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Optimal signal representation in neural spikingpopulation odes: a model for the formation ofsimple ell reeptive �elds.Laurent U. PerrinetInstitut de Neurosienes Cognitives de la Méditerranée (INCM)CNRS / University of Provene13402 Marseille Cedex 20, Franee-mail: Laurent.Perrinet�inm.nrs-mrs.frMarh 19, 2008AbstratTaking advantage of the onstraints of spiking representations, we de-rive an unsupervised learning algorithm whih we prove to e�iently odenatural images and apply it to a model of the input to the primary visualortex. In fat, spikes arry temporal event-based information in bundlesof parallel �bers and may be onsidered as all-or-none binary events. Thisproperty may be used to formulate the e�ieny of a representation prob-lem as �nding the L0-norm sparsest representation, a �hard" NP-ompleteproblem. We propose a solution for a bundle of Integrate-and-Fire neuronswhih improves previous results based on an Adaptive Mathing Pursuitsheme by expliitly implementing an homeostati onstraint in the hoiefuntion by a spiking gain ontrol mehanism in the neural population.For omparison purposes, we applied this sheme to the learning of smallimages taken from natural images as in SparseNet and ompared theresults and e�ieny of this last algorithm with Mathing Pursuit andthe proposed algorithm. Results show that the di�erent oding algorithmgive similar e�ienies while the homeostasis provided an optimal bal-ane whih was ruial during the learning. This study provides a simplerand more e�ient algorithm for learning independent omponents in a setof inputs suh as natural images suggesting that this Sparse Spike Cod-ing strategy may provide a generi omputational module that help usunderstanding the e�ieny of the Primary Visual Cortex.KeywordsNeural population oding, spike-event omputation, orrelation-based inhibi-tion, Sparse Spike Coding, Adaptive Mathing Pursuit, Sparse-Hebbian Learn-ing 1



1 IntrodutionThe neural arhiteture on whih our ognitive abilities are based is a dynamial,adaptive system whih evolves to provide optimal solutions in our interationswith the environment. In partiular, models for the formation of simple ellreeptive �elds in the primary visual ortex (V1) have attrated great attentionas a model of learning applied to vision and more generally as a generi modelof oding and representation in neural omputations. Based on the funtionalapproah that the system should evolve to be e�ient, that is for low-level sen-sory areas that information is transformed e�iently [1, 2℄, the most aeptedexplanation for the formation of orientation seletive simple ells in V1 is thatit optimizes the sparseness of the representation of images drawn from naturalsenes, that is from behaviorally relevant senes [3℄. Similar approahes havebeen followed for natural images [4, 5, 6, 7, 8, 9℄ and sounds [10, 11℄ thatwere based on solving the inverse of a generative model of the signal. However,all of these solutions relied on spei� parameterizations and didn't expliitlydemonstrated how their algorithm ould be spei�ally adapted to neural om-putations. For instane, the oding was ahieved by onjugate gradient [3℄ ororthogonal mathing pursuit [7℄ without expliitly addressing the problem of theexisting representational onstraints in the ortex. More spei�aly, they don'tspei�ally take advantage of the nature and arhiteture of neural omputa-tions that make them di�erent from the one ouring in a traditional sequentialomputer.In that diretion, a key aspet of neural ommuniation is that most informationbetween neurons is arried by spikes. Spikes (or Ation Potentials) are simplepulses of the membrane potential whose shape seems to arry few informationand whih may travel robustly over long distanes on axons1. In the humanearly visual system for instane, after presenting a brief visual stimulus a as-ade of mehanisms will take plae after the ativation of the photoreeptors inthe retina. A volley of spikes leaves the retina through the bundle of axons thatforms the opti nerve to reah the lateral geniulate nulei (after approximately25ms). There, a new proessing takes plae generating a new volley of spikestoward the primary visual ortex that is reahed after approx. 35ms [13℄. Thevisual information that is �deoded� there is often onsidered to be �enoded� inthe spikes' �ring pattern of every �ber. As a onsequene, neural omputationsare event-based and dynamial: information transfer is parallel while in lassi-al solutions omputations are sequential and non-interruptible. A goal of thiswork is to show how we may take advantage of spiking mehanisms to representvisual information in a dynami, parallel and event-based fashion.To ahieve that agenda, we will �rst analytially formulate the problem of thee�ient spike oding of a �ashed stati image and derive a measure attahed tothe performane of information transmission in the neural assembly by intro-1Spikes have a shape of around 1ms and are also present on dendrites sine their preseneis linked to the dynamial properties of the ative ion hannels on the neuron's membrane [12℄.They are universally present in the entral nervous system but also aross speies and phy-logeny. 2



duing the L0-norm as a measure of the sparseness of the spike ode. Based onprevious results [14℄, we will de�ne an e�ient sparse spike oding and deodingsheme using orrelation-based inhibition oupled with the spiking mehanism.Taking advantage of a biologially-inspired homeostati spike gain ontrol to en-sure an optimal omputational balane within the assembly, we will improve theperformane of the previously proposed algorithm and derive a simple hebbian-type learning sheme on the sparse representation. We will �nally omparethe proposed algorithm with standard methods: SparseNet [3℄ and AdaptiveMathing Pursuit [15℄ and show the relative importane of the oding shemeand of the homeostasis on the resulting systems thanks to the quantitative mea-sures of e�ieny. We will onlude by omparing this method with previouslyproposed shemes and how this may be reoniled to improve our understandingof the neural ode by drawing the link between struture (spikes in a distributednetwork) and funtion (e�ient oding) and explore the signi�ant parametersat work in these mehanisms.1.1 A generative model of signal synthesisIn low-level sensory areas, the goal of neural omputations is to build e�ientintermediate representations to allow e�ient deision making [1, 16℄. A �good�representation of the world should map at best the information from the phys-ial signals whih are relevant for the sensory area under study. Furthermore,it will be more e�ient if it is easily transformable aording to usual trans-forms. In visual areas for instane, any representation of a sene should beeasily transformed for any translation or rotation of the sene, sine these areommon movements and that higher-level areas will need to take into aountthis information. As a onsequene, it is easier to de�ne �rst a synthesis modelof the world and its transformations and then to build the representation byinverting this model. This synthesis model (also alled the forward model) maybe built using statistial observations or with prior assumptions on the physisof the generation of the signal. A Linear Generative Model (LGM) [17℄ is ageneri ase where the signal may be thought as the linear ombination of in-dependent auses. Inverting the forward model orresponds in the terminologyof signal proessing to the oding proess, sine it transforms the signal (forinstane the observed image) into a more abstrat representation as a ombina-tion of omponents from the forward model (for instane the edges the image isformed from). This oding may then be used to understand the ontent of thesignal relative to the (forward) synthesis model but also to validate on a longerterm the oding algorithm solving the inverse problem. In fat, one strategy isto build learning proesses whih optimize the overall e�ieny of the represen-tations for a known oding algorithm. It is then expeted that the omparisonof di�erent learning strategies will help us understand the proesses underlyingreeptive �eld formation (here in the input layer 4 of V1) as a generi neuralomputation. For instane, some oding algorithms seem better than others andomparing their relative e�ieny will highlight the reasons why some aspets ofthe neural arhiteture (parallel event-based omputations, lateral interations3



within the ortial area) were hosen during evolution.Formally, to de�ne the LGM, we will use a �ditionary� of N images repre-sented by the matrix A = {Aj}1≤j≤N , eah of these being de�ned by Aj =
{Aij}1≤i≤M over the set of sampling positions i (that is the pixels in a simpleimage proessing framework). Knowing A and the �soures� s = {sj}1≤j≤N ,the signal x = {xi}1≤i≤M is de�ned as

x =
∑

1≤j≤N
sj .Aj + n = A.s + n (1)where n is a deorrelated gaussian additive noise of variane σ2

n. This noisemodel is ahieved thanks to the preproessing (whih ould be ahieved in gen-eral by Prinipal Component Analysis) without loss of generality sine the pro-essing is invertible [18℄ (see Fig. 5). The LGM is well adapted to natural senesbeause transpareny laws are linear for luminanes and thus the LGM desribeswell the synthesis in a loal neighborhood of any natural image. The goal ofany oding algorithm for the inverse problem is to �nd for an observed x thebest set s of soures that generated the signal. Then, the goal of a learningalgorithm is to adapt at best in the long term to the parameters of the LGM,that is to the matrix A and the statistis of s. This ditionary A is possiblymuh larger than the dimension of the input spae (that is when N >> M);the ditionary is then said to be over-omplete. One advantage of over-ompleteditionaries is that it's representational power is greater and that for instane ifthe ditionary is transform invariant then it easy to build a transform invariantrepresentation. On the other hand this leads to a ombinatorial explosion forthe inversion of the LGM and typially, there exist many solution for one input.We will see in Se. 1.3 how we may quantify the global e�ieny of the oding,but let's �rst de�ne how one may evaluate the likelihood of any soure knowingan input x.In fat, having de�ned the forward model, we may now be interested in omput-ing how well a partiular instane of the signal (here an image) mathes withthe model. From [18, 19℄, we know that for a given signal x, the log-probability
log P ({sj}|x,A) orresponding to a single soure sj .Aj knowing it is a realiza-tion of the LGM as it is de�ned in Eq. 1 (and for whih we assume no priorknowledge) is maximal for the projetion oe�ient de�ned by:

s∗j =< x,
Aj

‖Aj‖2
>

def
=

∑

1≤i≤M x(i).Aj(i)
∑

1≤i≤M Aj(i)2
(2)where def

= means "equal by de�nition". The log-likelihood log P ({sj}|x,A) isthen maximum for the soure j∗ with maximal orrelation oe�ient j∗ =ArgMaxjρj with
ρj =<

x

‖x‖
,

Aj

‖Aj‖
>

def
=

∑

1≤i≤M x(i).Aj(i)
√

∑

1≤i≤M Aj(i)2.
√

∑

1≤i≤M x(i)2
(3)It should be noted that ρj is the M th-dimensional osinus and that its absolutevalue is therefore bounded by 1. The value of ArCos(ρj) would therefore give4



the angle of x with the pattern A and in partiular, the angle would be equal(modulo 2π) to zero if and only if ρj = 1 (full orrelation), π if and only if
ρj = −1 (full anti-orrelation) and ±π/2 if ρj = 0 (both vetors are orthogonal,there is no orrelation). Also, it is independent to the norm of the �lters and weassume without loss of generality in the rest that these are normalized to unity.In anonial models of neural modeling this orresponds to the linear dendritiintegration over the reeptive �eld, produing for a positive orrelation a drivingurrent leading to the hyper-polarization of the ell and possibly to spiking. Thisjusti�es the omputation of the orrelation in the pereptron model [20℄ as itprovides a diret measure of the log-probability under the assumptions that weused (the LGM with Gaussian noise). Starting from this basi mehanism, oneould ompute for every signal a set of ativities orresponding to how wellthe neurons orresponded to patterns in the image prede�ned in the weightsmatries. However, we should now explain how this information may be odedand deoded by a set of spiking neurons.1.2 Spike oding and deoding of a transient signal in apopulation of neuronsNeurons are intrinsially dynamial systems and we will take advantage of thisproperty to transform the signal into a volley of spikes. For the large lass ofIntegrate-and-Fire neurons whih is relevant for pyramidal neurons, we may usethe fat that the larger the driving exitation, the larger the �ring frequeny anddually the shorter the lateny of spiking [21℄. More preisely, let's onsider apopulation of N pyramidal neurons as an information hannel for whih we wishto ode and then deode a vetor {ρj}1≤j≤N only by transmitting a spiking pat-tern over the assembly. Classially, one would map eah value to an exitationvalue whih orresponds through a monotonous inreasing funtion to a spikinglateny or frequeny, whih an then be deoded by the orresponding inversefuntion. However a �rst problem arises when we onsider the set of di�erentexitation vetors globally. In fat, if the probability distribution funtion (pdf)of the input ativation is not uniform, then the average spiking ativity of theneurons will be systematially di�erent. In the ompetitive network formed withthe pyramidal ells, this is in disagreement with the fat that spikes are similarand should therefore arry similar information to the di�erent e�erent neuronstheir axons are onneted to. While the impat of eah spike on a reeivingneuron is variable (this being measured by the synapti weight as the fore ofthe post-synapti urrent) spikes are binary all-or-none events. To maximizethe representational information of possible spike patterns, it is neessary thatneurons of the same lass in one assembly should build up a distributed systemwhere ativity is uniformly distributed. Another dual explanation is that spikeshave similar metaboli osts and that the system should balane the use of thedi�erent neurons so as to minimize the average metaboli use by the system2.2However, this argument is a onsequene through evolution from the �rst, sine the goalof neural omputations is primarily to be an e�ient proessor before being an eonomi one.5



A standard method to ahieve this homeostasis is to map the input vetor
{ρj} trough a point non-linearity3 whih provides a uniform probability for theoutput [2℄. This method is similar to histogram equalization in image proess-ing and provides an output with maximum entropy for a bounded output: ittherefore optimizes the oding e�ieny of the representation in terms of om-pression [22℄ or dually the minimization of intrinsi noise [23℄. It may be easilyderived from the probability P of variable ρj (bounded in absolute value by 1)by hoosing the non-linearity as the umulative funtion

fj(ρj) =

∫ ρj

−1

dP (ρ) (4)where the symbol dP (x) = PX(x)dx will here denote in general the probabilitydistribution funtion (pdf) for the random variable X . This proess has beenobserved in a variety of speies and is for instane perfetly illustrated in thesalamander [24℄ (see Fig. 1). It may evolve dynamially to slowly adapt tovarying hanges in luminanes, suh as when the light diminishes at dawn butalso to some more elaborated sheme within a map [25℄. As in �ideal demora-ies� where all neurons are �equal�, this proess has to be dynamially updatedover some harateristi period so as to ahieve optimum balane. As a onse-quene, sine for all j, the pdf of zj = fj(ρj) is uniform and that soures areindependent, it may be onsidered as a random vetor drawn from an uniformdistribution in [0, 1]. Knowing the di�erent spike generation mehanisms whihare similar in that lass of neurons, every vetor {ρj} will thus generate a listof spikes {j(1), j(2), . . .} (with orresponding latenies) where no information isarried a priori in the lateny pattern but all is in the relative timing arossneurons.We oded the signal in a spike volley, but how an this spike list be �deoded�,espeially if it is onduted over some distane and therefore with an additionallateny? In the ase of transient signals, sine we oded the vetor {ρj} usingthe homeostati onstraint from Eq. 4, we may retrieve the analog values fromthe order of �ring neurons in the spike list. In fat, we know in partiular thatfor the �rst spike to arrive at the reeiver end, knowing that it orresponds to�ber j(1), has been produed by a value in the highest quantile of ρj(1) on theemitting side. We may therefore deode the orresponding value with the bestestimate ρ̂j(1) = f−1
j(1)(1). This is also true for the following spikes and if wewrite as zj(k) = k

N
the relative rank of the spike (that is neuron j(k) �red atrank k), we an reonstrut the orresponding value as

ρ̂j(k) = f−1
j(k)(1− ρj(k)) (5)This orresponds to a generalized rank oding sheme [28, 29℄ (see Fig. 1, TopRight). First, it loses the information on the absolute lateny of the spiketrain whih is giving the maximal value of the input vetor. This has the3That is to a set of salar non-linearities applied independently to every single element ofthe vetor. 6
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Figure 1: Spike oding hannel using homeostati gain ontrol. We showhere how a bundle of L-NL neurons [26, 27℄ tuned by a simple homeostati meh-anism allow to transfer a transient information, suh as an image, using spikes.(L) The signal to be oded, for instane the math ρj of an image path (thetiger on the left bottom) with a set of �lters (edge-like images), may be on-sidered as a stohasti vetor de�ned by the probability distribution funtion(pdf) of the values ρj to be represented. (NL) By using the umulative funtionas a point non-linearity fj, one ensures that the probability of zj = fj(ρj) isuniform, that is that the entropy is maximal. This non-linearity in the L-NLneuron implements a homeostasis that is ontrolled only by the time onstantwith whih the umulative probability funtion fj is omputed (typially 104image pathes in our ase). (S) Any instane of the signal may then be odedby a volley of spikes: a higher value orresponds to a shorter lateny and ahigher frequeny. (D) Inversely, for any spike events vetor, one may estimatethe value from the �ring frequeny, the lateny. We may simply use the orderingof the spikes sine the rank provides an estimate of the quantile in the proba-bility distribution funtion thanks to the equalization. Using the inverse of fjone retrieves the value in feature spae so that this volley of spikes is deoded(or diretly transformed) thanks to the relative timing of the spikes using themodulation (see Eq. 5). This builds a robust information hannel where infor-mation is solely arried by spikes as binary events. Given this model, the goalof this work is to �nd the most e�ient arhiteture to ode natural images andin partiular to de�ne a oding ost and to derive a learning algorithm.To drawa quantitative omparison with state-of-the-art algorithms [7, 10, 11℄, we willuse the framefork used in SparseNet [17℄.7



partiular advantage of making this ode invariant to ontrast (up to a �xeddelay due to the preision loss indued by noise). Seond, when normalizedby the maximal value, it is a �rst order approximation of the vetor whihis espeially relevant for over-omplete representations where the informationontained in the rank vetor (whih is thanks to Stirling's approximation oforder log2(N !) = O(N. log(N)), that is more than 2000 bits for 256 neurons)is greater than the information ontained in the partiular quantization of theimage4. This ode therefore fouses on the partiular sequene of neurons thatwere hosen and loses the partiular information that may be oded in the pat-tern of individual inter-spike intervals in the assembly. A model aountingfor the exat spiking mehanism would orret this information loss, but thiswould be at the ost of introduing new parameters (hene new information),while it seems that this information would have a low impat relative to thetotal information [30℄. More generally, one ould use di�erent mappings for thetransformation of the z value into the a spike volley whih an be more adaptedto ontinuous �ows, but this sheme orresponds to an extreme ase (a transientsignal) whih is useful to stress on the dynamial part of the oding [31℄ andis mathematially more tratable. In partiular, one may show that the odingerror is proportional to the variability of the sorted oe�ients [21℄, the rest ofthe information being the information oded in the time intervals between twosuessive spikes. Thus, the e�ieny of information transmission will diretlydepend on the validity of the hypothesis of independene of the hoie of om-ponents and therefore on the statistial model build by the LGM.It should be also noted that no expliit reonstrution is neessary (in the math-ematial sense of the term) on the reeiver side as we do here, sine the goalof the reeiver ould only be to manipulate information on for instane somesubset on the spike list (that is on some reeptive �eld overing a subpart ofthe population). In partiular one may imagine that we may add some arbi-trary global point linearity to the z values in order to threshold low values orto quantize values (for instane set all values to 1 only for the �rst 10% of thespikes). However, this full reonstrution sheme is a general framework forinformation transmission, and we may then imagine that if for instane we poolinformation over a limited reeptive �eld, the information needed (the ranks inthe sub-spikelist) will still be available to the reeiver diretly without havingto ompute the full set (in fat, sine the pdf of z is uniform, the pdf of a subsetof omponents of z is also uniform). Finally, we de�ned a simple spike odingalgorithm to transmit information robustly with events. However, it is not yetlear how we may quantitatively estimate its e�ieny.1.3 De�nition of the e�ieny of Spike odingNow that we de�ned the spike oding algorithm, we should be able to derivea generi ost funtion that will allow us to quantify the e�ieny of di�erent4We are generally unable to detet quantization errors on an image onsisting of more 256gray levels, that is for 8 bits. 8



oding algorithms but also to derive a learning algorithm for the spike odingalgorithm de�ned above. For every signal x, one may state as in Oam'srazor that given two solutions of similar quality, the best is the one with lowestrepresentational omplexity. Globally, we may introdue an "Oam fator" toompare the e�ieny of di�erent representations [32, Ch. 28.3℄. This fator maybe expressed as the Kolmogorov-Chaitin omplexity and an be formalized in aprobabilisti framework by using the bound given by Shannon's oding theoremas the average Shannon's information of solutions ŝ (the oding sequenes) giventhe model's parameters. A goal is therefore to maximize the evidene of themodel that is to minimize this information or similarly minimize the desriptionlength [33℄. Furthermore, in the ontext of dynamial oding by spikes, thisoding is progressive and there will be a dynamial ompromise between thepreision and the omplexity of the representation.Using the same notation as in Se. 1.1, the total representational ost is C def
=

E(− log P (ŝ|x,A)), where E(.) denotes averaging over multiple images. Forone oding sequene, this ost may thus be written as the sum of its likelihoodprobability knowing the set of soures added to the oding length of the set ofsoures:
C(x)

def
= − logP (ŝ|x,A) = log Z +

1

2.σ2
n

‖x−
∑

j

ŝj .Aj‖
2)− log P (ŝ|A) (6)where Z is the partition funtion (that we will omit in the sequel). The e�-ieny ost will be measured in bits if the logarithm is of base 2 (as will beassumed without loss of generality in the sequel). For any oding ŝ, the �rstterm orresponds to the information from the image whih was not retrieved bythe oding (reonstrution ost) and that an be enoded at best using entropioding pixel by pixel. The seond term is the representation ost: it quanti�esthe e�ieny of the representation as the desription length of the oe�ientsand is equal to the entropi oding of ŝ knowing its probability distributionfuntion.We will assume independene of the oe�ients of the LGM and therefore

log P (s,A) =
∑

j log P (sj,A). Moreover, based on a parameterization of theoe�ients' prior, this yields the sparseness ost de�ned in Olshausen and Field[17℄:
C1 =

1

2.σ2
n

‖x−
∑

j

ŝj .Aj‖
2 + β

∑

j

log(1−
ŝ
2

σ2
) (7)where β is the steepness of the prior and σ is the prior saling (see Figure13.2 from [34℄). This ost is related to the lassial ost with the L1-norm butrepresents a more kurtoti probability distribution funtion for the prior thanthe laplaian prior orresponding to the L1-norm. This ost therefore links thee�ieny to the sparseness of the ode by parametrizing a priori the oe�ientsto be sparse, the "oam fator" measuring the evidene of the model knowingthis prior.This liberty in the de�nition of the sparseness leads to a wide variety of proposed9



solutions to optimizing this ost or sparse oding (for a review, see [35℄) suh asnumerial optimization [17, 36℄, non negative matrix fatorization [37, 38℄ or byusing Mathing Pursuit [7, 11℄. Note that this ost will e�iently quantify therepresentation e�ieny if the pdf of the oe�ients is indeed well �tted to theparameterization. However, this parameterization is not known a priori andmust be tuned aordingly to �t the model to the statistis of natural imagesand be further validated. This is the reason why we did build a non-parametrimeasure by taking advantage of the fat that thanks to the homeostasis, theprobability of �ring of every �ber is uniform aross the population. In fat,spikes are a priori equally likely to be generated on any of the N neurons (seeSe. 1.2), so that the probability of the origin of any new spike is simply 1
N
.Therefore, di�erently to the SparseNet algorithm, the model for the statistisof the LGM assumes that spikes are independent all-or-none events and arry abinary representation [39℄ as was presented above for the Sparse Spike Codingalgorithm. This expliitly de�nes the information ontent of a spike volley asan ordered list of spikes where the whole information is oded in the �addresses�of the di�erent spikes in the list. Using a ditionary of N neurons, the ost perspike may then be de�ned as log2(N) bits per spike, so that we propose for theoding ost of a spike list :

C0 =
1

2σ2
n

.‖x−
∑

j

ŝj .Aj‖
2 + log2(N).‖ŝ‖0 (8)where ‖ŝ‖0 is the length of the retrieved solution (or also the L0 norm). Again,this ost is only valid if the probability of every spike is a priori uniform andtherefore the ost used in [7℄ should inlude a orretion term in the L0-norm toaount for this non-unifomity. It also explitely rates the eonomy of onsumedmetaboli ressoures as is used in [7℄, but we retain this only as a onsequeneof the algorithm. Note �rst that for any spike oding solution, this ost funtionis dynami sine the number of spikes may inrease in time. Note also that itnow links e�ieny to sparseness only on the basis that the spiking representa-tion is binary event-based. More generally, suh a sparse representation is thebest solution to allow a good disriminability between di�erent patterns and issimilar with information riterions suh as the AIC [40℄ or distorition rate [41,p. 488℄. For instane, as a model of the input layer of the primary visual ortex,optimizing the oding aording to Eq. 8 will provide the best representation tosegregate di�erent orientations for instane by representing the ridge of edgesin images instead of representing the linear orrelation as de�ned by Eq. 3 (ina nutshell, sparser representation make "peaker" ross-orrelograms). However,resolving the oding problem with the L0 norm (getting the best ŝ in the senseof Eq. 8 knowing x, that is ArgMins(C0(x, s)) ) is NP-omplete with respet tothe dimension N of the ditionary [41, p. 409℄. We will present here a solutionto this problem inspired by the arhiteture and dynamis of the primary visualortex. 10



2 Method : adaptive Sparse Spike Coding (aSSC)In fat, unless the ditionary is orthogonal, when hoosing one omponent overan other (for instane the one that maximizes Eq. 3), any hoie may modifythe hoie of the other omponents. If we hose the suessive neurons withmaximum orrelation values, the resulting representation will be proportionallymore redundant when the ditionary gets more over-omplete. Also we saw thatoveroming this ine�ieny by optimizing the hoie aording to Eq. 8 leadsthen to a ombinatorial explosion. To solve this NP-omplete problem to modelrealisti representations suh as when modeling the primary visual ortex, onemay implement a solution designed after the rihly laterally onneted arhi-teture of ortial layers. In fat, an important part of ortial areas onsistsof a lateral network propagating information in parallel between neurons. Wewill here propose that the NP-problem an be approximately solved by using aross-orrelation based inhibition between neurons.2.1 Sparse Spike Coding: Adaptive Mathing Pursuit withegalitarian homeostasisIn fat, as was �rst proposed in the Sparse Spike Coding (SSC) [14℄, one oulduse a greedy algorithm on the L0-norm ost and that these led to use of MathingPursuit algorithm [42℄. It is de�ned as the greedy approah applied on thee�ieny riterion de�ned in Eq. 8. More generally, let's �rst de�ne WeightedMathing Pursuit (WMP) by introduing a non-linearity in the hoie step.Like Mathing Pursuit, it is based on two repetitive steps. First, given thesignal x, we are searhing for the single soure s∗j∗ .Aj∗ that orresponds to themaximum a posteriori (MAP) realization for x (see Eq. 3) transformed by apoint non-linearity fj . This Mathing step is de�ned by:
j∗ = ArgMaxj [fj(ρj)] (9)where fj(.) is some gain funtion that we will desribe below and whih may beset initially to stritly inreasing funtions and ρj is initialized by Eq. 3. In aseond step (Pursuit), the information is fed-bak to orrelated soures through:

x← x− s∗j∗ .Aj∗ (10)where s∗j∗ is the salar projetion < x,Aj∗ > (see Eq. 2). Equivalently, fromthe linearity of the salar produt, we may propagate laterally:
< x,Aj >←< x,Aj > − < x,Aj∗ >< Aj∗ ,Aj > (11)that is from Eq. 3:

ρj ← ρj − ρj∗ < Aj∗ ,Aj > (12)For any set of monotonously inreasing funtions fj , WMP shares many prop-erties with MP, suh as the monotonous derease of the error or the exponentialonvergene of the oding. The algorithm is then iterated with Eq. 9 until some11



stopping riteria is reahed.Sparse Spike Coding (SSC) is then de�ned as the spike oding/deoding algo-rithm whih uses WMP as the oder and where the point non-linearities arede�ned by Eq. 4. As desribed in [18℄, while the Mathing step is e�ientlyperformed by the LIF neurons driven by the NL input (see Fig. 1), the pursuitstep ould be implemented in a ortial area by a orrelation-based inhibition.This type of inhibition is typial of fast-spiking interneurons though there is nodiret evidene of this ativity-based synapti topology. In Fig. 1, it will or-respond to a lateral interation within the linear (L) neuronal population. Inpratie, the fj funtions are initialized for all neurons to the identity funtion(that is to a MP algorithm) and then evaluated using an online stohasti al-gorithm with a �learning� parameter orresponding to a smooth average whihe�et was ontrolled (see Fig. 4 and Annex. 5.5). As a matter of fat, this al-gorithm is irular sine the hoie of s is non-linear and depends on the hoieof fj . However, thanks to the exponential onvergene of MP, for any set ofomponents, the fj will onverge to the orret non-linear funtions as de�nedby Eq. 4. This sheme extends the Mathing Pursuit (MP) algorithm by linkingit to a statistial model whih tunes optimally the mathing step (in the sensethat all hoies are statistially equally probable) thanks to the adaptive pointlinearity. In fat, as stated before, thanks to the uniform distribution of thehoie of a omponent, one maximizes the entropy of every math and thereforeof the omputational power of the ArgMax operator. Think a ontrario to atotally unbalaned network where the math will be always a given neuron: thespikes are totally preditable and the information arried by the spike list thendrops to zero. It therefore optimizes the e�ieny of MP for this problem byderiving it as the greedy solution of the ost de�ned in Eq. 8.2.2 Introduing Hebbian Learning in SSCOn a longer time sale, the e�ieny of the system may be optimized by slowlyadapting the ditionary as in SparseNet thanks to the sparse solution given bythe oding algorithm. We may implement this for every image at every odingstep sine we have for eah seleted spike an evaluation of the log-likelihood bythe distane of the residual image to the seleted �lter, that is to ‖x−s∗j∗ .Aj∗‖
2(whih is equal to ρj up to a onstant), the rest of the signal being regardedas a perturbation whih will anel out by the averaging. At every step afterEq. 9 and using the gradient desent approah as in [17℄, we similarly infer thatwe may slowly modify the winning weight vetor orresponding to the winning�lter Aj∗ by taking it loser to x
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that is noting s∗ = ŝ∗j∗ :
Aj∗ ← Aj∗ + ηs∗(x − s∗.Aj∗) (15)where η is the learning rate, whih is inversely proportional to the time saleof the features being learned. It is an �hebbian� rule [43℄ in the lassial sensesine it will enhane the weight of neurons of orrelated neurons. However, thenovelty of this formulation is to apply this formulation to the sparse represen-tation. Similarly to Eq. 17 in [17℄ or to Eq. 2 in [11℄ the relation is linear. Amore rigorous mathematial approah were to onsider a rotation of Aj toward

x using a Jaobi Matrix rotation so that all omponent vetors stay on the unitsphere. In pratie, Eq. 15 for small learning rates η followed by a normalizationis a good approximation of this high-dimensional (linear) transform. Anotherimprovement is �bak-propagate� in early spikes of the following hoies to or-ret the gradient desent instead of regarding the residuals as a perturbation.This orresponds to Orthogonal Mathing Pursuit as was hosen as the odingbehind the learning algorithm used in [7℄. However, this would imply a moreomplex neural arhiteture and it did not drastially hange the e�ieny ofthe system.Without homeostasis, this algorithm (as well as SparseNet) is unstable. Infat, sine we start with random �lters, it is is more likely that any salientfeature was seleted at �rst and will modify the �rst winning �lter. Then thesame neuron will be seleted with a higher probability in subsequent learningsteps, ausing a non uniformity in the balane of the learning aross neurons.Whereas SparseNet uses the norm of the �lters to ontrol the variane of theoe�ients aross neurons, the SSC mathing riteria (see Eq. 9) is indepen-dent to the norm of the �lters. However, thanks to the homeostati regulation(whih has a similar time-sale than the learning) the probability of hoosing anyneuron in WMP remains uniform and ensures the onvergene of the learningalgorithm (see Annex. 5.4). The homeostasis will therefore optimize the balanebetween the neurons, the homeostasis onstraint assuring that the internal rep-resentation driving the spiking neurons may always be onsidered as a uniformlydistributed random vetor. Note then that on a long time sale, if two �ltersat some point during the learning orrespond to �lters with di�erent seletivity(thus, they have di�erent pdf, the more seletive being more kurtoti), they arestill seleted with the same probability thanks to the non-linearity. However,sine on a bath of natural senes, the �lters orresponding to the less seletiveneurons are less likely to be present and from the relative �boost� indued bythe non-linearity and whih ats as a ortial gain ontrol, these �lters are morelikely to hange. It is easier to imagine this property by drawing the Voronoidiagram in �lter spae (the unit N -dimensional sphere) orresponding to theditionary: eah entroid will (as in the K-means algorithm) be attrated to-ward the mean vetor of inputs from its orresponding Voronoi ell. Sine wefore the probability of seleting entroids to be uniform, the equilibrium of thelearning is when the population of �lters, that is the ditionary, forms an uni-13



form tiling of �lter spae5. As a onsequene, at onvergene the fj funtionsbeome equal and the mathing step beomes similar to the one in MP and inpartiular if one perturbs a �lter (by setting it to a random vetor for instane)the algorithm will hange the whole ditionary so that it settles to a new sta-ble point (see Annex. 5.4 for supplementary information). Finally, we �nd theounter-intuitive result that in aSSC, the homeostasis is more important duringthe learning period and may be ignored when synapses don't evolve anymore.2.3 Adaptive Sparse Spike Coding (aSSC)In summary, the solution of the oding problem is given by the following nestedloops:1. Initialize the omponents A to random values on the unit N -dimensionalsphere and set the point non-linear gain funtion to unity (fj(s) = s forall j),2. draw a signal x from the database,3. ompute ρj for all j using Eq. 3,4. until ‖x‖2 is below a threshold do sparse spike oding (SSC):(a) selet the best math j∗ with Eq. 9,(b) modify orrelated information by updating ρj for all j using Eq. 12,() slowly modify Aj∗ using Eq. 15,5. then update the fj for all j and draw a new image (step 2)When onvergene is ahieved, one ould simply make a oding by using steps2, 3 and 4 and optionally for the pure spike oding evaluate the oe�ient usingEq. 5 in step 4-b. In fat, sine the greedy algorithm may adapt to quantizationerrors [21, Fig.10℄. The deoding of a spike list {j(1), j(2), . . .} is then simply:1. Initialize x̂ to a zero image; the rank k is one,2. while we have spikes do :(a) retrieve the address j(k) of the spike and the orrseponding value ŝof the oe�ient using Eq. 5,(b) add ŝ.Aj(k) to x̂,() inrement the rank k,5In fat, this is true if the hoie of �lters is uniform, in general it will form a tilingorresponding to the a priori distribution of features in the �lter spae. Therefore, it is moreorret to say that the algorithm settles when the probability of any entroid is uniform.
14



Note that this pseudo-ode is given in a traditional sequential way where allsteps are given the one after the other. This orresponds to our simulationsbut only orresponds to an event based desription of the dynamial proessesourring in the system. In fat, in a dynamial implementation, all proessesare done in parallel and events just orrespond to the times where the integrationreahed a threshold [18℄.3 Results on natural images3.1 Comparison with SparseNetof reeptive �eld forma-tionWe ompared this novel aSSC algorithm with the SparseNet algorithm. Infat, this algorithm as other similar shemes mainly di�ers by the oding methodused to obtain the sparse representation and by the homeostasis sheme. Inpartiular, we foused herein in the validation and quantitative omparison ofboth algorithms in terms of e�ieny on the task at hand that we de�ned6. Weused a similar ontext and arhiteture as the experiments desribed in [17℄ andused in partiular the same database of inputs as the SparseNet algorithmand restrit ourselves to study the seletion of optimal �lters on imagelets (thatis small pathes from natural images)7. In partiular, these images are stati,graysale and �ltered aording to similar parameters to allow a one-to-oneomparison of the di�erent algorithms.Here, we show the results for 16 × 16 pathes (so that M = 256) from thewhitened images and we hose to learn N = 324 �lters. Results show theemergene of edge-like �lters (see Fig. 2) for a wide range of parameters (seeAnnex. 5.5 for an analysis of the robustness of the methods to variations ofthe parameters). Studying the evolution of one single �lter during the learningshows that it �rsts represent any salient feature (suh as a sharp edge) andthat if it ontains multiple edges only the most salient edge remains later in thelearning. This is due to the ompetition between �lters, the algorithm ensuringthat independent features should not be mixed sine this will result in a larger
L0-norm. When looking at very long learning times, the solution is not �xed (forboth algorithms) and edges may smoothly drift from one orientation to anotherwhile the ost still remains stable. This is due to the fat that there are manysolutions to the problem and that there is no onstraint suh as topologial linksbetween �lters to derease the degree of liberty of solutions. Thus, results areto be understood as a whole, and if for instane two �lters are swapped in theditionary, the e�ieny stays the same.However, it is not lear by the sole shape of the �lters alone whih solution is6See Annex. 5.1 for the table of parameters, details of the experimental setup and to a linkto reprodue the results.7This will give a lower bound for the e�ieny of aSSC, sine it is known that sparsenessin natural images is greater than in imagelets sine sparseness is also spatial. For instane, itis highly probable in natural images that large parts of the spae �suh as the sky� are �at.See [19, Se. 3.3.4℄ for an extension to whole images.15



Figure 2: Results of the proposed aSSC sheme ompared toSparseNet. Starting with random �lters, we ompare here the results of thelearning sheme with 324 �lters at onvergene (20000 steps) using (Left) thelassial onjugate gradient funtion method as is used in [17℄ with (Right)the Sparse Spike Coding method. Filters of the same size as the imagelets(16 × 16) are presented in a matrix (separated with a blak border). Notethat their position in the matrix is as in ICA arbitrary (invariant up to anypermutation). Results repliate the original results of [17℄ and are similar forboth methods: both ditionary onsist of gabor-like �lters whih are similar tothe reeptive �elds of simple ells in the primary visual ortex. Edges appear inthese onditions to be the independent omponents of natural images. However,the distribution of the quality of the edges (in partiular their mean frequeny,length, width) appears to be di�erent and the question remains as how we mayompare the e�ieny of the di�erent arhitetures quantitatively.
16



most e�ient and that rather than the shape of the omponents individually,it is the distribution of the assembly of omponents that will yield di�erente�ienies. Suh an analysis was performed with a qualitative analysis of the�lters' shape, by �tting them with Gabor �lters [10℄. A reent study omparesthe distribution of the parameters of the Gabor �lters with neurophysiologialexperiments [7℄. They did indeed show that their learning sheme, whih isalso based on a Mathing pursuit algorithm, did better math than SparseNetsome parameters of Gabor �lters over the set of �lter observed in the maaque'sprimary visual ortex. However, if this similarity is ertainly neessary, it isnot su�ient to understand the e�et of eah parameter and more generallyto reeptive �eld formation. We will rather try to evaluate quantitatively therelative e�ieny of the di�erent learning shemes to extrat what aspet is themost relevant.3.2 E�ieny ompared to SparseNetTo address this question, we ompared the quality of both methods by om-puting the mean e�ieny of the oding as the learning onverged. Using 5.104imagelets drawn from the natural image database, we performed the progressiveoding of the images using both methods �rst for random vetors and then forthe �lters learned by eah method. First, we quanti�ed at the end of the odingthe distribution of oe�ients for the di�erent ases. To allow a omparison ofthe oe�ients, we normalized the oe�ients by the energy of the imagelets(sine thanks to Eq. 3 and Eq. 2, we have ρj = sj .
‖Aj‖
‖x‖ ) and by the norm of the�lters to retrieve oe�ients suh that

x

‖x‖
=

∑

1≤j≤N
ρj.

Aj

‖Aj‖
(16)these oe�ients then diretly orrespond to a measure of the orrelation oef-�ient (see Eq. 3). It orresponds to the linear oe�ients when the ditionarywhih was seleted at eah oding is quasi-inoherent, that is that every se-leted �lter is perpendiular to the residual of the oding [44℄. This is nottrue in general and the ρj orrespond here rather to the quality (measured asa log-probability) of the math with the signal of eah from the sparse set ofseleted soures. When plotting the histogram of the orresponding oe�ients,one sees that distributions are approximately gaussians with the initial random�lters but that these beome very kurtoti after the onvergene of the learning(see Fig. 3-Left). The measure of the kurtosis of the resulting ode words provedto be very sensitive and a poor indiator of the global e�ieny, in partiularfor ode words at the beginning of the oding, when many oe�ients are stillstritly zero. In partiular, it seemed inaurate to ompare the kurtosis forsystems with di�erent over-ompleteness fators as in [7℄. Both �nal distribu-tions seemed to �t well the bivariate model introdued in [45℄ where oe�ientsare L0 sparse and the non-zero oe�ients follow a laplaian pdf. However, theSSC algorithm provided the most kurtoti distribution of the oe�ients (withvalues around 60 versus 10 for SparseNet). Plotting the derease of the sorted17
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Figure 3: Coding e�ieny of adaptive Sparse Spike Coding. We eval-uated the quality of the algorithm with two di�erent oding strategies by om-paring the oding e�ieny of the sparse spike oding ('ss') method with thelassial onjugate gradient funtion ('gf') method as is used in [17℄. For theoding of a set of 5.104 image pathes drawn from a database of natural images,we plot (Left) the distribution of both methods before and after the onver-gene of the learning phase. At initialization, the distributions are more gaus-sian (urves 'g-init' and 'ss-init') while they get more kurtoti (with kurtosisvalues of respetively 20 and 60): both algorithms yield at onvergene sparsedistributions of the oe�ients. We also plot (Right) the mean �nal residualerror (L2 norm) as a funtion of the relative number of ative (or non-zero)oe�ients (that is the normalized L0 norm and the oding step for SSC) whihprovides an estimate of the mean oding e�ieny for the image pathes. Bestresults are those providing a lower error for a given sparsity or a lower sparseness(better ompression) for the same error. In fat, the e�ieny ost measuresOam's razor applied to oding: it states that for a given L2 norm, a loweromplexity (that is a lower L0 norm) is more e�ient (graphially, an horizontalline would ross from left the best solution �rst). It should be noted that it isalso superior for the ost based on the L1 norm, a result whih may re�et thatthe L0 norm de�nes a stronger sparseness onstraint. Moreover, one should takeinto aount the fat that in the proposed algorithm the oding is simply binarywhile it is analogous in SparseNet or in [7, 10, 11℄ and there is no expliitlyde�ned quantization. While in these shemes this aspet of the oding is notstudied or is expeted to be the �xed point of a reurrent system, we take hereadvantage of the spiking representation to optimize the representation and thespeed of information transmission. These results should be taken as a lowerbound for the e�ieny of adaptive Sparse Spike Coding, sine the sparsenessin imagelets is only loal, but sparseness is also spatial in natural images [21℄.18



oe�ients as a funtion of the number of seleted oe�ients again showedthat �rst oe�ients for SSC were higher and dereased quiker (see Fig. 3-LeftInset) following the link between both urves from Eq. 5. It illustrated also thepossible bivariate parameterization of the oe�ients.In a seond analysis, we ompared the e�ieny of both methods while varyingthe number of ative oe�ients (the L0 norm), that is the number of spikesduring the progressive oding for SSC (Eq. 8). To ompare this method withthe onjugate gradient, a �rst pass of the latter method was assigning for a �xednumber of ative oe�ients the best neurons while a seond pass optimized theoe�ients for this set of "ative" vetors (see Fig. 3, Right). This method wasalso used in [7℄ and proved to be a fair method to ompare both methods. Atthe same time, one ould yield di�erent mean residual error with di�erent meansparseness of the oe�ients, as de�ned in Eq. 7 (see Fig. 3, Right Inset).Controlling with a wide range of parameters and a variety of methods yieldedsimilar qualitative results (suh as hanging the learning rate or the parametersof the onjugate gradient, see Annex. 5.5) proving that the hebbian learningonverged robustly as long as the oding algorithm provided a good sparse rep-resentation of the input. As a result, it appeared in a robust manner that thegreedy solution to the hard problem (that is SSC) is more e�ient for the op-timized ost but also to the ost de�ned in the relaxed problem (see Fig. 3).Sine the oding used in aSSC is rather sub-optimal (MP) ompared to othermethods suh as [7℄, we onlude that this improvement is mainly due to howwe tuned the algorithm aording to the e�ieny ost de�ned in Eq. 8 and inpartiular to the homeostasis mehanism ensuring that all neurons �re equally.Moreover, it should be noted that this non-parametri method is ontrolled byless parameters (whih were here optimized to give best operating point, seeAnnex. 5.1) and we should stress again that the SSC method simply uses afeed-forward pass with lateral interations, while the Conjugate Gradient ouldonly be implemented as the �xed point of a reurrent network. Therefore, ap-plying an Oam razor on�rms that for a similar mean oding e�ieny, aSSCis better sine it is of lower strutural omplexity8.3.3 E�ieny ompared to Adaptive Mathing PursuitThe hoie of the homeostati regulation was based on the ost funtion and thehypothesis that led to it. In fat, by foring that all neurons should be hosenwith equal probability, we impose a strong onstraint for the neural assembly(all neurons should be �equal�) and this may hinder the global e�ieny of thesystem. On the other hand, when hoosing a more relaxed system (suh asnormalizing the �lters or using the homeostati rule de�ned in SparseNet) weobtain qualitatively di�erent �lters whose e�ieny would depend on a di�erent8Aounting for a quantitative measure of the strutural omplexity of the di�erent meth-ods is for instane measured by the minimal length of a ode that would implement them (forinstane the number of haraters of the program in memory). It would therefore depend onthe mahine on whih it is implemented, and one would of ourse see a lear advantage ofaSSC on parallel mahines. 19
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Figure 4: Homeostasis implements e�ient spike quantization. (Left)When relaxing the homeostati onstraint in the SHL algorithm to the oneimplemented in Adaptive Mathing Pursuit (AMP), the algorithm onverges to aset of �lters whih ontains some less loalized �lters and to some high-frequenyGabors whih orrespond to more 'textural' features. One may wonder if these�lters are ine�ient and apturing noise or if they rather orrespond to inherentfeatures of natural images in this LGM model (see Fig. 3). (Right) In fat, theAMP solution gives a better result than aSSC in terms of residual energy asa funtion of pure L0 sparseness (see inset) and is for that purpose of similare�ieny than onjugate gradient. However, when de�ning the e�ieny interms of the residual energy as a funtion of the desription length of the spikingode word, then the proposed model is more e�ient than AMP beause of thequantization errors inherent to the higher variability of oded oe�ients. Thus,inluding homeostasis improved the e�ieny of adaptive Sparse Spike Coding.It should be noted that homeostasis is important during learning but that fromthe inherent equalization it is not useful in oding (see Se. 2.2).
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ost funtion. To resolve this ambiguity, we therefore ompared the e�ienyfor the SHL sheme that we presented above (see Fig. 2, Right) with a systemwhere we just imposed the omponents to stay on the unit sphere, that is set-ting the homeostati learning time to in�nity). This last algorithm is exatly theAdaptive Mathing Pursuit (AMP) algorithm that was studied previously [15℄and whih is similar to other strategies suh as [7, 11℄.In fat, in the AMP algorithm the homeostasis onstraint is relaxed and the�lters will orrespond to features of more various salienies. In partiular,we observe the emergene of both broader Gabor �lters whih better mathtextures and of hekerboard-like patterns (see the result after onvergene atFig. 4, Left). Beause of their lower generality, these 'textural' �lters will bemore likely to be seleted with lower orrelation oe�ients. They orrespondmore to the Fourier �lters that one may obtain by PCA (see for instane [4℄)or the simple Hebbian rule on linear oe�ients and that are still optimal toode arbitrary imagelets suh as noise [46℄. The SHL algorithm ensures with thehomeostasis onstraint that all �lters will be seleted equally by the de�nitionof the homeostasis in Eq. 4. In partiular, the point non-linearity from Eq. 9plays the role of a gain ontrol. Compared to AMP, textured elements will berelatively �boosted� during the learning ompared to the orrelation oe�ientomputed on a more generi �edge� omponent. This explains that they wouldend up being less probable and why at the onvergene of the learning there isno textured �lters in Fig. 2, Right. As a onlusion as was stated formally inSe. 2.2, the homeostasis e�iently onstrains the ditionary to better maththe a priori pdf of natural senes in the M -dimensional feature spae.We may then ompare quantitatively the e�ieny of these two approahes.When not using the quantization step using the inverse fj funtion (see Eq. 5),the AMP yields a better �nal result sine it represents more e�iently thenoisy aspets of the signal. On average, the SHL strategy provides a betterinitial derease of the residual energy: the omponents of the signal are betterrepresented for a similar number of neurons. However, it is weaker when the
L0-sparseness is greater than ∼ 10% of the dimension M , at whih point noisedominates the signal (see Fig. 4, Right, inset). On the other hand, when usingthe quantization and therefore when rating the e�ieny of the full spike od-ing / deoding system, the AMP approah will display a greater variability andthere will be a greater quantization error9. Results show that in average, theloss in information transmission makes the AMP solution obviously less e�ientthan the SHL approah (see Fig. 4, Right). This is due to the higher variabilityof oding oe�ients in AMP and therefore of the greater quantization errorindued from the reonstrution using Eq. 5. As a onlusion, both solutionshave advantages, the e�ieny depending on a de�nition of the utility funtionand how we assigned the distribution of resoures to ahieve this goal. In a nut-shell, for the rapid spike oding of a transient signal an homeostati approahas implemented in aSSC seems more adequate while on a longer term for a spike9This result did not hange qualitatively when using an entropi ost in bits per spike, theAMP requiring neessarily less bits per pixel sine in SHL the distribution is uniform21



frequeny representation, the more relaxed system in AMP may be su�ient.4 DisussionUsing the tools of statistial inferene and information theory, we derived quan-titative osts for the e�ieny of di�erent representation models for low-levelsensory areas. We then designed a oding and learning solution whih heavily re-lied on basi aspets of the neural arhiteture, namely the parallel event-basednature of the ode. Applied on pathes from natural senes, we proved herethat aSSC is superior to the SparseNet arhiteture in terms of the global e�-ieny of information transmission. The advantage of our formulation is that weexpliitly link here the sparseness onstraint with the e�ieny of inverting thegenerative problem. Similar approahes have been taken that ould be groupedunder the name of Sparse-Hebbian Learning (SHL) [3, 4, 5, 6, 7, 10, 11℄. A om-mon solution of these strategies is that Hebbian learning may aount for theformation of reeptive �elds if applied on a sparse representation and that theoding algorithm used to obtain this sparseness was of seondary importane.These algorithms may be variants of onjugate gradient, of Mathing Pursuitor more generally based on orrelation-based inhibition (for a review, see [35℄).A more radial solution based on neurophysiologial evidene and not based ona generative model was proposed by [9℄, but was in the end also interpretableas an optimization sheme and therefore to the de�nition of a ost through agenerative model of the signal to ode. Thus, these SHL shemes are all similaroptimization algorithms, gradually improving the e�ieny using a stohastialgorithm on the database of signals. With a orret tuning of parameters, allof these unsupervised learning algorithms will show the emergene of edge-like�lters thanks to the orrelation-based inhibition suh as may be observed to beneessary for the formation of elongated reeptive �elds [47℄. However, a majoradvantage of our formulation is the fat that it tightly oupled the e�ienymeasure to the oding representation. In partiular, the e�ieny is based onthe spiking nature neural information while other algorithms relied on a �ring-frequeny representations. In these shemes based on an analog representation,the problem of oding and deoding of the values was not expliitly addressedand in most of the ases the deoding solution was ahieved as the �xed pointsolution of a reurrent network. This solution therefore requires at eah odingstep to settle to a �xed point and is therefore inompatible with the rapidityof ortial proessing [48℄. Moreover, a ruial feature of our solution is thatthe output of the oding algorithm gives non-linear results. For instane, for amixture of images, the output to the sum of two images is not neessarily thesum of both individual output. Moreover, the response seletivity to rotatedoriented lines will be sharper than the linear response [49℄. This provides analternative to the debate between forward and reurrent models for the ori-gin of seletivity by o�ering a funtional reasoning behind the emergene oforientation seletivity. In partiular, we predit that it will exhibit a similarnon-linearity in the spiking response without the need of expliitly adding after22



the �rst stage of mathing a parametrized non-linear gain ontrol that mathesphysiologial reordings [26, 27℄. As a onsequene, by taking advantage of theparallel arhiteture of the ortex, we propose a new and simple interpretationfor the reeptive �elds of neurons whih in this view self organize optimallywith neighboring neurons and an therefore only be understood as a whole inan assembly.The work presented here is part of a larger program aiming at assessing qualita-tively the funtional e�ieny of di�erent modeling solutions to omputationalneurosiene problems. Using onstraints from neurosiene, we have built asolution to the LGM inverse problem whih we proved to be more e�ient thanthe Mathing Pursuit algorithm by using these quantitative tools. We provedthat this aSSC algorithm was an e�ient unsupervised algorithm that ompeteswith standard methods for searhing independent signals in signals and that theoding was an e�ient oder for binary messages with over-omplete ditionar-ies. In fat, by inluding an adaptive homeostasis mehanism, we optimizedthe e�ieny of the representation and proved that image pathes ould be ef-�iently oded by the binary event-based representation. We proved also thatthis homeostasis played a signi�ant role in these results but also that ounter-intuitively textured �lters ould also be good andidates for optimal oding inV1 if the goal was set by a di�erent oding ost. Computationally, the om-plexity of the algorithms and the time required by both methods was similar onthe di�erent simulations on a standard sequential omputer. All these modelswere implemented with the intention of providing reproduible researh and arefreely available and we enourage to modify them (see Annex. 5.1). Moreover,a major advantage is that it provides a progressive dynamial result while theonjugate gradient method had to be reomputed for any di�erent number ofoe�ients. In fat, the most relevant information is propagated �rst and thereonstrution may be interrupted at any time. Its e�ieny makes it a goodandidate for future tehnologies of information proessing. In partiular, itompares favorably with ompression methods suh as JPEG [50℄. However itshould be stressed that the transfer of this tehnology to parallel arhitetureswill provide a supra-linear gain of performane. In fat, the SSC algorithm on-sists of simple operations (integrating and spiking) partiularly adapted to animplementation on parallel arhiteture suh as an aVLSI.To onlude, we proved that using a spiking representation ould produe sim-ple yet e�ient arhiteture. Thus, this may explain on a funtional level whyspikes have been seleted during evolution as an e�ient signal for long range,rapid ommuniation quanta. However, the main limit of this algorithm is theuse of transient signals and of relatively abstrat neurons. This hoie was madeon purpose to stress the importane of the transient network's dynamis ver-sus traditional strategies using spike frequeny representations. It shows thatsolutions using spike oding/deoding may be built and that they prove to beof better e�ieny than traditional solutions. A solution of SSC for ontin-uous �ows was proposed under the term Causal Sparse Spike Coding in [19,Se. 3.4℄, but some new problems arise (for instane the dynamial ompro-mise between speed and preision) that were beyond the sope of this paper.23



Moreover, an implementation of SSC using Leaky Integrate-and-Fire neuronswas previously proposed [49℄, but this solution proved to be omputationallyexpensive on a sequential omputer and that it introdued artifats from in-tegration approximations. In partiular it showed that indeed, the omplexityof the ArgMax operator did not depend on the dimension of the vetor as inlassial solutions, but that on the other hand its preision dereases for a on-stant level of noise with the number of neurons. At least, to keep mathematialtratability, it is preferable of stiking with abstrat neurons whih use a simpleset of operations: omputing the orrelation, applying the point non-linearityfrom a Look-Up Table, hoosing the ArgMax, doing a subtration, retrievinga value from a Look-Up-Table, see Se. 2.3. The advantage is that it easesthe extension of this algorithm to other type of parallel event-based algorithms.One extension of the algorithm is to not use the impliit symmetry of �lterswhih introdues the onstraint that if a �lter exists, then the symmetri �lterexists, that is that we rate the e�ieny of a math by the absolute value ofthe orrelation oe�ient. The relaxed ondition proved to be more e�ient,suggesting that the symmetry that is observed is more a general e�et and thatsine neurons are not linear only integrators with a reti�er, more e�ient so-lutions may exist (see Annex. 5.2). This simple arhiteture provided also arih range of other novel experiments, suh as introduing topologial relationsbetween �lters or by using a representation with some build-in invarianes, suhas translation and saling in a gaussian pyramid suh as in [51, 52℄. This lastexample provided a multi-sale analysis algorithm were the set of �lters thatwere learned were a ditionary of mother wavelets of the multi-sale analysis,hene the name of SparseLet Analysis [19, Se. 3.3.4℄. Another interesting per-spetive is to study the evolution of the e�ieny of the algorithm with theomplexity of the representation: when inreasing the over-ompleteness, oneobserves the emergene of di�erent lasses of �lters, suh as di�erent positionsand edges at �rst and then a similar edge with di�erent phases. Exploring theresults for di�erent dimensions of the ditionary may give an evaluation of theoptimal omplexity of the LGM to desribe imagelets in terms of a trade-o� be-tween auray and generality (see Annex. 5.3). Pushing this experiment to theextreme (that is when the over-ompleteness equals the size of the ditionary ofsignals), one would get a ditionary where every single signal from the databasewould be represented, the so-alled grand-mother neurons. However, the arhi-teture of the onnetions between ortial areas suggests that information isdistributed, that this distribution is organized aording to a hierarhial butalso reursive arhiteture and that an important feature is the generalization ofthe representation aording to noise or ommon transformations (for an imagea translation, a di�erent non-uniform lighting, an olusion,...). This alls forthe extension of this kind of approah to a more integrated multi-sale approahwere events ould be a more general bit of information, from a synapti quanta,a spike (suh as studied here), a burst in a ortial olumn or an ativation inan area. 24



AknowledgmentsThis work was supported by a grant form the Frenh Researh Counil (ANR�NatStats�) and by EC IP projet FP6-015879, "FACETS".5 Supplementary material5.1 Annex: Computational implementationThe whole olletion of simulation sripts were written with the intention of on-trolling the onvergene of the algorithms and the relative e�et of the di�erentparameters. All sripts to reprodue the �gures and supplementary material areavailable upon request on the author's website (see http://inm.nrs-mrs.fr/LaurentPerrinet/SparseHebbianLearning)Version 1.5 and experiment 20080129T193338was used for this paper, and other�gures regarding ontrol experiments may be found there (in partiular, all �g-ures exept Fig. 1 were produed diretly by the sripts without any editing).The original parameters of SparseNet were used for the CGF algorithm.Table 1: Parameters used in the simulationssript revision mp-sparsenet-1.5number of SVN's release 603dimension of imagelets (CGF & SSC) 256dimension of ditionary (CGF & SSC) 324number of learning steps (CGF & SSC) 32001learning rate (CGF) 1learning rate (SSC) 0.1bath size (CGF & SSC) 100noise variane (CGF) 0.017noise variane (SSC) 0.008homeostasis' learning rate (SSC) 0.001homeostasis' learning rate (CGF) 0.0025homeostasis smoothing rate (CGF) α 0.02desired variane (CGF) V AR −GOAL 0.1prior steepness (CGF) beta 0.2prior saling (CGF) sigma 0.1tolerane (CGF) tol 0.00315.2 Annex: Releasing the onstraint of symmetry of �ltersTo ompare our algorithm with SparseNet, we similarly assumed that in theditionary, �lters were symmetri. In fat, inspired by biology, reeptive �eldsoften oexist with opposite polarities (the so-alled ON/OFF symmetry). Thisimplied a onstraint in the generative model that when looking for a math,25
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Figure 5: Control of the statistis of the inputs. (Left) One set of 324
16 × 16 imagelets drawn from the database provided with SparseNet . Weuse the same presentation as Fig. 2. In order to have omparable pathes, theimages had to be fairly homogeneous (and therefore textured) sine it happenedto draw a path from a �at area (suh as the sky) in whih ase the signal waspoor and the onvergene of the learning was slower. (Right) We show here a
16× 16 matrix of 16× 16 orrelation values representing the ovariane matrixof the set of images. This shows in every box the luminane's ross-orrelationbetween 2 points: it is low (gray) ompared to auto-orrelation (white) wheninreasing the distane between both points to more than one pixel, validat-ing the whitening hypothesis for the image's preproessing. See sript experi-ment_stats_images.m to reprodue the �gure.
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Figure 6: Solution with non-negative oe�ients. When releasing thesymmetry onstraint, the learning algorithm onverged to a similar set of �lters.However, the onvergene was quiker and proved to be of higher e�ieny whenthe information for the poalrity (that is, one bit) was rather used to double thesize of the ditionary (e�ieny measure not shown here). This suggested thatthe assumption of symmetry of the sign of the oe�ients is not stritly true forthe LGM and that a non-negative representation is more e�ient. See sriptexperiment_symmetri.m to reprodue the �gure.the orrelation ould be positive or negative and therefore that the best mathshould be hosen as the greatest absolute value in Eq. 9. If we rather hoose aditionary of double the size and that we hoose only the greatest values (thatis not applying the absolute operator) we will obtain a system were eah spikewould have the same informational ost (the additional bit replaing the polaritybit from the symmetri ase). We therefore look similarly to the non-negativerepresentation without any further modi�ation of the algorithm. The solutionto the problem when releasing the symmetry onstraint looked qualitativelysimilar but proved to be of slightly higher e�ieny (see Fig. 6).5.3 Annex: Over-ompletenessWe analyzed the e�et of inreasing the size of the ditionary, that is of inreas-ing the omplexity of the representation, on the qualitative reeptive �elds mapsand on the e�ieny. When inreasing the over-ompleteness, one observes theemergene of di�erent lasses of �lters, suh as di�erent positions and edgesat �rst and then a similar edge with di�erent phases (see Fig. 7). Exploringthe results for di�erent dimensions of the ditionary gave an evaluation of theoptimal omplexity of the LGM to desribe imagelets in terms of a trade-o�between auray and generality for the dimension that we use in this study(not shown). 27



Figure 7: Solution with an inreasing number of oe�ients. Wheninreasing the number of oe�ients from 8 × 8 (enter,bottom), 13 × 13(left,bottom), 21 × 21 (left, top) to 34 × 34 one sees that the omplexity ofthe features represented by the �lters progressively inreases. However, only byusing the biggest map, ould one yield textured �lters and �end-stopping� ells.This ould be a result of a lak of onvergene (we used the same number ofsteps for all experiments), but also the sign to a transition from representingedges and their di�erent transforms (apparently from the lower-dimension mapto the more omplex position, sale, spatial frequeny and phase). An interest-ing perspetive is to do a luster analysis on the distribution of the parametersof the best �t Gabors to observe bifurations as a funtion of the omplexity.See sript experiment_stability_o.m to reprodue the �gure.
28



5.4 Annex: Robustness to a perturbationAs an adaptive algorithm, we heked that the system returned to a similarmarosopi state after a perturbation. To illustrate that, we perturbed one�lter (by re-initializing it to a random �lter) and ran again the algorithm. The�rst e�et was that the orresponding gain funtion hanged sine the orrela-tion oe�ients values dropped for that partiular neuron. As a onsequene,the homeostati onstraint relatively �boosted� the orrelation values of thisneuron relative to the other neurons so that the hoie of hoosing any neu-ron was uniform. After a few steps, the �lter retrieved and edge-like shapewhih was often lose to the feature prior to the perturbation, sine this fea-ture was momentarily �absent� from the representation ditionary. See sriptexperiment_perturb.m to reprodue this experiment.5.5 Annex: Robustness of the methodsWe inluded in our omputational framework the ability of exploring the evolu-tion of the e�ieny of one model when hanging one single parameter aroundthe operating point that was hosen over the experienes (see table in An-nex. 5.1). This �perturbation analysis� allowed to trae if the hosen param-eters were giving loally the best e�ieny so that the omparison of two al-gorithms was valid. It also allows to identify the parameters whih are themost relevant in the sense that small variations will indue big hanges of ef-�ieny. This was in partiular true for the SparseNet algorithm. It showedin partiular that SparseNet was more sensitive to parameters (inludinglearning rate, homeostasis parameter) than our solution and that the param-eters for tuning the parametri model (in partiular the parameters β and σ)were of partiular importane. See sripts experiment_stability_eta.m, exper-iment_stability_homeo.m and experiment_stability_gf.m to reprodue theexperiments.Referenes[1℄ Horae B. Barlow. Redundany redution revisited. Network: Computationin Neural Systems, 12:241�25, 2001.[2℄ Joseph J. Atik. Could Information Theory Provide an Eologial Theoryof Sensory Proessing? Network: Computation in Neural Systems, 3(2):213�52, 1992. URL http://ib.nea.gov.ar/~redneu/atik92.pdf.[3℄ Bruno A. Olshausen and David J. Field. Emergene of simple-ell reeptive�eld properties by learning a sparse ode for natural images. Nature, 381(6583):607�9, jun 1996.[4℄ C. Fyfe and R. Baddeley. Finding ompat and sparse- distributed repre-sentations of visual images. Network: Computation in Neural Systems, 6:333�44, 1995. URL iteseer.nj.ne.om/fyfe95finding.html.29
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