so that the representation is well desribed by the fewer number of omponents.As in SparseNet, this an be seen as a joint optimization of the reonstrutionand the sparseness. We may implement this for every image at any oding step
k after Eq. 9 (that is after a spike of address j(k) is emitted) sine we havean evaluation of the log-likelihood by the distane of the residual image to theseleted �lter, that is to ‖x(k) − ρ(k).Aj(k)‖2, the rest of the signal being re-garded as a perturbation whih will anel out on average. Using the gradientdesent approah used in (Olshausen and Field, 1998), we similarly infer thatwe may slowly modify the winning weight vetor orresponding to the winning�lter ρ(k).Aj(k) by taking it loser to x

(k),
∂C(sj(k) |x(k),A)

∂Aj(k)

= 1
2σ2

n
.
∂‖x(k)−ρ(k).A

j(k)‖
2

∂A
j(k)

= 1
2σ2

n
.ρ(k)(x(k) − ρ(k).Aj(k))that is:

Aj(k) = Aj(k) + ηρ(k)(x(k) − ρ(k).Aj(k)) (12)where η is the learning rate, whih is inversely proportional to the time saleof the features being learned.A more rigorous mathematial approah for thelearning is to onsider a rotation of Aj(k) toward x
(k) using a Jaobi Matrixrotation so that all omponent vetors stay on the unit sphere. In pratie,Eq. 12 for small learning rates η followed by a normalization is a good approx-imation of this high-dimensional (linear) transform. Basially, it will dereasethe angle between the �lter and the feature and therefore inrease the orre-lation: sine the energy dereases at every step in COMP by the energy ofthe seleted oe�ient (see (Perrinet, 2004b, Se. 2.1.3)), it will ensure thatthe derease is quiker and thus that the representation gets sparser. Similarlyto Eq. 17 in (Olshausen and Field, 1998) or to Eq. 2 in (Smith and Lewiki,2006), the relation is linear: it is an �Hebbian� rule (Hebb, 1949) in the las-sial sense sine it will enhane the weight of neurons of orrelated pre- andpost-synapti neurons. However, the novelty of this formulation is to apply thisformulation to the sparse representation at every single spike. In fat, note thatif the oding step is not the initialization, x(k) is the residual image (thus a non-linear transform of the initial x omputed using Eq. 10) and the ρ

(k)
j are thelinear orrelations with x

(k). The biologial orrelate of this adaptation ouldbe a �slow� anterograde signal going bakwards this feed-forward pass (Harris,2008). An improvement is to �bak-propagate� in early spikes of the follow-ing hoies to orret the gradient desent instead of regarding the residuals asa perturbation. This orresponds to Spike Coding with Orthogonal MathingPursuit as was implemented (without quantization) in the learning algorithmused in (Rehn and Sommer, 2007). However, this would imply a more omplexneural arhiteture and it did not drastially hange the e�ieny of the system.Without homeostasis, this algorithm (as well as SparseNet) is unstable. Infat, sine we start with random �lters, it is is more likely that any salient fea-ture would be seleted at �rst and will modify the �rst winning �lter. There15



is therefore a higher probability that the same neuron will be seleted with ahigher probability in subsequent learning steps, ausing a diverging non unifor-mity in the balane of the learning aross neurons. Whereas SparseNet usesthe norm of the �lters to ontrol the variane of the oe�ients aross neu-rons, the SSC mathing riteria (see Eq. 9) is intrinsially independent to thenorm of the �lters. While we implemented in AMP the homeostasis used by(Olshausen and Field, 1998), if we use the homeostati regulation (whih has asimilar time-sale than the learning), the probability of hoosing any neuron inCOMP remains uniform and ensures the onvergene of the learning algorithm(see Annex. 5.4). The homeostasis will therefore optimize the balane betweenthe neurons, assuring that the internal representation driving the spiking neu-rons may always be onsidered as a uniformly distributed random vetor. Notethen that on a long time sale, if two �lters at some point during the learningorrespond to �lters with di�erent seletivity (thus, they have di�erent pdf, themore seletive being more kurtoti), they are still seleted with the same prob-ability thanks to the non-linearity. However, sine on a bath of natural senes,the �lters orresponding to the less seletive neurons are less likely to be presentand from the relative �boost� indued by the non-linearity and whih ats as aortial gain ontrol, these �lters are more likely to hange. It is easier to imag-ine this property by drawing the Voronoi diagram on the unit M -dimensionalsphere orresponding to the possible positions of the �lters, the ditionary beingrepresented by N points on this sphere. For the diagram orresponding to theditionary eah entroid will be attrated toward the mean vetor of inputs or-responding to its Voronoi ell, as in the K-means algorithm. Sine we fore theprobability of seleting entroids to be uniform, the equilibrium of the learningis when the population of �lters, that is the ditionary, forms an uniform tilingof �lter spae. As a onsequene, the fj funtions beome equal at onvergeneand the mathing step beomes similar to the one in MP and in partiular if oneperturbs a �lter (by setting it to a random vetor for instane, that is a point onthe unit M -dimensional sphere) the algorithm will hange the whole ditionaryso that it settles to a new stable point (see Annex. 5.4). Finally, we �nd theounter-intuitive result that in aSSC, the homeostasis is more important duringthe learning period and may be ignored when synapses don't evolve anymore.2.6 Adaptive Sparse Spike Coding (aSSC)In summary, the whole learning algorithm is given by the following nested loops:1. Initialize the omponents A to random values on the unit N -dimensionalsphere and set the point non-linear gain funtion to unity (fj(s) = s forall j),2. repeat:(a) draw a signal x from the database,(b) ompute ρj for all j using Eq. 4, k = 016



() while ‖x(k)‖2 is above a ertain preision threshold do sparse spikeoding (SSC):i. emit a spike by seleting the best math j(k) with Eq. 9,ii. modify information orrelated to j(k) by omputing ρ
(k+1)
j for all

j using Eq. 11,iii. slowly modify Aj(k) using Eq. 12,iv. slowly update the fj for all j using Eq. 4v. inrement the rank kWhen onvergene is ahieved, one ould simply make a oding by using step(b) to initialize and then () and optionally for the pure spike oding evaluatethe oe�ient using Eq. 5 in step 2-()-ii. One advantage is that the greedyalgorithm may adapt to quantization errors (Perrinet et al., 2004, Fig.10). Thedeoding of the spike list {j(1), j(2) . . . j(k) . . .} is then simply:1. Initialize x̂ to a zero image and the rank k to zero,2. while we have spikes do :(a) retrieve the address j(k) of the spike and the orresponding value ŝ(k)of the oe�ient using Eq. 5,(b) add ŝ(k).Aj(k) to x̂,() inrement the rank k,Note that this pseudo-ode is given in a traditional sequential way where all stepsare given the one after the other. This orresponds to our atual simulations (seeAnnex. 5.1) but only orresponds to an event based desription of the dynamialproesses ourring in the system. In fat, in a dynamial implementation, allproesses are done in parallel and events just orrespond to the times where theintegration reahed a threshold (Perrinet, 2004b).3 Results on natural images3.1 Reeptive �eld formation: omparison with SparseNetWe �rst ompared this novel aSSC algorithmwith the SparseNet algorithm. Infat, this algorithm as other similar shemes only di�ers by the oding methodused to obtain the sparse representation and by the homeostasis sheme. Inpartiular, we foused herein in the validation and quantitative omparisonof both algorithms in terms of e�ieny on the task at hand that we de-�ned6. We used a similar ontext and arhiteture as the experiments desribedin (Olshausen and Field, 1998) and used in partiular the same database of in-puts as the SparseNet algorithm and restrit ourselves to study the seletion6See Annex. 5.1 for the table of parameters, details of the experimental setup and to a linkto reprodue the results. 17



Figure 2: Results of the proposed aSSC sheme ompared toSparseNet. Starting with random �lters, we ompare here the results of thelearning sheme with 324 �lters at onvergene (20000 steps) using (Left) thelassial onjugate gradient funtion method as is used in (Olshausen and Field,1998) with (Right) the Sparse Spike Coding method. Filters of the same size asthe imagelets (16×16) are presented in a matrix (separated with a blak border).Note that their position in the matrix is as in ICA arbitrary (invariant up toany permutation). Results repliate the original results of (Olshausen and Field,1998) and are similar for both methods: both ditionary onsist of gabor-like�lters whih are similar to the reeptive �elds of simple ells in the primaryvisual ortex. Edges appear in these onditions to be the independent ompo-nents of natural images. However, the distribution of the quality of the edges(in partiular their mean frequeny, length, width) appears to be di�erent andthe question remains as how we may ompare the e�ieny of the di�erentarhitetures quantitatively.of optimal �lters on imagelets (that is small pathes from natural images)7. Inpartiular, these images are stati, graysale and �ltered aording to the sameparameters to allow a one-to-one omparison of the di�erent algorithms.Here, we show the results for 16 × 16 pathes (so that M = 256) from thewhitened images and we hose to learn N = 324 �lters whih are repliatedas ON and OFF �lters (but see Annex. 5.2). Results show the emergene ofedge-like �lters (see Fig. 2) for a wide range of parameters (see Annex. 5.5 foran analysis of the robustness of the methods to variations of the parameters).Studying the evolution of one single �lter during the learning shows that it �rsts7These results should be taken as a lower bound for the e�ieny of adaptive Sparse SpikeCoding, sine the sparseness in imagelets is only loal, but sparseness is also spatial in naturalimages (Perrinet et al., 2004). For instane, it is highly probable in natural images that largeparts of the spae �suh as the sky� are �at. See (Perrinet, 2007, Se. 3.3.4) for an extensionto whole images. 18



represent any salient feature (suh as a sharp orner or edge) and that if it on-tains multiple edges only the most salient edge remains later in the learning.This is due to the ompetition between �lters, the algorithm ensuring that inde-pendent features should not be mixed sine this will result in a larger L0-norm.When looking at very long learning times, the solution is not �xed (for bothalgorithms) and edges may smoothly drift from one orientation to another whilethe ost still remains stable. This is due to the fat that there are many solutionsto the problem and that there is no onstraint suh as topologial links between�lters to derease the degree of liberty of solutions. Thus, as in ICA results areto be understood as a whole, and if for instane two �lters are swapped in theditionary, the e�ieny stays the same.However, it is not lear by the sole shape of the �lters alone whih solution ismost e�ient. In fat, rather than the shape of the omponents individually, it isthe distribution of the assembly of omponents in the image spae that will yielddi�erent e�ienies. Suh an analysis was performed with a qualitative analysisof the �lters' shape, by �tting them with Gabor �lters (Lewiki and Sejnowski,2000). A reent study ompares the distribution of the parameters of the Gabor�lters with neurophysiologial experiments (Rehn and Sommer, 2007). Theydid indeed show that their learning sheme, whih is also based on a Mathingpursuit algorithm, did better math than SparseNet the distribution of someparameters of Gabor �lters over the set of �lter observed in the maaque's pri-mary visual ortex. However, if this similarity is ertainly neessary, it is notsu�ient to understand the e�et of eah parameter and more generally to theemergene of edge-like reeptive �elds. We will rather try to evaluate quanti-tatively the relative e�ieny of the di�erent learning shemes to extrat whataspet is the most relevant.3.2 Quantifying e�ieny ompared to SparseNetTo address this question, we ompared the quality of both methods by om-puting the mean e�ieny of the oding as the learning onverged. Using 5.104imagelets drawn from the natural image database, we performed the progressiveoding of the images using both methods �rst for random vetors and then forthe �lters learned by eah method. First, we quanti�ed at the end of the odingthe distribution of oe�ients for the di�erent ases. To allow a omparison ofthe oe�ients, we normalized the oe�ients by the energy of the imagelets(sine thanks to Eq. 4 and Eq. 2, we have ρj = sj .
‖Aj‖
‖x‖ ) and by the norm of the�lters to retrieve oe�ients suh that

x

‖x‖
=

∑

1≤j≤N
ρj.

Aj

‖Aj‖
(13)these oe�ients are similar to the measure of the linear orrelation oe�ient(see Eq. 4). These non-linear orrelation oe�ients do math the linear or-relation oe�ients when the ditionary whih was seleted at eah oding isquasi-inoherent, that is that every seleted �lter is perpendiular to the residualof the oding (Gribonval and Vandergheynst, 2006). This is not true in general19
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Figure 3: Coding e�ieny of adaptive Sparse Spike Coding. Weevaluated the quality of the algorithm with two di�erent oding strate-gies by omparing the oding e�ieny of the sparse spike oding ('ss')method with the lassial onjugate gradient funtion ('gf') method as is usedin (Olshausen and Field, 1998). For the oding of a set of 5.104 image pathesdrawn from a database of natural images, we plot (Left) the distribution of bothmethods before and after the onvergene of the learning phase. At initializa-tion, the distributions are more gaussian (urves 'g-init' and 'ss-init') whilethey get more kurtoti: both algorithms yield at onvergene sparse distribu-tions of the oe�ients. We also plot (Right) the mean �nal residual error (L2norm) as a funtion of the relative number of ative (or non-zero) oe�ients(that is the normalized L0 norm and the oding step for SSC) whih provides anestimate of the mean oding e�ieny for the image pathes. Best results arethose providing a lower error for a given sparsity or a lower sparseness (betterompression) for the same error. In fat, the e�ieny ost measures Oam'srazor applied to oding: it states that for a given L2 norm, a lower omplexity(that is a lower L0 norm) is more e�ient (graphially, an horizontal line wouldross from left the best solution �rst). It should be noted that it is also simi-lar for the ost based on the L1 norm, a result whih may re�et that the L0norm de�nes a stronger sparseness onstraint. Moreover, one should take intoaount the fat that in the proposed algorithm the oding is onstrained to bebinary while it is analogous in SparseNet or in Lewiki and Sejnowski (2000);Rehn and Sommer (2007); Smith and Lewiki (2006) and there is no expliitlyde�ned quantization. Also, while in these shemes this aspet of the oding isnot studied or is expeted to be the �xed point of a reurrent system, we takehere advantage of the spiking representation to optimize the representation andthe speed of information transmission by a single spike volley.20



and the ρj orrespond here rather to a measure of the quality (measured asa log-probability) of the math with the signal of eah from the sparse set ofseleted soures. When plotting the histogram of the non-linear orrelationoe�ients, one sees that distributions are approximately gaussians with theinitial random �lters �a result that one ould have predited from the entrallimit theorem� but that these beome very kurtoti after the onvergene ofthe learning (see Fig. 3-Left). The measure of the kurtosis of the resulting odewords proved to be very sensitive and a poor indiator of the global e�ieny, inpartiular for ode words at the beginning of the oding, when many oe�ientsare still stritly zero. In partiular, it seemed inaurate to ompare the kurtosisfor systems with di�erent over-ompleteness fators as in (Rehn and Sommer,2007). Both �nal distributions seemed to �t well the bivariate model introduedin (Olshausen and Millman, 2000) where oe�ients are L0 sparse and the non-zero oe�ients follow a laplaian pdf. However, the SSC algorithm providedthe most kurtoti distribution of the oe�ients (with values around 60 versus20 for SparseNet). Dually, plotting the derease of the sorted oe�ients asa funtion of their rank again showed that oe�ients for SSC were �rst higherand then dereased quiker (see Fig. 3-Left Inset), following the link betweenboth urves in Fig. 3-Left from Eq. 5. In a seond analysis, we ompared thee�ieny of both methods while varying the number of ative oe�ients (theL0 norm), that is the number of spikes during the progressive oding for SSC(Eq. 8). To ompare this method with the onjugate gradient, a �rst pass of thelatter method was assigning for a �xed number of ative oe�ients the bestneurons while a seond pass optimized the oe�ients for this set of �ative�vetors (see Fig. 3, Right). This method was also used in (Rehn and Sommer,2007) and proved to be a fair method to ompare both methods. At the sametime, one ould yield di�erent mean residual error with di�erent mean sparse-ness of the oe�ients, as de�ned in Eq. 7 (see Fig. 3, Right Inset).Controlling with a wide range of parameters and a variety of methods yieldedsimilar qualitative results (suh as hanging the learning rate or the parametersof the onjugate gradient, see Annex. 5.5) proving that the hebbian learningonverged robustly as long as the oding algorithm provided a good sparse rep-resentation of the input. As a result, it appeared in a robust manner that thegreedy solution to the hard problem (that is SSC) is as e�ient for the op-timized ost but also to the ost de�ned in the relaxed problem (see Fig. 3).Moreover, it should be noted that this non-parametri method is ontrolledby less parameters (whih were here optimized to give best operating point, seeAnnex. 5.1) and we should stress again that the SSC method simply uses a feed-forward pass with lateral interations, while the Conjugate Gradient ould onlybe implemented as the �xed point of a reurrent network. Therefore, applying a�higher-level� Oam razor on�rms that for a similar overall oding e�ieny,aSSC is better sine it is of lower strutural omplexity8. Sine the oding8Aounting for a quantitative measure of the strutural omplexity of the di�erent meth-ods is for instane measured by the minimal length of a ode that would implement them (forinstane the number of haraters of the program in memory). It would therefore depend onthe mahine on whih it is implemented, and one would of ourse see a lear advantage of21



used in aSSC is rather sub-optimal (MP) ompared to other methods suh as(Rehn and Sommer, 2007), we onlude that this improvement is mainly dueto how we tuned the algorithm aording to the e�ieny ost de�ned in Eq. 8and in partiular to the homeostasis mehanism ensuring that all neurons �reequally.3.3 E�ieny ompared to Adaptive Mathing PursuitThe hoie of the homeostati regulation was based on the ost funtion and thehypothesis that led to it. In fat, by foring that all neurons should be hosenwith equal probability, we impose a strong onstraint for the neural assembly(all neurons should be �equal�) and this may hinder the global e�ieny of thesystem. On the other hand, when hoosing a more relaxed system (suh asnormalizing the �lters or using the homeostati rule de�ned in SparseNet) weobtain qualitatively di�erent �lters whose e�ieny would depend on a di�er-ent ost funtion. To resolve this ambiguity, we therefore ompared the e�-ieny for the aSSC sheme that we presented above (see Fig. 2, Right) witha system where we just imposed the omponents to stay on the unit sphere,that is setting the homeostati learning time to in�nity. This last algorithmis exatly the Adaptive Mathing Pursuit (AMP) algorithm that was studiedpreviously (Perrinet et al., 2003) and whih is similar to other strategies suhas (Rehn and Sommer, 2007; Smith and Lewiki, 2006).In fat, the homeostasis onstraint in the AMP algorithm is relaxed and the �l-ters will orrespond to features of more various salienies. In partiular, we ob-serve the emergene of both broader Gabor �lters whih better math texturesand of hekerboard-like patterns (see the result after onvergene at Fig. 4,Left). Beause of their lower generality, these 'textural' �lters will be more likelyto be seleted with lower orrelation oe�ients. They orrespond more to theFourier �lters that one may obtain by PCA (see for instane (Fyfe and Baddeley,1995)) or the simple Hebbian rule on linear oe�ients and that are still optimalto ode arbitrary imagelets suh as noise (Li, 2006). The aSSC algorithm (seeSe. 2.6) ensures with the homeostasis onstraint that all �lters will be seletedequally by the de�nition of the homeostasis in Eq. 4. In partiular, the pointnon-linearity from Eq. 9 plays the role of a gain ontrol. Compared to AMP,textured elements will be relatively �boosted� during the learning ompared tothe orrelation oe�ient omputed on a more generi �edge� omponent. Thisexplains that they would end up being less probable and why at the onvergeneof the learning there is no textured �lters in Fig. 2, Right. As a onlusion, aswas stated formally in Se. 2.5, the homeostasis e�iently onstrains the ditio-nary to better math the a priori pdf of natural senes in the M -dimensionalimage spae.We may then ompare quantitatively the e�ieny of these two approahes.When not using the quantization step using the inverse fj funtion (see Eq. 5),the AMP yields a better �nal result sine it represents more e�iently the noisyaSSC on parallel mahines. 22
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Figure 4: Homeostasis implements e�ient spike quantization duringlearning. (Left) When relaxing the homeostati onstraint in the aSSC (seeSe. 2.6) larning algorithm to the one implemented in Adaptive Mathing Pur-suit (AMP), the algorithm onverges to a set of �lters whih ontains some lessloalized �lters and to some high-frequeny Gabors whih orrespond to more�textural� features as in (Perrinet et al., 2003). One may wonder if these �ltersare ine�ient and apturing noise or if they rather orrespond to inherent fea-tures of natural images in this LGM model (see Fig. 3). (Right) In fat, theAMP solution gives a slightly better result than aSSC in terms of residual energyas a funtion of pure L0 sparseness (see inset) and is for that purpose of simi-lar e�ieny than onjugate gradient. However, when de�ning the e�ieny interms of the residual energy as a funtion of the desription length of the spikingode word, then the proposed model is more e�ient than AMP beause of thequantization errors inherent to the higher variability of oded oe�ients. Thus,inluding homeostasis improved the e�ieny of adaptive Sparse Spike Codingboth for the oding and the learning. It should be noted that homeostasis isimportant in aSSC during learning but that from the inherent equalization it isnot useful in oding (see Se. 2.5).
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aspets of the signal. On average, this strategy provides a slightly better ini-tial derease of the residual energy: the omponents of the signal are betterrepresented for a similar number of neurons. However, it is weaker when the
L0-sparseness is greater than ∼ 10% of the dimension M , at whih point noisedominates the signal (see Fig. 4, Right, inset). On the other hand, when usingthe quantization and therefore when rating the e�ieny of the full spike od-ing / deoding system, the AMP approah will display a greater variability andthere will be a greater quantization error9. Results show that in average, theloss in information transmission makes the AMP solution obviously less e�ientthan the aSSC approah (see Fig. 4, Right). This is due to the higher variabilityof oding oe�ients in AMP and therefore to the greater quantization errorindued from the reonstrution using Eq. 5. As a onlusion, both solutionshave advantages, the e�ieny depending on a de�nition of the utility funtionand how we assigned the distribution of resoures to ahieve this goal. In a nut-shell, for the rapid spike oding of a transient signal an homeostati approahas implemented in aSSC is signi�antly more adequate while on a longer termfor a spike frequeny representation, the more relaxed system in AMP may besu�ient.4 DisussionUsing the tools of statistial inferene and information theory, we derived quan-titative osts for the e�ieny of di�erent representation models for low-levelsensory areas. We then designed aSSC as a oding and learning solution whihheavily relied on basi aspets of the neural arhiteture, namely the parallelevent-based nature of the ode. Applied on pathes from natural senes, weproved here that aSSC is superior to the SparseNet arhiteture in terms ofthe global e�ieny of information transmission. This re�ets the fat that inthis loal reeptive �elds the LGM desribes well the images sine they are for in-stane no olusions. Similar approahes have been taken that ould be groupedunder the name of Sparse-Hebbian Learning (SHL) (Fyfe and Baddeley, 1995;Lewiki and Sejnowski, 2000; Olshausen and Field, 1996; Perrinet, 2004a; Rehn and Sommer,2007; Smith and Lewiki, 2006; Zibulevsky and Pearlmutter, 2001). A ommonadvantage of these strategies is that Hebbian learning may aount for the for-mation of reeptive �elds if applied on a sparse representation and that theoding algorithm used to obtain this sparseness was of seondary importane.These algorithms may be variants of onjugate gradient, of Mathing Pursuitor more generally based on orrelation-based inhibition (for a review, see (Pee,2002)). A more radial solution based on neurophysiologial evidene and notbased on a generative model was proposed by (Hamker and Wiltshut, 2007),but was in the end also interpretable as an optimization sheme and therefore tothe de�nition of a ost through a generative model of the signal to ode. Thus,these SHL shemes are all similar optimization algorithms, gradually improving9This result did not hange qualitatively when using an entropi ost in bits per spike, theAMP requiring neessarily less bits per pixel sine in aSSC the oe�ients' pdf is uniform.24



the e�ieny using a stohasti algorithm on the database of signals. With aorret tuning of parameters, all of these unsupervised learning algorithms willshow the emergene of edge-like �lters thanks to the orrelation-based inhibitionsuh as may be observed to be neessary for the formation of elongated reeptive�elds (Bolz and Gilbert, 1989). However, a major advantage of our formulationis the fat that it tightly ouples the e�ieny measure to the oding representa-tion. In fat, we expliitly link here the sparseness onstraint with the e�ienyof inverting the generative problem. Also, we an predit that applying thehomeostasis onstraint on the other SHL shemes will result in shemes withmore e�ient spike oding apaity. In partiular, the e�ieny is based on thespiking nature of neural information while other algorithms relied on a �ring-frequeny representations. In these shemes based on an analog representation,the problem of oding and deoding of the values was not expliitly addressedand in most of the ases the deoding solution was ahieved as the �xed pointsolution of a reurrent network. This solution therefore requires at eah odingstep to settle to a �xed point and is therefore inompatible with the rapidityof ortial proessing (Keysers et al., 2000). Moreover, a ruial feature of oursolution is that the output of the oding algorithm gives non-linear results. Forinstane, for a mixture of images, the output to the sum of two images is notneessarily the sum of both individual output. Note that as in (Troyer et al.,1998), the response seletivity to rotated oriented lines will be sharper than thelinear response but also that it will be relatively ontrast-invariant (Perrinet,2005). This provides an alternative to the debate between forward and reur-rent models for the origin of seletivity by o�ering a funtional reasoning behindthe emergene of orientation seletivity. In partiular, we predit that it willexhibit a similar non-linearity in the spiking response without the need of ex-pliitly adding after the �rst stage of mathing a parametrized non-linear gainontrol that mathes physiologial reordings (Carandini et al., 1997, 2005). Asa onsequene, by taking advantage of the parallel arhiteture of the ortex,the aSSC arhiteture provides a new and simple interpretation for the reep-tive �elds of neurons whih in this view self organize optimally with neighboringneurons and an therefore only be understood as a whole in an assembly.The work presented here is part of a larger program aiming at assessing qualita-tively the funtional e�ieny of di�erent modeling solutions to omputationalneurosiene problems and at providing omputational appliations. Using on-straints from neurosiene, we have built a solution to the LGM inverse prob-lem whih we proved to be more e�ient than the Mathing Pursuit algorithmby using these quantitative tools. We proved that this aSSC algorithm wasan e�ient unsupervised algorithm that ompetes with standard methods forsearhing independent omponents in signals and that the oding was an ef-�ient oder for binary messages with over-omplete ditionaries. In fat, byinluding an adaptive homeostasis mehanism, we optimized the e�ieny of therepresentation (the COMP algorithm) and proved that image pathes ould bee�iently oded by the binary event-based representation. We proved also thatthis homeostasis played a signi�ant role in these results but also that ounter-intuitively that textured �lters ould also be good andidates for optimal oding25



in V1 if the goal was set by a di�erent oding ost. Its e�ieny makes it agood andidate for future tehnologies of information proessing. In partiular,it ompares favorably with ompression methods suh as JPEG (Fisher et al.,2007). Moreover, a major advantage is that it provides a progressive dynami-al result while the onjugate gradient method had to be reomputed for anydi�erent number of oe�ients. In fat, the most relevant information is prop-agated �rst and the reonstrution may be interrupted at any time. All thesemodels were implemented with the intention of providing reproduible researhand are freely available and we enourage to modify them (see Annex. 5.1).The main advantage of this type of formulation is that it uses a simple set ofoperations: omputing the orrelation, applying the point non-linearity from aLook-Up Table, hoosing the ArgMax, doing a subtration, retrieving a valuefrom a Look-Up-Table (see Se. 2.6). In partiular in this parallel algorithm,the omplexity of the ArgMax operator does not depend on the dimension ofthe vetor as in lassial solutions and the transfer of this tehnology to parallelarhitetures will provide a supra-linear gain of performane.To onlude, we proved that using a spiking event-based representation ould bean advantage for the modeling of e�ient neural networks and not only a on-straint for biologial plausibility. Thus, this may explain on a funtional levelwhy spikes have been seleted during evolution as an e�ient signal quanta forlong range, rapid ommuniation. However, a major limitation of this algorithmis the use of transient signals and of relatively abstrat neurons. This hoiewas made on purpose to stress the importane of the transient network's dy-namis versus traditional strategies using spike frequeny representations. Itshows that solutions using spike oding/deoding may be built and that theyprove to be of better e�ieny than traditional solutions. A solution of SSCfor ontinuous �ows was proposed under the term Causal Sparse Spike Codingin (Perrinet, 2007, Se. 3.4), but some new problems arise (for instane the dy-namial ompromise between speed and preision) that were beyond the sopeof this paper. Another extension of the algorithm is to not use the impliitON-OFF symmetry of �lters whih introdues the onstraint that if a �lter ex-ists, then the symmetri �lter exists, that is that we rate the e�ieny of amath by the absolute value of the orrelation oe�ient. The relaxed ondi-tion proved to be more e�ient, suggesting that the symmetry that is observedis more a general e�et and that sine neurons are not linear only integratorswith a reti�er, more e�ient solutions may exist (see Annex. 5.2). This sim-ple arhiteture provided also a rih range of other novel experiments, suh asintroduing topologial relations between �lters or by using a representationwith some build-in invarianes, suh as translation and saling in a gaussianpyramid suh as in (Bednar et al., 2004; Hyvärinen et al., 2001). This last ex-ample provided a multi-sale analysis algorithm where the set of �lters that werelearned were a ditionary of mother wavelets of the multi-sale analysis, henethe name of SparseLet Analysis (Perrinet, 2007, Se. 3.3.4). Another interestingperspetive is to study the evolution of the e�ieny of the algorithm with theomplexity of the representation: when inreasing the over-ompleteness, oneobserves the emergene of di�erent lasses of �lters, suh as di�erent positions26



and edges at �rst and then a similar edge with di�erent phases. Exploring theresults for di�erent dimensions of the ditionary may give an evaluation of theoptimal omplexity of the LGM to desribe images in terms of a trade-o� be-tween auray and generality (see Annex. 5.3). Pushing this experiment to theextreme (that is when the over-ompleteness equals the size of the ditionary ofsignals), one would get a ditionary where every single signal from the databasewould be represented, the so-alled grand-mother neurons. More generally, thearhiteture of the onnetions between ortial areas highly suggests that neu-ral information is distributed, that this distribution is organized aording toa hierarhial but also reursive arhiteture. An important feature is the gen-eralization of the representation to ommon transformations (for an image atranslation, a di�erent non-uniform lighting, an olusion,...) robustly to noiseand interferenes. This alls for the extension of this kind of approah to amore integrated multi-sale approah were events ould be a more general bitof information, from a synapti quanta, a spike (suh as studied here), a burstin a ortial olumn or a oherent ativation in a ortial area.AknowledgmentsThe author thanks the team at the Redwood Neurosiene Institute for stimu-lating disussions. Speial thanks to Artemis Kosta for essential omments onthis work.This work was supported by a grant form the Frenh Researh Counil (ANR�NatStats�) and by EC IP projet FP6-015879, �FACETS�.5 Supporting information5.1 Annex: Computational implementationThe whole olletion of simulation sripts were written with the intention ofontrolling and omparing the onvergene of the algorithms and the relativee�et of the di�erent parameters. All sripts to reprodue the �gures and sup-plementary material are available upon request on the author's website (seehttp://inm.nrs-mrs.fr/LaurentPerrinet/SparseHebbianLearning). Ver-sion 1.5, rev. 666 and experiment 20080502T174325 are used for this paper, andother �gures regarding ontrol experiments may be found there. In partiular,all �gures exept Fig. 1 were produed diretly by the sripts without any edit-ing: sript experiment_learn.m for Fig. 2, sript experiment_nonhomeo.m forFig. 4 and sript experiment_ode_effiieny.m for Fig. 3. The original pa-rameters of SparseNet were used for the CGF algorithm. Supplementary Fig-ures may be onsulted on the author's website (see http://inm.nrs-mrs.fr/LaurentPerrinet/SparseHebbianLearning/SupplementaryFigures).
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Table 1: Parameters used in the simulations. Note that aSSC uses 4 pa-rameters while CGF uses 9 parameters. Note also that the learning rate dependson the dimension of the ditionary. In fat, in higher dimensions, the non-linearorrelation oe�ients will be neessarily lower and thus the learning slower(see Eq. 12). These parameters were determined from the original parametersfrom (Olshausen and Field, 1998) and then by sequentially optimizing using therobustness analysis (see Annex. 5.5).Desription Valueexperiment 20080417T 175704dimension of imagelets (CGF & aSSC) 256dimension of ditionary (CGF & aSSC) 324number of learning steps (CGF & aSSC) 32001learning rate (CGF) 1learning rate (aSSC) 0.1bath size (CGF & aSSC) 100noise variane (CGF) 0.017noise variane (aSSC) 0.008homeostasis' learning rate (SSC) 0.001homeostasis' learning rate (CGF) 0.0025homeostasis smoothing rate (CGF) α 0.02desired variane (CGF) V AR − GOAL 0.1prior steepness (CGF) beta 0.2prior saling (CGF) sigma 0.1tolerane (CGF) tol 0.0031
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Figure 5: Control of the statistis of the inputs. (Left) One set of 324
16× 16 imagelets drawn from the database provided with SparseNet. We usethe same presentation as Fig. 2. In order to have omparable pathes, the imageshad to be fairly homogeneous (and therefore textured) sine it is likely in naturalimages to draw a path from a �at area (suh as the sky) in whih ase the signalwas poor and the onvergene of the learning was slower. This was ontrolled bylearning using di�erent sets of images (not shown here). (Right) We show herea 16×16 matrix of 16×16 orrelation values representing the ovariane matrixfor every pixel depited in every box by showing the point-wise ross-orrelation.This shows in every box the luminane's ross-orrelation between 2 points: itis low (gray) ompared to auto-orrelation (white) when inreasing the distanebetween both points to more than one pixel, validating the whitening hypoth-esis for the image's preproessing. See sript experiment_stats_images.m toreprodue the �gure.
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Figure 6: Learning solution with non-negative oe�ients. When re-leasing the symmetry onstraint, the learning algorithm onverged to a simi-lar set of �lters. However, the onvergene was quiker and proved to be ofhigher e�ieny when the information for the polarity (that is, one bit) wasrather used to double the size of the ditionary (e�ieny measure not shownhere). This suggested that the assumption of symmetry of the sign of the oef-�ients is not stritly true for the LGM and that a non-negative representationas implemented by (Lee and Seung, 1999) may be more e�ient. See sriptexperiment_symmetri.m to reprodue the �gure.5.2 Annex: Releasing the onstraint of symmetry of �ltersTo ompare our algorithm with SparseNet, we similarly assumed that in theditionary, �lters were symmetri (see Se. 3.1). In fat, inspired by biology,reeptive �elds often oexist with opposite polarities (the so-alled ON/OFFsymmetry). This implied a onstraint in the generative model that when lookingfor a math, the orrelation ould be positive or negative and therefore that thebest math should be hosen as the greatest absolute value in Eq. 9. If we ratherhoose a ditionary of double the size and that we hoose only the greatestvalues (that is not applying the absolute operator) we will obtain a system wereeah spike would have the same informational ost (the additional bit replaingthe polarity bit from the symmetri ase). We therefore look similarly to thenon-negative representation without any further modi�ation of the algorithm.The solution to the problem when releasing the symmetry onstraint lookedqualitatively similar but proved to be of slightly higher e�ieny (see Fig. 6).5.3 Annex: Over-ompletenessWe analyzed the e�et of inreasing the size of the ditionary, that is of inreas-ing the omplexity of the representation, on the qualitative reeptive �elds maps30



Figure 7: Learning solution with an inreasing over-ompleteness.When inreasing the number of oe�ients from 8× 8 (enter,bottom), 13× 13(left,bottom), 21 × 21 (left, top) to 34 × 34 one sees that the omplexity ofthe features represented by the �lters progressively inreases. However, only byusing the biggest map, ould one yield textured �lters and �end-stopping� ells.This ould be a result of a lak of onvergene (we used the same number ofsteps for all experiments), but also the sign to a transition from representingedges and their di�erent transforms (apparently from the lower-dimension mapto the more omplex position, sale, spatial frequeny and phase). An interest-ing perspetive is to do a luster analysis on the distribution of the parametersof the best �t Gabors to observe bifurations as a funtion of the omplexity.See sript experiment_stability_o.m to reprodue the �gure.and on the e�ieny. When inreasing the over-ompleteness, one observes theemergene of di�erent lasses of �lters, suh as di�erent positions and edgesat �rst and then a similar edge with di�erent phases (see Fig. 7). Exploringthe results for di�erent dimensions of the ditionary gave an evaluation of theoptimal omplexity of the LGM to desribe imagelets in terms of a trade-o�between auray and generality for the dimension that we use in this study(not shown).5.4 Annex: Robustness to a perturbationAs an adaptive algorithm, we heked that the system returned to a similarmarosopi state after a perturbation. To illustrate that, we perturbed one�lter (by re-initializing it to a random �lter) and ran again the algorithm. The31



�rst e�et was that the orresponding gain funtion hanged sine the orrela-tion oe�ients values dropped for that partiular neuron. As a onsequene,the homeostati onstraint relatively �boosted� the orrelation values of thisneuron relative to the other neurons so that the hoie of hoosing any neuronwas still uniform. After a few steps, the �lter retrieved and edge-like shapewhih was often lose to the feature prior to the perturbation, sine this fea-ture was momentarily �absent� from the representation ditionary. See sriptexperiment_perturb.m to reprodue this experiment.5.5 Annex: Robustness of the methodsWe inluded in our omputational framework the ability of exploring the evolu-tion of the e�ieny of one model when hanging one single parameter aroundthe operating point that was hosen over the experienes (see table in An-nex. 5.1). This �perturbation analysis� allowed to trae if the hosen param-eters were giving loally the best e�ieny so that the omparison of two al-gorithms was valid. It also allows to identify the parameters whih are themost relevant in the sense that small variations will indue bigger hangesof e�ieny. This was in partiular true for the SparseNet algorithm. Itshowed in partiular that SparseNet was more sensitive to parameters (in-luding learning rate, homeostasis parameter) than our solution and that theparameters for tuning the parametri model (in partiular the parameters β and
σ) were of partiular importane. See sripts experiment_stability_eta.m,experiment_stability_homeo.mand to ontrol SparseNet experiment_stability_gf.mto reprodue the experiments.ReferenesH. Akaike. A new look at the statistial model identi�ation. IEEE Transationson Automati Control, 19:716�23, 1974.Collins Assisi, Mark Stopfer, Gilles Laurent, and Maxim Bazhenov. Adaptiveregulation of sparseness by feedforward inhibition. Nature Neurosiene, 10(9):1176�1184, 2007. ISSN 1097-6256 (Print). doi: 10.1038/nn1947.Joseph J. Atik. Could Information Theory Provide an Eologial Theory ofSensory Proessing? Network: Computation in Neural Systems, 3(2):213�52,1992. URL http://ib.nea.gov.ar/~redneu/atik92.pdf.Horae B. Barlow. Redundany redution revisited. Network: Computation inNeural Systems, 12:241�25, 2001.P. Baudot, M. Levy, C. Monier, F. Chavane, A. René, N. Huguet, O. Marre,M. Pananeau, I. Kopysova, and Y. Fregna. Time-oding, low noise vm at-trators, and trial-by-trial spiking reproduibility during natural sene view-ing in v1 ortex. In Soiety for Neurosiene Abstrats., editor, 34th Annual32
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