Optimal signal representation in neural spiking codes: A model for the formation of simple cell receptive fields.

Laurent Perrinet

To cite this version:

Laurent Perrinet. Optimal signal representation in neural spiking codes: A model for the formation of simple cell receptive fields.. 2008. hal-00156610v3

HAL Id: hal-00156610
https://hal.archives-ouvertes.fr/hal-00156610v3
Submitted on 5 Feb 2008 (v3), last revised 7 Dec 2016 (v7)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Optimal signal representation in neural spiking codes: A model for the formation of simple cell receptive fields.

Laurent U. Perrinet
Institut de Neurosciences Cognitives de la Méditerranée (INCM)
CNRS / University of Provence
13402 Marseille Cedex 20, France
e-mail: Laurent.Perrinet@incm.cnrs-mrs.fr

February 6, 2008

Abstract
Taking advantage of the constraints of spiking representations, we derive an unsupervised learning algorithm solving efficiently the inverse problem of pattern matching and apply it to a model of the input to the primary visual cortex. In fact, spikes carry temporal event-based information in bundles of parallel fibers and may be considered as all-or-none binary events. This property may be used to formulate the efficiency of a representation problem as finding the L0-norm sparsest representation, a "hard" NP-complete problem. This framework improves previous results based on an Adaptive Matching Pursuit scheme by explicitly implementing an homeostatic constraint in the choice function by a spiking gain control mechanism in the neural population. For comparison purposes, we applied this scheme to the learning of small images taken from natural images as in SPARSENet and compared the results and efficiency of this last algorithm with Matching Pursuit and the proposed algorithm. This study provides a generic algorithm for learning independent components in a set of inputs such as natural images suggesting that this Sparse Spike Coding strategy may provide a generic computational module that help us understanding the efficiency of the Primary Visual Cortex.

Keywords
Neural code, spike-event computation, correlation-based inhibition, Adaptive Matching Pursuit, Sparse-Hebbian Learning
1 Introduction

The neural architecture on which our cognitive abilities are based is a dynamical, adaptive system which evolves to provide optimal solutions in the interactions with the environment. In particular, models for the formation of simple cell receptive fields in the primary visual cortex (V1) have attracted a lot of attention as a model of learning applied to vision. Based on the functional approach that the system should evolve to be efficient [Barlow, 2001; Atick, 1992], the most accepted explanation for the formation of orientation selective simple cells in V1 is that it optimizes the sparseness of the representation of images drawn from natural scenes, that is from behaviorally relevant scenes [Olshausen and Field, 1996]. Similar approaches have been followed for natural images [Lewicki and Sejnowski, 2000; Zibulevsky and Pearlmutter, 2001; Perrinet, 2004a; Smith and Lewicki, 2006; Rehn and Sommer, 2007; Doi et al., 2007; Hamker and Wüstenkurt, 2007] and sounds [Lewicki and Sejnowski, 2000; Smith and Lewicki, 2006; Hamker and Wüstenkurt, 2007] that were based on solving the inverse of a generative model of the signal. However, all of these solutions relied on specific parameterizations and didn’t explicitly demonstrated how their algorithm could be specifically adapted to neural computations. For instance, the coding was achieved by conjugate gradient [Olshausen and Field, 1996] or orthogonal matching pursuit [Rehn and Sommer, 2007] but none of these methods are known to be specifically implemented in the cortex and they don’t specifically take advantage of the nature and architecture of the central nervous system and that makes it different from a traditional sequential computer.

In that direction, a major aspect that seem to separate these models from the CNS is that most information between neurons is carried by spikes. Spikes (or Action Potentials) are simple pulses of the membrane potential whose shape seems to carry few information and which may travel robustly over long distances on axons\footnote{Spikes have a shape of around 1ms and are also present on dendrites since their presence is linked to the dynamical properties of the active ion channels on the neuron’s membrane [Cesac and Samuelides, 2004].}. In the early visual system for instance, after presenting a brief visual stimulus a cascade of mechanisms will take place after the excitation of the retina’s photoreceptors. A volley of spikes leaves the retina through the bundle of axons that forms the optic nerve to reach the lateral geniculate nuclei (after approximately 25-30 ms). There, a new processing takes place generating a new volley of spikes toward the primary visual cortex that is reached after approx. 35 ms [Bullier, 2001]. The visual information that is “decoded” there is often considered to be “encoded” in the spikes’ firing frequency or by their relative latency of every fiber. As a consequence, neural computations are event-based and dynamical and information transfer is parallel while in computers computations are sequential on non-interruptible. However, one may easily understand that for the information transduction process to be efficient, the spike coding and decoding processes and the representation should be both tuned accordingly. A goal of this work is to show how spiking mechanisms can be especially adapted to represent visual information in a dynamic, parallel and
event-based fashion. To achieve that agenda, we will first analytically formulate the problem of efficient spike coding and derive a measure attached to the performance of information transmission in the neural assembly by introducing the L_0-norm. Based on previous results [Perrinet et al. 2002], we will define an efficient sparse spike coding / decoding scheme using correlation-based inhibition coupled with the spiking mechanism. Taking advantage of a biologically-inspired homeostatic spike gain control to ensure homeostasis of the assembly, we will improve the performance of the previously proposed algorithm and allow to derive a simple hebbian-type learning scheme on the sparse representation. We will finally compare the proposed algorithm with standard methods: SPARSENET [Olshausen and Field, 1996] and Adaptive Matching Pursuit [Perrinet et al., 2003]. In particular we will focus on the robustness of this method thanks to different measures of efficiency. We will conclude by comparing this method with previous proposed schemes and how this may be reconciled to improve our understanding of the neural code by drawing the link between structure (spikes in a distributed network) and function (efficient coding) and explore the significant parameters at work in these mechanisms.

1.1 A generative model of signal synthesis

In low-level sensory areas, the goal of neural computations is to build efficient intermediate representations to allow efficient decision making [Field, 1994; Barlow, 2001]. A “good” representation of the world should map at best the information from the physical signals which are relevant for the sensory area under study. Furthermore, it will be more efficient if it is easily transformable according to usual transforms. In visual areas for instance, any representation of a scene should be easily transformed for any translation or rotation of the scene, since these are common movements and that higher-level areas will need to take into account this information. As a consequence, it is easier to define first a synthesis model of the world and its transformations and then to build the representation by inverting this model. This synthesis model (also called the forward model) may be built using statistical observations or with prior assumptions on the physics of the generation of the signal. A Linear Generative Model (LGM) [Olshausen and Field, 1998] is a generic case where the signal may be thought as the linear combination of independent causes. Inverting the forward model corresponds in the terminology of signal processing to the coding process, since it transforms the signal (for instance the observed image) into a more abstract representation as a combination of components from the forward model (for instance the edges the image is formed from). It may then be used to further validate both the synthesis model and understand the content of the signal but also the algorithm solving the inverse problem. In fact, by building learning processes which optimize the overall efficiency of the representations for a known coding algorithm, it is then expected that the comparison of different learning strategies will help us understand the processes underlying receptive field formation in the input layer of V1 (layer 4). In addition, some coding
algorithms seem better than others and comparing their relative efficiency in the process may for instance explain the reasons why neural computations use a parallel event-based architecture or the particular role of the lateral interactions in the cortical area.

Formally, to define the LGM, we will use a “dictionary” of \(N \) sources as a set of images represented by the matrix \(\mathbf{A} = \{ \mathbf{A}_j \}_{1 \leq j \leq N} \). Every image is then defined by \(\mathbf{A}_j = \{ A_{ij} \}_{1 \leq i \leq M} \) over the set of sampling positions \(i \) (that is the pixels in a simple image processing framework). This dictionary is possibly much larger than the dimension of the input space (that is when \(N >> M \)); the dictionary is then said to be over-complete. Knowing \(\mathbf{A} \) and the corresponding sources \(s = \{ s_j \}_{1 \leq j \leq N} \), the signal \(\mathbf{x} = \{ x_i \}_{1 \leq i \leq M} \) is defined as

\[
\mathbf{x} = \sum_{1 \leq j \leq N} s_j \mathbf{A}_j + \mathbf{n} = \mathbf{A} \mathbf{s} + \mathbf{n}
\]

(1)

where \(\mathbf{n} \) is a decorrelated gaussian additive noise of variance \(\sigma_n^2 \). This noise model is achieved thanks to the preprocessing (which could be achieved in general by Principal Component Analysis) without loss of generality since the processing is invertible [Perrinet et al., 2004] (see Fig. 5). The LGM is well adapted to natural scenes because transparency laws are linear for luminances and thus the LGM describes well the synthesis in a local neighborhood of any natural image. The goal of any coding algorithm for the inverse problem is to find for an observed \(\mathbf{x} \) the best set of sources that generated the signal. Then, the goal of a learning algorithm is to adapt at best in the long term to the parameters of the LGM, that is to the matrix \(\mathbf{A} \) and the statistics of \(\mathbf{s} \). We will see in Sec. [13] how we may quantify the global efficiency of the coding, but let’s first define how one may evaluate the likelihood of any source knowing an input \(\mathbf{x} \).

In fact, having defined the forward model, we may now be interested in computing how well a particular instance of the signal (here an image) matches with the model. From [Perrinet et al., 2004, 2007], we know that for a given signal \(\mathbf{x} \), the log-probability \(\log P(\{ s_j \}| \mathbf{x}, \mathbf{A}) \) corresponding to a single source \(s_j, \mathbf{A}_j \) knowing it is a realization of the LGM as it is defined in Eq. [1] (and for which we assume no prior knowledge) is maximal for the projection coefficient defined by:

\[
s_j^* = \langle \mathbf{x}, \frac{\mathbf{A}_j}{\| \mathbf{A}_j \|^2} \rangle \text{ def } = \frac{\sum_{1 \leq i \leq M} x(i).A_j(i)}{\sum_{1 \leq i \leq M} A_j(i)^2}
\]

(2)

where \(\text{def} \) means "equal by definition". The log-likelihood \(\log P(\{ s_j \}| \mathbf{x}, \mathbf{A}) \) is then maximum for the source \(j^* \) with maximal correlation coefficient \(j^* = \arg\max_j \rho_j \) with

\[
\rho_j = \langle \frac{\mathbf{x}}{\| \mathbf{x} \|}, \frac{\mathbf{A}_j}{\| \mathbf{A}_j \|} \rangle \text{ def } = \frac{\sum_{1 \leq i \leq M} x(i).A_j(i)}{\sqrt{\sum_{1 \leq i \leq M} A_j(i)^2} \sqrt{\sum_{1 \leq i \leq M} x(i)^2}}
\]

(3)

It should be noted that \(\rho_j \) is the \(M \)-dimensional cosine and that its absolute value is therefore bounded by 1. The value of ArcCos(\(\rho_j \)) would therefore give
the angle of \(x \) with the pattern \(A \) and in particular, the angle would be equal (modulo \(2\pi \)) to zero if and only if \(\rho_j = 1 \) (full correlation), \(\pi \) if and only if \(\rho_j = -1 \) (full anti-correlation) and \(\pm \pi/2 \) if \(\rho_j = 0 \) (both vectors are perpendicular, there is no correlation). Also, it is independent to the norm of the filters and we assume without loss of generality in the rest that these are normalized to unity.

In canonical models of neural modeling this corresponds to the linear dendritic integration over the receptive field, producing for a positive correlation a driving current leading to the hyper-polarization of the cell and possibly to spiking. This justifies the computation of the correlation in the perceptron model [Rosenblatt, 1960] as it provides a direct measure of the log-probability under the assumptions that we used (the LGM with Gaussian noise). Starting from this basic mechanism, one could compute for every signal a set of activities corresponding to how well the neurons corresponded to patterns in the image predefined in the weights matrices. However, we should now explain how this information may be coded and decoded by a set of spiking neurons.

1.2 Spike coding and decoding of a transient signal in a population of neurons

Neurons are intrinsically dynamical system and we will take advantage of this property to transform a signal into a volley of spikes. For the large class of Integrate-and-Fire neurons which is relevant for pyramidal neurons, we may use the fact that the larger the driving excitation, the larger the firing frequency and dually the shorter the latency of spiking [Perrinet et al, 2004]. More precisely, let’s consider a population of \(N \) pyramidal neurons as an information channel for which we wish to code and then decode a vector \(s = \{s_j\}_{1 \leq j \leq N} \) only by transmitting a spiking pattern. Classically, one would map each value to an excitation value which corresponds through a monotonous increasing function to a spiking latency or frequency, which can then be decoded by the inverse function. However, when we consider the set of different excitation vectors globally, if their probability distribution functions are different, then the average activity of the neurons will be systematically different. In the competitive network formed with the pyramidal cells, this is in disagreement with the fact that spikes are similar and should therefore carry similar information or more generally that they have similar metabolism. Globally, neurons in one assembly build up a distributed system and should therefore be optimally tuned to uniformly distribute their metabolic usage.

A standard method to achieve this homeostasis is to map the input vector \(s \) through a point non-linearity\(^2\) which provides a uniform probability for the output [Atick, 1992]. This method is similar to histogram equalization in image processing and provides an output with maximum entropy for a bounded output: it therefore optimizes the coding efficiency of the representation in terms of compression [van Hateren, 1993] or dually the minimization of intrin-

\(^2\)That is a non-linearity applied independently to every single element of the vector.
sic noise \cite{Srinivasan1982}. It may be easily derived from the probability \(P_S(s_j) \) of a variable \(s_j \) (bounded in absolute value by 1) by choosing the non-linearity as the cumulative function

\[
f_j(s_j) = \int_{-1}^{s_j} dP_S(s)
\]

(4)

where the symbol \(dP(x) = P_X(x)dx \) will here denote in general the probability distribution function (pdf) for the random variable \(X \). This process has been observed in a variety of species and is for instance perfectly illustrated in the salamander \cite{Laughlin1981}, see Fig. II. It may evolve dynamically to slowly adapt to varying changes in luminances, such as when the light diminishes at dawn but also to some more elaborated scheme within a map \cite{Hesova2005}. In particular, since the pdf of all \(z_j = f_j(s_j) \) is uniform and that sources are independent, the pdf of the vector is uniform. Knowing the different spike gain control functions, every vector \(s \) will generate dynamically a list of spikes \(\{j(1), j(2), \ldots \} \) (with corresponding latencies) at the source so that the transformed excitation \(z_j \) (to be transformed in a firing frequency or in a firing latency) may be considered as a random vector drawn from an uniform distribution in \([0,1]\).

We coded any signal in a spike volley, but how can this spike list be “decoded”, especially if it is conducted over some distance and therefore with an additional latency? In the case of transient signals, since we coded the vector \(s \) using the homeostatic constraint from Eq. III we may retrieve the analog values from the spike list sorted in time. In fact, we know in particular that for the first spike to arrive at the receiver end, knowing that it corresponds to fiber \(j(1) \), has been produced by a value in the highest quantile of \(P_{S(i)} \) on the emitting side. We may therefore decode the corresponding value with the best estimate \(\hat{s}_{j(1)} = f_{j(1)}^{-1}(1) \). This is also true for the following spikes and if we write as \(z_{j(k)} = \frac{k}{K} \) the relative rank of the spike (that is neuron \(j(k) \) fired at rank \(k \)), we can reconstruct the corresponding value as

\[
\hat{s}_{j(k)} = f_{j(k)}^{-1}(1 - z_{j(k)})
\]

(5)

This corresponds to a generalized rank coding scheme \cite{Perrinet1999, Perrinet2001} (see Fig. II Top Right). It has the particular advantage of being invariant to contrast and up to a fixed delay to the variability due to the noise. However, this code focuses on the particular sequence of neurons that were chosen and loses the particular information that may be coded in the time intervals between two successive spikes in the assembly. This code also completely ignores all information that is not in the first spike of every fiber to focus on the transient aspect of the signal. A model accounting for the latency would correct this to the cost of introducing new parameters but it seems that this information would have a low impact relative to the total information \cite{Panzeri1999}. More generally, one could use different mappings for the transformation of the \(z \) value into the a spike volley which can be more adapted to continuous flows, but this scheme corresponds to an extreme case (a transient signal) which is useful to stress on
Figure 1: **Spike coding using spike gain control.** We illustrate the homeostatic mechanism by showing the case with two neurons with different input statistics. This is defined *(Bottom Left)* by the probability distribution function (pdf) as a function of the value to represent, indicating here that one neuron has a narrow pdf centered on a low value while the other has a higher average but with a bigger variance. By using the cumulative function as a point non-linearity *(Top Left)*, one ensures a transform where the probability of $z_j = f_j(s_j)$ (Eq. 4) is uniform. In particular, the probability of choosing any vector z is uniform. For instance, a particular value s^* will correspond to different z values. Inversely, after choosing a particular set of values, one may estimate the value from for instance the rank of the value in the vector *(Top Right)* since the rank provides an estimate of the quantile in the pdf since the pdf of z is uniform. Using the inverse of f_j one may retrieve the value in feature space. For instance at a given rank (dotted line), the value will be different for both neurons since their pdf are different. Overall, this framework gives a simple coding / decoding mechanism for transient signals in a set s by *(Bottom Right)* transforming the values to code in a uniformly distributed set of values which are coded by a volley of spikes. This volley of spikes may then decoded (or directly transformed) thanks to the relative timing of the spikes using Eq. 5 it thus builds a robust information channel where information is solely carried by spikes.
the dynamical part of the coding [van Rullen and Thorpe, 2001] and is mathematically more tractable. In particular, one may show that the coding error is proportional to the variability of the sorted coefficients [Perrinet et al., 2004], the rest of the information being the information coded in the time intervals between two successive spikes. Thus, the efficiency of information transmission will directly depend on the validity of the hypothesis of independence of the choice of components and therefore on the statistical model build by the LGM. It should be also noted that no explicit reconstruction is necessary (in the mathematical term) on the receiver side as we do here, since the goal of the receiver could only be to manipulate information on for instance some subset on the spike list (that is on some receptive field covering a subpart of the population). In particular one may imagine that we may add some arbitrary global point linearity to the \(z \) values in order to threshold low values or to quantize values (for instance set all values to 1 only for the first 10% of the spikes). However, this full reconstruction scheme is a general framework for information transmission, and we may then imagine that if for instance we pool information over a limited receptive field, the information needed (the ranks in the sub-spike list) will still be available to the receiver directly without having to compute the full set (in fact, since the pdf of \(z \) is uniform, the pdf of a subset of components of \(z \) is also uniform). By this simple considerations, we devised a simple spike coding algorithm to transmit information robustly with events.

1.3 Definition of the efficiency of Spike coding

Now that we defined the spike coding algorithm, we should be able to derive a generic cost function that will allow us to quantify the efficiency of different coding algorithms but also to derive a learning algorithm for the spike coding algorithm. For every signal \(\mathbf{x} \), one may state as in Occam’s razor that given two solutions of similar quality, the best is the one with lowest representational complexity. This complexity may be expressed as the Kolmogorov-Chaitin complexity and one can imagine that in the context of dynamical coding by spikes, there will be a dynamical compromise between the precision and the complexity of the representation. This can be formalized in a probabilistic framework by using the bound given by Shannon’s coding theorem. It is the average Shannon’s information of solutions \(\hat{s} \) (the coding sequences) given the model’s parameters (that is, using the same notation as in Sec. 1.2) \(C = E(-\log P(\hat{s}|\mathbf{x}, \mathbf{A})) \), where \(E(\cdot) \) denotes averaging over multiple images). For one coding sequence, this cost may thus be written as the sum of its likelihood probability knowing the set of sources added to the description length of the set of sources:

\[
\log P(\hat{s}|\mathbf{x}, \mathbf{A}) = -\log Z + \left(-\frac{1}{2\sigma_n^2}\|\mathbf{x} - \sum_j \hat{s}_j \mathbf{A}_j\|^2\right) + \log P(\hat{s}|\mathbf{A}) \tag{6}
\]

where \(Z \) is the partition function. Note that this coding may be dynamical and that the coding sequence may computed progressively. The cost will be measured in bits if the logarithm is of base 2 (as will be assumed without loss
of generality in the sequel). For any coding \(\hat{s} \), the first term corresponds to the information from the image which was not retrieved by the coding (reconstruction cost) and that can be encoded at best using entropic coding pixel by pixel. The second term is the representation cost: it quantifies the efficiency of the representation as the description length [Bissacot, 1978] computed using entropic coding of the coefficients and is equal to the entropic coding of \(\hat{s} \), knowing its probability distribution function. We will assume independence of the coefficients of the LGM and therefore \(\log P(\hat{s}, A) = \sum_j \log P(s_j, A) \). Moreover, based on a parameterization of the coefficients’ prior, this yields the sparseness cost defined in [Olshausen and Field, 1998]:

\[
C_1 = \frac{1}{2\sigma_n^2} ||x - \sum_j \hat{s}_j A_j||^2 + \beta \sum_j \log(1 - \frac{s_j^2}{\sigma^2})
\]

(7)

where \(\beta \) is the steepness of the prior and \(\sigma \) is the prior scaling (see Figure 13.2 from [Olshausen, 2002]). It is somewhat related to the classical cost with the \(L_1 \)-norm but represents a more kurtotic probability distribution function for the prior than the corresponding Laplacian prior. This liberty in the definition of the sparseness leads to a wide variety of proposed solutions to sparse coding [Peccei, 2002] such as optimization [Olshausen and Field, 1998, Lee et al., 2007], non negative matrix factorization [Lee and Seung, 1999, Ranzato et al., 2007] or by using Matching Pursuit [Smith and Lewicki, 2006; Rehn and Sommer, 2007]. However, this parameterization is not known a priori and must be tuned accordingly to fit the model to the statistics of natural images and be further validated.

This is the reason why we did build a non-parametric measure by taking advantage of the fact that thanks to the homeostasis, the probability of firing of every fiber is uniform across the population. In fact, spikes are a priori equally likely to be generated on any of the \(N \) neurons (see Sec. 1.2), so that the probability of the origin of any new spike is simply \(\frac{1}{N} \). Therefore, differently to the SPARSENET algorithm, the model for the statistics of the LGM assumes that spikes are independent all-or-none events: they carry a binary representation [Deweese and Zador, 2003]. This explicitly defines the information content of a spike volley as an ordered list of spikes where the whole information is coded in the “addresses” of the different spikes in the list. Using a dictionary of \(N \) neurons, the cost per spike may then be defined as \(\log_2(N) \) bits per spike, so that we propose for the coding cost of a spike list:

\[
C_0 = \frac{1}{2\sigma_n^2} ||x - \sum_j \hat{s}_j A_j||^2 + \log_2(N) ||\hat{s}||_0
\]

(8)

where \(||\hat{s}||_0 \) is the length of the retrieved solution (or also the \(L_0 \) norm). Note first that for any spike coding solution, this cost function is dynamic since the number of spikes may increase in time. Note also that it links efficiency to sparseness, as with information criterions such as the AIC [Akaike, 1974]. It also explicitly rates the economy of consumed metabolic resources as is used
in [Rehn and Sommer, 2007], but we retain this only as a consequence of the algorithm. More generally, such a sparse representation is the best solution to allow a good discriminability between different patterns. For instance, as a model of the input layer of the primary visual cortex, optimizing the coding according to Eq. 3 will provide the best representation to segregate different orientations for instance by representing the ridge of edges in images instead of representing the linear correlation as defined by Eq. 3. However, resolving the coding problem with the L0 norm (getting the best \(\hat{s} \) in the sense of Eq. 3) knowing \(x \), that is ArgMin \(\| \mathbf{c}_0(x, s) \| \) is NP-complete with respect to the dimension \(N \) of the dictionary [Mallat 1998, p. 409]. We will present here a solution to this problem inspired by the architecture and dynamics of the primary visual cortex.

2 Method: Sparse Spike Hebbian Learning

In fact, when choosing one component over another (for instance the one that maximizes Eq. 3), any choice may modify the choice of the other components, unless the dictionary is orthogonal. This leads to a combinatorial explosion when the dictionary becomes over-complete such as when modeling the primary visual cortex. To solve this NP-complete problem, one may implement an approximate solution designed after the richly laterally connected architecture of cortical layers by passing in parallel information between neurons that will take into consideration their cross-correlations. The Sparse Spike Coding (SSC) algorithm presented here is inspired by different coding strategies [Perrinet et al., 2002, Perrinet & Tresch, 2004, 2007], and that gave rise here to a completely novel spike coding algorithm thanks to the formalization of the efficiency (see Eq. 3).

2.1 Sparse Spike Coding: Adaptive Matching Pursuit with egalitarian homeostasis

Let’s define Weighted Matching Pursuit (WMP) as the greedy approach applied on the efficiency criterion defined in Eq. 3. Like Matching Pursuit, it is based on two repetitive steps. First, given the signal \(x \), we are searching for the single source \(s^*_j, A_j \), that corresponds to the maximum a posteriori (MAP) realization for \(x \) (see Eq. 3) transformed by a point non-linearity \(f_j \). It is defined by:

\[
 j^* = \text{ArgMax}_j[|f_j(p_j)|]
\]

with \(<..,> \) denoting the scalar product and \(f_j(.) \) is some gain function that we will describe below and which may be set initially to strictly increasing functions. In a second step, the information is fed-back to correlated sources through:

\[
x \leftarrow x - s^*_j A_j,
\]

where \(s^*_j \) is the scalar projection \(< x, A_j > \) (see Eq. 2). Equivalently, from the linearity of the scalar product, we may propagate laterally:

\[
< x, A_j > \leftarrow < x, A_j > - < x, A_j > < A_j, A_j >
\]
that is from Eq. (12)

\[\rho_j \leftarrow \rho_j - \rho_j \cdot s^* \cdot A_j \cdot A_j^* \]

For any set of monotonically increasing functions, WMP shares many properties with MP, such as the monotonous decrease of the error or the exponential convergence of the coding. The algorithm is then iterated with Eq. (13) until some stopping criteria is reached.

Sparse Spike Coding (SSC) is then defined as the spike coding/decoding algorithm which uses WMP as the coder and where the point non-linearities are defined by Eq. (11). This scheme extends the Matching Pursuit (MP) algorithm by linking it to a statistical model which tunes optimally the matching point (in the sense that all choices are statistically equally probable) thanks to the adaptive point linearity. In fact, as stated before, thanks to the uniform distribution of the choice of a component, one maximizes the entropy of every match and therefore of the computational power of the ArgMax operator. Think a contrario to a totally unbalanced network where the match will be always a given neuron: the spikes are totally predictable and the information carried by the spike list then drops to zero. In practice, the \(f_j \) functions are initialized for all neurons to the identity function (that is to a MP algorithm) and then evaluated using an online stochastic algorithm with a “learning” parameter corresponding to a smooth average which effect was controlled (see Fig. 4 and Annex. 5.4). As a matter of fact, this algorithm is circular since the choice of \(s \) is non-linear and depends on the choice of \(f_j \). However, thanks to the exponential convergence of MP, for any set of components, the \(f_j \) will evolve to the correct non-linear functions defined by Eq. (11).

2.2 Sparse Hebbian Learning in SSC

On a longer time scale, the efficiency of the system may be optimized by slowly adapting the dictionary as in SPARSENET thanks to the sparse solution given by the coding algorithm. We may implement this for every image at every coding step since we have for each selected spike an evaluation of the log-likelihood by the distance of the residual image to the selected filter, that is to \(||x - s_{j^*}^r \cdot A_{j^*}||^2 \) (which is equal to \(\rho_j \) up to a constant), the rest of the signal being regarded as a perturbation which will cancel out by the averaging. At every step after Eq. (12) and using the gradient descent approach as in [Olshausen and Field, 1998], we similarly infer that we may slowly modify the winning weight vector corresponding to the winning filter \(A_{j^*} \) by taking it closer to \(x \):

\[
\frac{\partial C}{\partial A_{j^*}} = \frac{\partial}{\partial A_{j^*}} \frac{1}{2\sigma_n^2} \|x - s_{j^*}^r \cdot A_{j^*}\|^2 \\
= \frac{1}{2\sigma_n^2} s_{j^*}^r (x - s_{j^*}^r \cdot A_{j^*})
\]

that is noting \(s^* = s_{j^*}^r \):

\[
A_{j^*} \leftarrow A_{j^*} + \eta s^* (x - s^* \cdot A_{j^*})
\]
where η is the learning rate, which is inversely proportional to the time scale of the features being learned. It is an “hebbian” rule \cite{Hebb1949} in the classical sense since it will enhance the weight of neurons of correlated neurons. However, the novelty of this formulation is to apply this formulation to the sparse representation. Similarly to Eq. 17 in \cite{OlshausenField1998} or to Eq. 2 in \cite{SmithLewicki2006} the relation is linear. A more rigorous mathematical approach were to consider a rotation of A_j toward x using a Jacobi Matrix rotation so that all component vectors stay on the unit sphere. In practice, Eq. 15 for small learning rates η followed by a normalization is a good approximation of this high-dimensional (linear) transform.

Without homeostasis, the algorithm (as well as SparseNet) is unstable. In fact, since we start with random filters, it is more likely that any salient feature was selected at first and will modify the first winning filter. Then the same neuron will be selected with a higher probability in subsequent learning steps, causing a non-uniformity in the balance of the learning across neurons. Whereas SparseNet uses the norm of the filters to control the variance of the coefficients across neurons, the SSC matching criteria (see Eq. 2) is independent to the norm of the filters. In fact, thanks to the homeostatic regulation (which has a similar time-scale than the learning) the probability of choosing any neuron remains uniform and ensures the convergence of the learning algorithm (see Annex. 3). The homeostasis will therefore optimize the balance between the neurons, the homeostasis constraint assuring that the internal representation may always be considered as a uniformly distributed random vector.

2.3 Sparse Spike Hebbian Learning (SSHL)

In summary, the solution of the coding problem is given by the following nested loops:

1. Initialize the components A to random values on the unit N-dimensional sphere and set the point non-linear gain function to unity ($f_j(s) = s$ for all j),

2. Draw a signal x from the database,

3. Compute ρ_j for all j using Eq. 8

4. Until $\|x\|^2$ is below a threshold do a sparse spike coding (SSC):
 (a) Select the best match j^* with Eq. 9,
 (b) Modify correlated information by updating ρ_j for all j using Eq. 12,
 (c) Slowly modify A_{j^*} using Eq. 13,

5. Then update the f_j for all j and draw a new image (step 2)

When convergence is achieved, one could simply make a coding by using steps 2, 3 and 4 and optionally for the pure spike coding evaluate the coefficient using Eq. 5 in step 4-b. In fact, since the greedy algorithm may adapt to quantization errors \cite{Perrinet2004, Perrinet2004Fig10}. The decoding of a spike list is then simply:
Figure 2: Results of the proposed SSHL scheme compared to SparseNet. Starting with random filters, we compare here the results of the learning scheme with 324 filters at convergence (20000 steps) using (Left) the classical conjugate gradient function method as is used in [Olshausen and Field 1998] with (Right) the Sparse Spike Coding method. Filters of the same size as the imagelets (16 × 16) are presented in a matrix (separated with a black border). Note that their position in the matrix is as in ICA arbitrary (invariant up to any permutation). Results replicate the original results of [Olshausen and Field 1998] and are similar for both methods: both dictionary consist of gabor-like filters which are similar to the receptive fields of simple cells in the primary visual cortex. Edges appear in these conditions to be the independent components of natural images. However, the distribution of the quality of the edges (in particular their mean frequency, length, width) appears to be different and the question remains as how we may compare the two resulting systems quantitatively?

1. Initialize \hat{x} to a zero image; the rank is zero,
2. while we have spikes do :
 (a) retrieve the value \hat{s} of the coefficient using Eq. 5
 (b) add $\hat{s}A_j$ to \hat{x},
 (c) increment the rank,

3 Results on natural images

3.1 Comparison of produced receptive field maps with SparseNet

We compared this novel Sparse Spike Hebbian Learning algorithm with the SparseNet algorithm. In fact, this algorithm as other similar schemes mainly
differs by the coding method used to obtain the sparse representation. In particular, we focused herein in the validation and quantitative comparison of both algorithms in terms of efficiency on the task at hand that we defined. We used a similar context and architecture as the experiments described in [Olshausen and Field, 1998] and used in particular the same database of inputs as the SparseNet algorithm. Similarly to the study by [Olshausen and Field, 1998], we chose here to restrict ourselves to study the selection of optimal filters on imagelets (that is small patches from natural images). In particular, these images are static, grayscale and filtered according to similar parameters to allow a one-to-one comparison of the different algorithms.

Here, we show the results for 16×16 patches (so that $M = 256$) from the whitened images and we chose to learn $N = 324$ filters. Results show the emergence of edge-like filters (see Fig. 2) for a wide range of parameters (see Annex: 3.4 for an analysis of the robustness of the methods to variations of the parameters). Studying the evolution of one single filter during the learning shows that it firsts represent any salient feature (such as a collection of sharp edges) and that if it contains multiple edges only the most salient edge remains later in the learning. This is due to the competition between filters, the algorithm ensuring that independent features should not be mixed since this will result in a larger L_0-norm. When looking at very long learning times, the solution is not fixed (for both algorithms) and edges may smoothly drift from one orientation to another while the cost still remains stable. This is due to the fact that there is no constraint such as topological links between filters and that they may be only be understood as a whole, so that if for instance two filters are swapped, the efficiency stays the same.

However, it is not clear by the sole shape of the filters alone which solution is most efficient and that rather than the shape of the components individually, it is the distribution of the assembly of components that will yield different efficiencies. Such an analysis was performed with a qualitative analysis of the filters' shape, by fitting them with Gabor filters [Lewicki and Sejnowski, 2000]. A recent study compares the distribution of the parameters of the Gabor filters with neurophysiological experiments [Rehn and Sommer, 2007]. They did indeed show that their learning scheme, which is also based on a Matching pursuit algorithm, did better match some parameters of Gabor filters over the set of filter observed in the macaque's primary visual cortex. However, if this similarity is certainly necessary, it is not sufficient to understand the effect of each parameter and more generally to receptive field formation. We will rather try to evaluate quantitatively the relative efficiency of the different learning schemes to extract what aspect is the most relevant.

3.2 Efficiency compared to SparseNet

To address this question, we compared the quality of both methods by computing the mean efficiency of the coding as the learning converged. Using 5.10^4
Figure 3: Efficiency of the proposed SHL scheme compared to SparseNet. We evaluated the quality of the SHL algorithm with two different coding strategies by comparing the coding efficiency of the sparse spike coding ("ssc") method with the classical conjugate gradient function ("cg") method as is used in Olshausen and Field [1998] for the coding of a set of 5000 image patches drawn from a database of natural images. We plot (Left) the distribution of both methods before and after the convergence of the learning phase (see Fig. 2) which show that and initialization, the distribution is more gaussian (curves cg-init and ssc-init) while they get more kurtotic (with kurtosis values of respectively 20 and 60) illustrating the sparseness of the coefficients. We also draw (Right) the mean final residual error (L_2 norm) as a function of the relative number of active (or non-zero) coefficients (that is the normalized L_0 norm and the coding step for SSC) and which provides an estimate of the mean coding efficiency for the image patches. Best results are those giving a lower error for a given sparsity or a lower sparseness (better compression) for the same error. Occam’s razor translates in this figure into the fact for a given L_2 norm, the L_0 norm is lower (an horizontal line would cross from left the best solution first). In both cases, the proposed algorithm provides a paradigm which is of better efficiency compared to SparseNet. It should be noted that it is also superior for the cost based on the L_1 norm, a result which may reflect the fact that the L_0 norm defines a stronger sparseness constraint.
imagelets drawn from the natural image database, we performed the progressive coding of the images using both methods first for random vectors and then for the filters learned by each method. First, we quantified at the end of the coding the distribution of coefficients for the different cases. To allow a comparison of the coefficients, we normalized the coefficients by the energy of the imagelets with $\rho_j = s_j \frac{||A_j||}{||x||}$ and the norm of the filters to retrieve coefficients such that

$$\frac{x}{||x||} = \sum_{1 \leq j \leq N} \rho_j \frac{A_j}{||A_j||}$$

(16)

these coefficients then directly correspond to a measure of the correlation coefficient (see Eq. 3) when the dictionary which was selected at each coding is quasi-incoherent, that is that every selected filter is perpendicular to the residual of the coding [Gribonval and Vandergheynst, 2006]. When plotting the histogram of the corresponding coefficients, one sees that distributions are relatively gaussians with the initial random filters but that these become very kurtotic after the convergence of the learning (see Fig. 2 Left). The measure of the kurtosis of the resulting code words proved to be very sensitive and a poor indicator of the global efficiency, in particular with code words at the beginning of the coding, when many coefficients are still strictly zero. In particular, it seemed inaccurate to compare the kurtosis for systems with different over-completeness factors as in [Relin and Sommer, 2007]. However, the SSC algorithm provided the most kurtotic distribution of the coefficients (with values around 60 versus 10 for SparseNet). Plotting the decrease of the sorted coefficients as a function of the number of selected coefficients again showed that first coefficients for SSC were higher and decreased quicker (see Fig. 3 Left Inset). This is necessary following the link between both curves from Eq. 6.

In a second analysis, we compared the efficiency of both methods while varying the number of active coefficients (the L0 norm), that is the number of spikes during the progressive coding (Eq. 5). To compare this method with the conjugate gradient, a first pass of the latter method was assigning for a fixed number of active coefficients the best neurons while a second pass optimized the coefficients for this set of "active" vectors (see Fig. 4 Right). This method was also used in [Relin and Sommer, 2007] and proved to be a fair method to compare this method. At the same time, one could yield different mean residual error with different mean sparseness of the coefficients, as defined in Eq. 4 (see Fig. 5 Right Inset).

Controlling with a wide range of parameters and a variety of methods yielded similar qualitative results (such as changing the learning rate or the parameters of the conjugate gradient, see Annex 6.3) proving that the hebbian learning converged robustly as long as the coding algorithm provided a good sparse representation of the input. As a result, it appeared in a robust manner that the greedy solution to the hard problem (that is SSC) is more efficient for the optimized cost but also to the cost defined in the relaxed problem (see Fig. 6). Moreover, it should be noted that the non-parametric method is controlled by less parameters (which were here optimized to give best operating point, see
Annex. [41] and we should stress again that the SSC method simply uses a feed-forward pass, while the Conjugate Gradient could only be implemented as the fixed point of a recurrent network.

3.3 Efficiency compared to Adaptive Matching Pursuit

The choice of the homeostatic regulation was based on the cost function and the hypothesis that led to it. In fact, by assuming that all neurons should be chosen with equal probability, we impose a strong constraint for the neural assembly (all neurons should be “equal”) and this may hinder the global efficiency of the system. On the other hand, when choosing a more relaxed system (such as normalizing the filters or using the homeostatic rule defined in SPARSE_NET) we obtain qualitatively different filters whose quality would depend on the chosen cost function. To resolve this ambiguity, we therefore compared the efficiency for the SHL scheme that we presented above (see Fig. 2, Right) with a system where we just imposed the components to stay on the unit sphere, that is setting the homeostatic learning time to infinity). This last algorithm is exactly the Adaptive Matching Pursuit (AMP) algorithm that was studied previously [Perrinet et al., 2003] and which is similar to other strategies such as...
as Smith and Lewicki 2006; Rehn and Somer 2007. In fact, in the AMP algorithm the homeostasis constraint is relaxed and the filters will correspond to features of more various saliences. In particular, we observe the emergence of both broader Gabor filters which better match textures and of checkerboard-like patterns (see the result after convergence at Fig. 4 Left). Because of their lower generality, these 'textural' filters will be more likely to be selected with lower correlation coefficients. They correspond more to the Fourier filters that one may obtain by PCA or the simple Hebbian rule on linear coefficients and that are still optimal to code arbitrary imagelets such as noise Li 2006. The SHL algorithm ensures with the homeostasis constraint that all filters will be selected equally by the definition of the homeostasis in Eq. 4. In particular, the point non-linearity from Eq. 3 plays the role of a gain control. Compared to AMP, textured elements will be relatively "boosted" during the learning compared to the correlation coefficient computed on a more generic "edge" component. This explains that they would end up being less probable and why at the convergence of the learning there is no textured filters in Fig. 2 Right.

We may then compare quantitatively the efficiency of these two approaches. When not using the quantization step using the inverse f_j function (see Eq. 8), the AMP yields a better final result since it represents better the noisy aspects of the signal. On average, the SHL strategy provides a better initial decrease of the residual energy: the components of the signal are better represented for a similar number of neurons. However, it is weaker when the L_0-sparseness is greater than $\sim 10\%$ of the dimension M, at which point noise dominates the signal (see Fig. 4 Right, plain lines). On the other hand, when using the quantization and therefore when rating the efficiency of the full spike coding / decoding system, the AMP approach will display a greater variability and there will be a greater quantization error. Results show that in average, the loss in information transmission makes the AMP solution less efficient than the SHL approach (see Fig. 4 Right, dotted lines). This is due to the higher variability of coding coefficients in AMP and therefore of the greater quantization error induced from the reconstruction using Eq. 3. As a conclusion, both solutions have advantages, the efficiency depending on the definition of the cost function and how we assigned the distribution of resources to achieve this goal. In a nutshell, for the rapid spike coding of a transient signal an homeostatic approach seems more adequate while on a longer term for a spike frequency representation, the more relaxed system may be sufficient.

4 Discussion

Using the tools of statistical inference and information theory, we derived quantitative costs for the efficiency of low-level sensory areas and designed a coding and learning solution which heavily relied on basic aspects of the neural architecture.

4This result did not change qualitatively when using an entropic cost in bits per spike, the AMP requiring necessarily less bits per pixel since in SHL the distribution is uniform.
namely the parallel event-based nature of the code. Applied on patches from natural scenes, we proved here that SSC is superior to the SPARSENET architecture in terms of the global efficiency of information transmission. The advantage of our formulation is that we explicitly link here the sparseness constraint with the efficiency of inverting the generative problem. Similar approaches have been taken that could be grouped under the name of Sparse-Hebbian Learning (SHL) \cite{Smith:2006,Rehn:2007}. One common claim of these strategies is that Hebbian learning may account for the formation of receptive fields if applied on a sparse representation and that the coding algorithm used to obtain this sparseness was of secondary importance. These algorithms may be variants of conjugate gradient, of Matching Pursuit or more generally based on correlation-based inhibition. A more radical solution based on neurophysiological evidence and not based on a generative model was proposed by \cite{Hamker:2007}, but was in the end also interpretable as an optimization scheme and therefore to the definition of a cost through a generative model of the signal to code. Thus, these SHL schemes are all similar optimization algorithms, gradually improving the efficiency using a stochastic algorithm on the database of signals. All these unsupervised learning algorithms show the emergence of edge-like filters thanks to a correlation-based inhibition such as may be observed to be necessary for the formation of elongated receptive fields \cite{Bolz:1989}. However, a major advantage of our formulation is the fact that it is tightly coupled to the coding representation. In particular, the efficiency is based on spiking nature neural information while other algorithms relied on a firing-frequency representations. In these schemes based on an analog representation, the problem of coding and decoding of the values was not specifically addressed and in most of the cases the decoding solution was achieved as the fixed point solution of a recurrent network. This solution therefore requires at each coding step to settle to a fixed point and is therefore incompatible with the rapidity of cortical processing \cite{Keysers:2000}. Moreover, a crucial feature of our solution is that the output of the coding algorithm gives non-linear results. For instance, for a mixture of images, the output to the sum of two images is not necessarily the sum of both individual output. Moreover, the response selectivity to rotated oriented lines will be sharper than the linear response \cite{Perrinet:2005}. This provides an alternative to the debate between forward and recurrent models for the origin of selectivity by offering a functional reasoning behind the emergence of orientation selectivity. In particular, we predict that it will exhibit a similar non-linearity in the spiking response without the need of explicitly adding after the first stage of matching a parametrized non-linear gain control that matches physiological recordings \cite{Carandini:1997,Carandini:2005}. As a consequence, by taking advantage of the parallel architecture of the cortex, we propose a new interpretation for the receptive fields of neurons which in this view self organize optimally in accordance with neighboring neurons and can therefore only be understood as a whole in an assembly.

The work presented here is part of a larger program aiming at assessing qualitatively the functional efficiency of different modeling solutions to computational
neuroscience problems. Using constraints from neuroscience, we have built a solution to the LGM inverse problem which we proved to be more efficient than the Matching Pursuit algorithm by using these quantitative tools. In fact, by including an adaptive homeostasis mechanism, we optimized the efficiency of the representation and proved that image patches could be efficiently coded by a binary event-based representation. We proved also that this homeostasis played a significant role in these results but also that counter-intuitively textured filters could also be good candidates for optimal coding in V1 if the goal was set by a different coding cost. Computationally, the complexity of the algorithms and the time required by both methods was similar on the different simulations on a standard sequential computer. All these models were implemented with the intention of providing reproducible research and are freely available and we encourage to modify them [see Annex]. However it should be stressed that the transfer of this technology to parallel architectures will provide a supra-linear gain of performance. In fact, the SSC algorithm consists of simple operations (integrating and spiking) particularly adapted to an implementation on parallel architecture such as an aVLSI. A major advantage is that it provides a progressive dynamical result while the conjugate gradient method had to be recomputed for any different number of coefficients. In fact, the most relevant information is propagated first and the reconstruction may be interrupted at any time. Its efficiency makes it a good candidate for future technologies of information processing. In particular, it compares favorably with compression methods such as JPEG [Fischer et al. 2007]. Going back to biology, the efficiency of such architectures may explain on a functional level why spikes have been selected during evolution as an efficient signal for long range, rapid communications quanta. The main limit of this algorithm is the use of transient signals and of relatively abstract neurons. This choice was decided on purpose to stress the importance of the network's dynamics: it shows that solutions using spike coding/decoding may be built and that they prove to be of better efficiency than traditional solutions. A solution of SSC for continuous flows was proposed under the term Causal Sparse Spike Coding in [Perrinet 2007, Sec. 3.4], but some new problems arise (for instance the dynamical compromise between speed and precision) that were beyond the scope of this paper. Moreover, an implementation of SSC using Leaky Integrate-and-Fire neurons was previously proposed [Perrinet 2007], but this solution proved to be computationally expensive on a sequential computer and that it introduced artifacts from integration approximations. At least, to keep mathematical tractability, it is preferable of sticking with abstract neurons which use a simple set of operations: computing the correlation, choosing the ArgMax, doing a subtracting, retrieving a value from a Look-Up-Table, see Sec. 2.3. The advantage is that it eases the extension of this algorithm to other type of parallel event-based algorithms. One extension of the algorithm is to not use the implicit symmetry of filters which introduces the constraint that if a filter exists, then the symmetric filter exists, that is that we rate the efficiency of a match by the absolute value of the correlation coefficient. The relaxed condition proved to be more efficient, suggesting that the symmetry that is observed is more a general effect and that since neurons are not linear inte-
grator with a rectifier, more efficient solutions may exist (see Annex 5.2). This simple architecture provided also a rich range of other novel experiments, such as introducing topological relations between filters or by using a representation with some build-in invariances, such as translation and scaling in a gaussian pyramid such as in [Hyvärinen et al. 2001, Bednar et al. 2001]. This last example provided a multi-scale analysis algorithm were the set of filters that were learned were a dictionary of mother wavelets of the multi-scale analysis, hence the name of SparseLet Analysis [Perrinet, 2007 Sec. 3.3.4]. Another interesting perspective is to study the evolution of the efficiency of the algorithm with the complexity of the representation: when increasing the over-completeness, one observes the emergence of different classes of filters, such as first different positions and edges and then a similar edge with different phases. Exploring the results for different dimensions of the dictionary may give an evaluation of the optimal complexity of the LGM to describe imagelets in terms of a trade-off between accuracy and generality (see Annex ??). Pushing this experiment to the extreme (that is when the over-completeness equals the size of the dictionary of signals), one would get a dictionary where every single signal from the database would be represented, the so-called grand-mother neurons. However, the architecture of the connections between cortical areas suggests that information is distributed, that this distribution is organized according to a hierarchical but also recursive architecture and that an important feature is the generalization of the representation according to noise or common transformations (for an image a translation, a different non-uniform lighting, an occlusion,...). This calls for the extension of this kind of approach to a more integrated multi-scale approach were events could be a more general bit of information, from a synaptic quanta, a spike (such as studied here), a burst in a cortical column or an activation in an area.

Acknowledgments

This work was supported by a grant form the French Research Council (ANR "NatStats") and by EC IP project FP6-015879, "FACETS".

5 Supplementary material

5.1 Annex: Computational implementation

The whole collection of simulation scripts were written with the intention of controlling the convergence of the algorithms and the relative effect of the different parameters. All scripts to reproduce the figures and supplementary material are available on the author’s website (see http://incm.cnrs-mrs.fr/LaurentPerrinet/SparseHebbianLearning). Version 1.5 and experiment 20081115T201309 was used for this paper, and other figures regarding control experiments may be found there. The original parameters of SPARSE.NET were used for the CGF algorithm.
Table 1: Parameters used in the simulations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>where version</td>
<td>../results/20080115T201309' mp-sparseNet-1.5</td>
</tr>
<tr>
<td>L</td>
<td>256</td>
</tr>
<tr>
<td>M</td>
<td>324</td>
</tr>
<tr>
<td>num-trials</td>
<td>32001</td>
</tr>
<tr>
<td>eta-cgf</td>
<td>1</td>
</tr>
<tr>
<td>eta-ssc</td>
<td>0.1</td>
</tr>
<tr>
<td>switch-sym</td>
<td>1</td>
</tr>
<tr>
<td>image-base</td>
<td>../data/IMAGES'</td>
</tr>
<tr>
<td>batch-size</td>
<td>100</td>
</tr>
<tr>
<td>frac</td>
<td>0.5</td>
</tr>
<tr>
<td>noise-var-cgf</td>
<td>0.017</td>
</tr>
<tr>
<td>noise-var-ssc</td>
<td>0.008</td>
</tr>
<tr>
<td>alpha-mp</td>
<td>0.8</td>
</tr>
<tr>
<td>eta-homeo</td>
<td>0.01</td>
</tr>
<tr>
<td>var-eta-cgf</td>
<td>0.001</td>
</tr>
<tr>
<td>var-eta-ssc</td>
<td>0.0025</td>
</tr>
<tr>
<td>n-quant</td>
<td>256</td>
</tr>
<tr>
<td>alpha</td>
<td>0.02</td>
</tr>
<tr>
<td>VAR-GOAL</td>
<td>0.1</td>
</tr>
<tr>
<td>beta</td>
<td>0.2</td>
</tr>
<tr>
<td>sigma</td>
<td>0.1</td>
</tr>
<tr>
<td>tol</td>
<td>0.0031</td>
</tr>
</tbody>
</table>
Figure 5: Control of the statistics of the inputs. (Left) One set of imagelets drawn from SPARSENET. Another set of images was used as a control and gave similar results. However, the images had to be fairly homogeneous (and therefore textured) since it happened to draw a patch from a flat area (such as the sky) in which case the signal was poor and the convergence of the learning was slower. When comparing the efficiency of two algorithms, we were careful to show for both the same set of imagelets. (Right) We show here a 16×16 matrix of 16×16 correlation values representing the covariance matrix of the set of images. This shows that luminance’s correlation between 2 points is low (gray) compared to auto-correlation (white) when increasing the distance between both points to more than one pixel, validating the whitening hypothesis for the image’s preprocessing.
Figure 6: **Solution with non-negative coefficients.** When releasing the symmetry constraint, the learning algorithm converged to a similar set of filters. However, the convergence was quicker and proved to be of higher efficiency. This suggested that the assumption of symmetry of the sign of the coefficients is not strictly true for the LGM and that a non-negative representation is more efficient. See script experiment_symmetric.m to reproduce the figure.

5.2 Annex: Symmetry of filters

To compare our algorithm with SparseNet, we similarly assumed that in the dictionary, filters were symmetric. In fact, inspired by biology, receptive fields often coexist with opposite polarities (the so-called ON/OFF symmetry). This implied a constraint in the generative model that when looking for a match, the correlation could be positive or negative and therefore that the best match should be chosen as the greatest absolute value in Eq. 1. If we rather choose a dictionary of double the size and that we choose only the greatest values (that is not applying the absolute operator) we will obtain a system were each spike would have the same informational cost (the additional bit replacing the polarity bit from the symmetric case). We therefore look similarly to the non-negative representation without any further modification of the algorithm. The solution to the problem when releasing the symmetry constraint looked qualitatively similar but proved to be of slightly higher efficiency (see Fig. 5).

5.3 Annex: Robustness to a perturbation

As an adaptive algorithm, we checked that the system returned to a similar macroscopic state after a perturbation. To illustrate that, we perturbed one filter (by re-initializing it to a random filter) and ran again the algorithm. The first effect was that the corresponding gain function changed since the correlation coefficients values dropped for that particular neuron. As a consequence,
the homeostatic constraint relatively “boosted” the correlation values of this neuron relative to the other neurons so that the choice of choosing any neuron was uniform. After a few steps, the filter retrieved and edge-like shape which was often close to the feature prior to the perturbation, since this feature was momentarily “absent” from the representation dictionary. See script experiment_perturb.m to reproduce this experiment.

5.4 Annex: Robustness of the methods

We included in our computational framework the ability of exploring the evolution of the efficiency of one model when changing one single parameter around the operating point that was chosen over the experiences (see table in Annex 5.1). This “perturbation analysis” allowed to trace if the chosen parameters were giving locally the best efficiency so that the comparison of two algorithms was valid. It also allows to identify the parameters which are the most relevant in the sense that small variations will induce big changes of efficiency. This was in particular true for the SPARSENET algorithm. It showed in particular that SPARSENET was more sensitive to parameters (including learning rate, homeostasis parameter) than our solution and that the parameters for tuning the parametric model (in particular the parameters β and σ) were of particular importance.

References

25

M Rehn and FT Sommer. A model that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields. *Journal of Computational Neuroscience*, 2007.

Special issue: New Aspects in Neurocomputing 10th European Symposium on Artificial Neural Networks 2002 - Edited by T. Villmann.

28

Received 1 December 2005; Revised 7 September 2006; Accepted 18 September 2006 Recommended by Javier Portilla.

Bruno Cessac, Emmanuel Dauçé, Laurent U. Perrinet, and Manuel Samuelides. *Topics in Dynamical Neural Networks: From Large Scale Neural Networks to Motor Control and Vision*, volume 142 of *The European Physical Journal (Special Topics)*. Springer Berlin / Heidelberg, mar 2007. doi: 10.1140/epjst/e2007-00061-7. URL http://www.springerlink.com/content/q00921n9886h/?p=03c19c7c204d4fa78b850f88b97da2f7&pi=0